Phenomenology of neutron-antineutron conversion

Xinshuai Yan

Department of Physics and Astronomy University of Kentucky, Lexington, KY

October 26, 2017 Based on S. Gardner and X. Yan, arXiv:1602.00693, arXiv:1710.09292, and ongoing work

• Two kinds of β phenomena:

≉ • $|\Delta B| = 1$ (& $|B - L| = 0$): $\Lambda_{p \to e^+ \pi^0} \ge 10^{15}$ GeV; [E. Kearns (2013)]

 \bullet $|\Delta B| = 1$ (& $|B - L| = 2$): $\Lambda_{n \to e^- \pi^+} > 10^{10}$ GeV; [S. Seidel et al. (1988)]

[S. Weinberg (1980), H. A. Weldon and A. Zee (1980).]

 $\textcolor{blue}{\ast}\,\,\ket{\Delta B}=2:\, \Lambda_{n\bar n}\geq 10^{5.5}\,\,\text{GeV}.$ Note $(\ket{\Delta B}=2)\neq (\ket{\Delta B}=1)^2;$

⇒ a relatively low scale of new physics.

• Three possible $n - \bar{n}$ transitions.

- $\sqrt{n-\bar{n}}$ oscillation: neutrons spontaneously transform into antineutrons. It is sensitive to the energy difference between neutrons and antineutrons. Great efforts to deal with environmental effects, such as magnetic fields and matter.
- $\sqrt{}$ Dinucleon decay. Background induced by atmospheric neutrinos can be a problem.
- $\hat{\ast}$ *n* − \bar{n} conversion: A change of a neutron into an antineutron is realized through the interaction with an external source.

The fermion anticommutation relation and CPT phase constraints **leave 3 non-trivial lowest mass dimension operators:** [S. Gardner and X. Yan, (2015)]

- n^{\top} Cn+ h.c.. Its search is very sensitive to environmental effects;
- $n^\top C \gamma^5 n+$ h.c., does not contribute to $n\bar n$ oscillation; $\,$ [S. Gardner and E. Jafari (2015), Berezhiani and Vainshtein, (2015) and Fujikawa and Tureanu, (2015)]
- n^\top C $\gamma^\mu \gamma^5$ n ∂ [Berezhiani and Vainshtein (2015)]

The external source, $j_{\mu}=\partial^{\nu}F_{\nu\mu}$, technically can represent any gauge invariant currents.

Since this is a scattering process, the energy degeneracy of the initial and final particles is no longer required, so that $n - \bar{n}$ transition with no sensitivity to environmental effects is possible.

 QQ

イロト イ押ト イヨト イヨト

Exploration of $n - \bar{n}$ oscillations in the basis $(|n+\rangle, |\bar{n}+\rangle, |n-\rangle, |\bar{n}-\rangle)$ has been firstly suggested. [S. Gardner and E. Jafari (2015)]

Now assuming that momentum transfer is trivially small, in the P = 0 limit, the mass matrix for $n - \bar{n}$ transition in the presence of a magnetic field (whose direction is the spin quantization axis) and an external source $Q e j_{\mu} \equiv \partial^{\nu} F_{\mu \nu}$ is

$$
M = \begin{pmatrix} m + \omega_0 & \omega_z & 0 & \omega_x - i\omega_y \\ \omega_z & m - \omega_0 & \omega_x - i\omega_y & 0 \\ 0 & \omega_x + i\omega_y & m - \omega_0 & -\omega_z \\ \omega_x + i\omega_y & 0 & -\omega_z & m + \omega_0 \end{pmatrix}
$$

where $\omega_0 \equiv -\mu B$, $\omega \equiv \eta I$. Note j_0 does not appear because its matrix element is proportional to |p|, but $p = 0$.

$n - \bar{n}$ conversion operator

Define $\omega_{\mathsf{x}\mathsf{y}} = \sqrt{\omega_{\mathsf{x}}^2 + \omega_{\mathsf{y}}^2}$ and calculate the probabilities of a neutron with $s = +$ transforming to \bar{n} in spin $s = +/-$ state respectively,

$$
\mathcal{P}_{n+\to\bar{n}+} = \frac{\omega_z^2}{\omega_0^2} \sin^2[t\omega_0] \cos^2[t\omega_{xy}] + \mathcal{O}(\omega_z^3),
$$

\n
$$
\mathcal{P}_{n+\to\bar{n}-} = \sin^2[t\omega_{xy}] - \frac{t\omega_z^2\omega_{xy}}{\omega_0^2} \sin[t\omega_{xy}] \cos[t\omega_{xy}]
$$

\n
$$
-\frac{\omega_z^2}{\omega_0^2} \cos^2[t\omega_0] \sin^2[t\omega_{xy}] + \mathcal{O}(\omega_z^3),
$$

where $\omega_i \ll \omega_0$. Note that $P_{n+\to \bar{n}+}$ is still quenched by magnetic field (same spin!). $n - \bar{n}$ oscillation with spin-flip through magnetic field (Rabi formula) has been considered. [S. Gardner and E. Jafari (2015)] However, it still does not evade quenching. [Berezhiani and Vainshtein (2015), S. Gardner and X. Yan (2016), McKeen and Nelson (2016).]

KED KARD KED KED E VOOR

Connect $n - \bar{n}$ conversion with oscillation

Dimension analysis of the j_{μ} operator shows that

$$
\frac{\eta}{2}(n^{\mathcal{T}}C\gamma^{\mu}\gamma^{5}nj_{\mu}+\mathrm{h.c.})
$$

with $[\eta]=-2$. Naively expect additional suppression of Λ_{BSM}^3 compared with $n - \bar{n}$ oscillation? We want to evaluate the mass scale of this suppression.

Note that quarks are charged under QED and QCD. However, j_{μ} in QCD is not gauge invariant. We explore the connection through QED.

Quark-level $n - \bar{n}$ oscillation: $\Lambda_{QCD} \ll \Lambda \ll \Lambda_{BSM}$

There are 14 independent operators if $U(1)_{em}$ and $SU(3)_{color}$ symmetries are considered

[Rao and Shrock (1982), W. E. Caswell et al (1983)]

$$
(O_1)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top\alpha} Cu_{\chi_1}^{\beta}] [d_{\chi_2}^{\top\gamma} Cd_{\chi_2}^{\delta}] [d_{\chi_3}^{\top\rho} Cd_{\chi_3}^{\sigma}] (T_s)_{\alpha\beta\gamma\delta\rho\sigma},
$$

\n
$$
(O_2)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top\alpha} Cd_{\chi_1}^{\beta}] [u_{\chi_2}^{\top\gamma} Cd_{\chi_2}^{\delta}] [d_{\chi_3}^{\top\rho} Cd_{\chi_3}^{\sigma}] (T_s)_{\alpha\beta\gamma\delta\rho\sigma},
$$

\n
$$
(O_3)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top\alpha} Cd_{\chi_1}^{\beta}] [u_{\chi_2}^{\top\gamma} Cd_{\chi_2}^{\delta}] [d_{\chi_3}^{\top\rho} Cd_{\chi_3}^{\sigma}] (T_a)_{\alpha\beta\gamma\delta\rho\sigma},
$$

with
$$
(T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\rho\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta}
$$

and $(T_a)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta}$.

The number of independent operators can be reduced to 4, if we demand that they are invariant under $SU(2)_L \times U(1)_Y$.

[Rao and Shrock (1982), M. Buchoff et al (2012)]

These are $(O_1)_{RRR}$, $(O_2)_{RRR}$, $2(O_3)_{LRR}$, $4(O_3)_{LLR}$.

4 D F

つへへ

EM dressing

The EM interaction with the quark-level $n - \bar{n}$ oscillation operator \mathcal{O}_1 :

Consider a process $q^{\rho}(p) + \gamma(k) \rightarrow \bar{q}^{\delta}(p')$, where ρ and δ are flavor indices. The pertinent terms in interaction Hamiltonian are

$$
H_{n\bar{n}} = \frac{\delta_q}{2} \sum_{\chi_1} \int d^3x \ (\psi_{\chi_1}^{\rho \tau} C \psi_{\chi_1}^{\delta} + h.c.), \ H^{\rho} = Q_{\rho} e \sum_{\chi_2} \int d^3x \ \bar{\psi}_{\chi_2}^{\rho} A \psi_{\chi_2}^{\rho}, \text{ and}
$$

$$
H^{\delta} = Q_{\delta} e \sum_{\chi_3} \int d^3x \ \bar{\psi}_{\chi_3}^{\delta} A \psi_{\chi_3}^{\delta}.
$$

We compute the amplitude

$$
\langle \bar{q}^{\delta}(p')| \mathcal{T}[(-iH_{n\bar{n}})(-iH^{\rho}-iH^{\delta})]|q^{\rho}(p)\gamma(k)\rangle,
$$

where T is the time-ordering operator.
(University of Kentucky)
 $n = \bar{p}$ conversion

EM dressing

We find

$$
-\frac{\delta_q}{2} \text{emi} \sum_{\chi} \left[\bar{u}^{\delta}(\boldsymbol{p}', s') \dot{\epsilon}(k) u^{\rho}(\boldsymbol{p}, s) \left(\frac{Q_{\rho}}{p'^2 - m^2} - \frac{Q_{\delta}}{p^2 - m^2} \right) \right.
$$

+ $\chi \bar{u}^{\delta}(\boldsymbol{p}', s') \dot{\epsilon}(k) \gamma^5 u^{\rho}(\boldsymbol{p}, s) \left(\frac{Q_{\rho}}{p'^2 - m^2} + \frac{Q_{\delta}}{p^2 - m^2} \right) \left[(2\pi)^4 \delta^4(\boldsymbol{p}' - \boldsymbol{p} - \boldsymbol{k}), \right.$

where ϵ is the polarization vector of photon. Noting $p^2=p'^2$, we extract the effective operators associated with the quark-antiquark-photon vertex

$$
-\frac{m\delta_q e}{p^2-m^2}(Q_\rho\psi_{-\chi}^{\delta\mathcal{T}}C\gamma^\mu\psi_\chi^\rho-Q_\delta\psi_\chi^{\delta\mathcal{T}}C\gamma^\mu\psi_{-\chi}^\rho).
$$

Note that only the $C\gamma^{\mu}\gamma^{5}$ Lorentz structure would survive if $\rho = \delta$. Also χ comes from the EM interaction part. We can recast it as

$$
-\frac{m\delta_q e}{p^2-m^2}(Q_\rho\psi_{-\chi}^{\delta\mathcal{T}}C\gamma^\mu\gamma^5\psi_\chi^\rho+Q_\delta\psi_\chi^{\delta\mathcal{T}}C\gamma^\mu\gamma^5\psi_{-\chi}^\rho).
$$

 200

Following the same procedure, we find the effective $n - \bar{n}$ conversion operator associated with \mathcal{O}_1 :

$$
(\tilde{\mathcal{O}}_{1})_{\chi_{1}\chi_{2}\chi_{3}}^{\chi} = (\delta_{1})_{\chi_{1}\chi_{2}\chi_{3}} \frac{em}{3(\rho^{2}-m^{2})} \frac{Qe j_{\mu}}{q^{2}}
$$

\n
$$
\left[-2[u_{-\chi}^{\alpha T} C \gamma^{\mu} \gamma^{5} u_{\chi}^{\beta} + u_{\chi}^{\alpha T} C \gamma^{\mu} \gamma^{5} u_{-\chi}^{\beta}] [d_{\chi_{2}}^{\gamma T} C d_{\chi_{2}}^{\delta}] [d_{\chi_{3}}^{\rho T} C d_{\chi_{3}}^{\sigma}]
$$

\n
$$
[u_{\chi_{1}}^{\alpha T} C u_{\chi_{1}}^{\beta}] [d_{-\chi}^{\gamma T} C \gamma^{\mu} \gamma^{5} d_{\chi}^{\delta} + d_{\chi}^{\gamma T} C \gamma^{\mu} \gamma^{5} d_{-\chi}^{\delta}] [d_{\chi_{3}}^{\rho T} G d_{\chi_{3}}^{\sigma}]
$$

\n
$$
[u_{\chi_{1}}^{\alpha T} C u_{\chi_{1}}^{\beta}] [d_{\chi_{2}}^{\gamma T} C d_{\chi_{2}}^{\delta}] [d_{-\chi}^{\rho T} C \gamma^{\mu} \gamma^{5} d_{\chi}^{\sigma} + d_{\chi}^{\rho T} C \gamma^{\mu} \gamma^{5} d_{-\chi}^{\sigma}] \Big| (T_{s})_{\alpha\beta\gamma\delta\rho\sigma}.
$$

The effective conversion operators associated with \mathcal{O}_2 and \mathcal{O}_3 can be found in the same way.

4 0 8

Matching from the quark to hadron level

In quark level, the respective effective Lagrangian that mediates $n - \bar{n}$ oscillation and conversion are

$$
\mathcal{L}_{q} \supset \sum_{i,\chi_{1},\chi_{2},\chi_{3}} (\delta_{i})_{\chi_{1},\chi_{2},\chi_{3}} (\mathcal{O}_{i})_{\chi_{1},\chi_{2},\chi_{3}} + h.c.,
$$
\n
$$
\mathcal{L}_{q}^{\text{conv}} \supset \sum_{\chi} \sum_{i,\chi_{1},\chi_{2},\chi_{3}} (\eta_{i})_{\chi_{1},\chi_{2},\chi_{3}}^{\chi} (\tilde{\mathcal{O}}_{i})_{\chi_{1},\chi_{2},\chi_{3}}^{\chi} + h.c..
$$

In neutron level, the respective effective Lagrangian are

$$
\mathcal{L}_n \supset -\frac{\delta}{2}(n^T C n + h.c.), \quad \mathcal{L}_n^{\text{con}} \supset -\frac{\eta}{2}(n^T C \gamma^\mu \gamma^5 n j_\mu + h.c.).
$$

We related the low-energy constants of the effective Lagrangian (oscillation and conversion) to those in quark level by the following matching condition:

$$
\langle \bar{n} | \int d^3 r \mathcal{L}_n(\mathbf{r}) | n \rangle = \langle \bar{n}_q | \int d^3 r \mathcal{L}_q(\mathbf{r}) | n_q \rangle
$$

 200

Matrix elements in MIT bag model

Matrix element of quark-level $n - \bar{n}$ oscillation operators

Consistent with the published results. [Rao and Shrock (1982)] The matrix elements of quark level $n - \bar{n}$ conversion operators with $\mu = z$ only:

The matrix elements of \tilde{O}_1 vanish because its operator structure is associated with the same flavor. [S. Gardner. and X. Yan (2016)] QQ **4 ロト 4 何 ト 4**

Relations between coupling parameters

Assuming $SU(2)_L \times U(1)_Y$, only the matrix elements of $(\mathcal{O}_3)_{LLR}$ and $(\mathcal{O}_3)_{LLR}$ conversion operators are non-vanishing. We pick $(\mathcal{O}_3)_{LLR}$ as an illustration. Applying the matching condition to $n - \bar{n}$ oscillation gives $\delta = (\delta_3)_{LLR}, (\delta_3)_{LLR},$ and to $n - \bar{n}$ conversion yields

$$
\eta j_z = (\delta_3)_{LLR} ((l_3)_{LLR}^{R3} - (l_3)_{LLR}^{L3}) \frac{e}{3} \frac{m}{\rho^2 - m^2} \frac{Q_{ej}}{q^2},
$$

\n
$$
\Rightarrow \eta = \left(\frac{\delta}{q^2}\right) \left(\frac{m}{p^2 - m^2}\right) \left(\frac{Q e^2}{3}\right) \left(\frac{(l_3)_{LLR}^{R3} - (l_3)_{LLR}^{L3}}{\langle O_3 \rangle_{LLR}}\right)
$$

\n
$$
= \left(\frac{\delta}{q^2}\right) \left(\frac{0.108 \text{ GeV}^{-1}}{0.365^2}\right) \left(\frac{Q e^2}{3}\right) \left(\frac{-7.74}{2.03}\right).
$$

More generally, we replace δ by $\tilde{\delta}$, with

$$
\tilde{\delta} \equiv \left[\frac{\langle O_3 \rangle_{LLR}}{(I_3)_{LLR}^{R3} - (I_3)_{LLR}^{L3}} \right]_{\chi_1, \chi_2, \chi_3}^{\chi_2, 3} \left[(\delta_i)_{\chi_1, \chi_2, \chi_3} \left((I_i)_{\chi_1, \chi_2, \chi_3}^{R3} - (I_i)_{\chi_1, \chi_2, \chi_3}^{L3} \right) \right]
$$

- The mass scale of the suppression need not come from BSM theory.
- **If** $n \bar{n}$ oscillation can occur, so can $n \bar{n}$ conversion. They are complementary.
- **•** Not all $n \bar{n}$ $n \bar{n}$ os[c](#page-11-0)illati[on](#page-12-0) operators contribute to $n \bar{n}$ con[v](#page-13-0)[ers](#page-0-0)[ion](#page-31-0) [p](#page-0-0)[roc](#page-31-0)[es](#page-0-0)[ses](#page-31-0).

Applications of $n - \bar{n}$ conversion

Set limit on $\tilde{\delta}$ through $n - \bar{n}$ conversion processes at low energies, mediated by electromagnetically charged particle scattering. Two processes are considered:

- $n + Q \rightarrow \bar{n} + Q$, i.e. neutrons scatter with a charged particle (with electric charge Q) target.
- $Q + n \rightarrow Q + \overline{n}$, i.e. a charged particle scatter with a neutron target.

The event rate for a fixed-target experiment is given by

$$
\frac{dR}{dt}=\mathcal{L}\sigma=\phi\rho L\sigma,
$$

where ${\mathcal L}$ denotes luminosity with units cm $^{-2}$ s $^{-1}$, R is the number of events, ϕ is the flux of incoming particles. Comments about the cross section:

- $*$ It increases as θ goes to zero, we only focus on the forward scattering.
- $\boldsymbol{*}$ We estimate the total cross section within a solid angle $\pi * \theta_0^2$.

 \equiv \cap α

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Experimental setups

The angle θ_0 (in radians):

- Neutron scattering process: $\theta_0 \approx 0.003$, which is based on a setup for a T violation search in neutron transmission experiment. [J. D. Bowman and V. Gudkov (2014)] Note there exists an upper limit of $\theta_0 = m_e/m_n$ from the energy-momentum conservation constrain.
- Electron beams: $\theta_0 = 3.73 \times 10^{-5}$, which is determined by the **uncertainty principle vs. the Coulomb interaction.** [R. C. Fernow (1986)]

Experiment setups we used:

- $*$ Slow neutron beams: $\phi = 1.7 \times 10^{11}$ s $^{-1}$ and $|{\bf p_n}| \simeq 2$ keV, [Baldo-Ceolin et al. (ILL) $_{(1994)]}$ Fast neutron beams: $\phi = 5 \times 10^{8}$ s $^{-1}$ with $|\mathbf{p_n}| \simeq 0.447$ GeV.
- $*$ Electron beams in the DarkLight experiment: $\phi = 2 \times 10^{17}$ s⁻¹ and $|\mathbf{p_e}| \simeq 100 \text{ MeV}.$ [J. Balewski et al. (2014)]
- * Density of the liquid deuterium at 19K: $\rho = 5 \times 10^{22}$ cm⁻³. [Clusius, K., and Bartholome E (1935)]
- $*$ Density of the solid oxygen at 24K: $\rho = 5.76 \times 10^{22}$ $\rho = 5.76 \times 10^{22}$ $\rho = 5.76 \times 10^{22}$ [c](#page-13-0)[m](#page-14-0)^{−3}[.](#page-0-0) [H. M. Roder (1978)] $2Q$

Set limits on $|\delta|$

If we run the experiment for one year without observing one single event, i.e.,

$$
R=\phi LT\rho\sigma<1,
$$

we can set a limit

$$
|\tilde{\delta}|<1\times10^{-19}\Big(\frac{|\pmb{\rho_{n}}|}{2~\text{KeV}}\Big)\sqrt{\frac{1~\text{yr}}{t}}\sqrt{\frac{1.7\times10^{11}~\text{s}^{-1}}{\phi}}\sqrt{\frac{1~\text{m}}{L}}\sqrt{\frac{5.76\times10^{22}~\text{cm}^{-3}}{\rho}}\text{GeV}.
$$

- $n + d \rightarrow \bar{n} + d$: $|\tilde{\delta}| \leq 3 \times 10^{-19}$ GeV for $|\mathbf{p}_n| = 2$ keV neutron beams, $|\delta| < 2 \times 10^{-11}$ GeV for $|\mathbf{p}_n| = 0.447$ GeV neutron beams;
- $n + 0 \rightarrow \bar{n} + 0$: $|\tilde{\delta}| < 1.253 \times 10^{-19}$ GeV for $|\boldsymbol{p}_n| = 2$ keV neutron beams, $|\delta|$ < 7 × 10⁻¹² GeV for $|\mathbf{p}_n|$ = 0.447 GeV neutron beams;
- **e** + n → e + \overline{n} : $|\tilde{\delta}|$ < 1.784 × 10⁻¹⁵ GeV for $|\mathbf{p}_n|$ = 100 MeV electron beams;

Cold neutrons scattering with a deuterium target or a solid oxygen target seems promising.

 QQ

- Through $n \bar{n}$ conversion operators, we argue that it is possible to realize a $n - \bar{n}$ transition process with no sensitivity to the environmental effects.
- Phase constraints associated with discrete symmetry transformations show that only one additional $n - \bar{n}$ transition operator is left.
- Due to the connection between $n \bar{n}$ oscillation and $n \bar{n}$ conversion, we can determine the low energy "constant" of this operator through EM interaction and find that the additional mass scale of suppression needs not come from BSM physics.
- This operator offers us an opportunity to realize $n \bar{n}$ transition through scattering experiments. We explore various limits on $n - \bar{n}$ oscillation through three promising $n - \bar{n}$ conversion proposals.

(□) (_□) (

 QQ

重

 298

イロト イ部 トメ ヨ トメ ヨト

For a general four-component fermion field:

$$
\mathbf{C}\psi(x)\mathbf{C}^{-1} = \eta_c C\gamma^0 \psi^*(x) = \eta_c i\gamma^2 \psi^*(x) \equiv \eta_c \psi^c(x),
$$

\n
$$
\mathbf{P}\psi(t, x)\mathbf{P}^{-1} = \eta_p \gamma^0 \psi(t, -x),
$$

\n
$$
\mathbf{T}\psi(t, x)\mathbf{T}^{-1} = \eta_t \gamma^1 \gamma^3 \psi(-t, x).
$$

Thus $\mathbf{C}^2\psi(x)\mathbf{C}^{-2}=\psi(x)$, $\mathbf{T}^2\psi(x)\mathbf{T}^{-2}=-\psi(x)$ and $\mathbf{P}^2\psi(x)\mathbf{P}^{-2}=\eta_p^2\psi(x)$.

Note: In normal case: $\mathcal{L} \ni \bar{\psi} \Gamma \psi$, Γ is some product of gamma matrices.

Under discrete symmetry transformations: $\bar\psi\Gamma\psi\Rightarrow\pm|\eta|^2\bar\psi\Gamma\psi=\pm\bar\psi\Gamma\psi$, therefore, phases do not matter.

IN THIS CASE...

CPT transformation of $B - L$ violating operators

$$
O_1 = \psi^T C \psi + \text{h.c.} \qquad \stackrel{\text{CPT}}{\Longrightarrow} -(\eta_c \eta_p \eta_t)^2
$$

\n
$$
O_2 = \psi^T C \gamma_5 \psi + \text{h.c.} \qquad \stackrel{\text{CPT}}{\Longrightarrow} -(\eta_c \eta_p \eta_t)^2
$$

\n
$$
O_3 = \psi^T C \gamma^{\mu} \psi \partial^{\nu} F_{\mu\nu} + \text{h.c.} \qquad \stackrel{\text{CPT}}{\Longrightarrow} +(\eta_c \eta_p \eta_t)^2
$$

\n
$$
O_4 = \psi^T C \gamma^{\mu} \gamma_5 \psi \partial^{\nu} F_{\mu\nu} + \text{h.c.} \qquad \stackrel{\text{CPT}}{\Longrightarrow} -(\eta_c \eta_p \eta_t)^2
$$

\n
$$
O_5 = \psi^T C \sigma_{\mu\nu} \psi F^{\mu\nu} + \text{h.c.} \qquad \stackrel{\text{CPT}}{\Longrightarrow} +(\eta_c \eta_p \eta_t)^2
$$

\n
$$
O_6 = \psi^T C \sigma_{\mu\nu} \gamma_5 \psi F^{\mu\nu} + \text{h.c.} \qquad \stackrel{\text{CPT}}{\Longrightarrow} +(\eta_c \eta_p \eta_t)^2
$$

Note: The operators do not transform under CPT with definite sign. If $\eta_c = \eta_p = \eta_t = 1$, all CPT even operators vanish identically due to the anticommutation relations of fermion fields.

 Ω

,

,

,

,

,

.

The plane-wave expansion of a general Majorana field ψ_m is

$$
\psi_m(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}} \sum_{s} \left\{ f(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i\mathbf{p}\cdot x} + \lambda f^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i\mathbf{p}\cdot x} \right\}
$$

where λ is the creation phase factor and can be chosen arbitrarily. Now applying C transformation and Majorana condition,

$$
i\gamma^2\psi_m^*(x)=\lambda^*\psi_m(x),
$$

yields

$$
\mathbf{C}\psi_m(x)\mathbf{C}^{-1} = \eta_c\lambda^*\psi_m(x),
$$

i.e. $\mathsf{C}f(\mathsf{p},s)\mathsf{C}^{-1}=\eta_c\lambda^*f(\mathsf{p},s)$ and $\mathsf{C}f^\dagger(\mathsf{p},s)\mathsf{C}^{-1}=\eta_c\lambda^*f^\dagger(\mathsf{p},s).$ Since C is a unitary operator, Hermitian conjugate shows $\eta_c^*\lambda$ is real.

 QQ

.

Majorana phase constraints

Under CP, we find $\eta_p^*\eta_c^*\lambda$ must be imaginary, or η_p^* must be imaginary. Under **T**, we have $\eta_t \lambda$ must be real. Under CPT, we have

$$
\mathbf{CPT}\psi_m(x)(\mathbf{CPT})^{-1}=-\eta_c\eta_p\eta_t\gamma^5\psi_m^*(-x)\,,
$$

or

$$
\begin{array}{rcl}\n\mathbf{CPTf}(\mathbf{p},s)(\mathbf{CPT})^{-1} & = & s\lambda^* \eta_c \eta_p \eta_t f(\mathbf{p},-s)\,, \\
\mathbf{CPTf}^\dagger(\mathbf{p},s)(\mathbf{CPT})^{-1} & = & -s\lambda \eta_c \eta_p \eta_t f^\dagger(\mathbf{p},-s)\,. \n\end{array}
$$

Notice CPT is antiunitary and define CPT = $KU_{\text{c}ot}$, where $U_{\text{c}ot}$ denotes a unitarity operator. We find $\eta_c\eta_p\eta_t$ is pure imaginary!.

- **C**: $\eta_c^* \lambda$ is real;
- **CP**: $\eta_p^* \eta_c^* \lambda$ is imaginary or η_p^* is imaginary;
- T: $\eta_t \lambda$ is real;
- **CPT**: $\eta_c \eta_p \eta_t$ is imaginary. $\Rightarrow \eta_c \eta_t$ is real.

Notice order does not matter and no constr[ai](#page-20-0)[nt](#page-22-0) [f](#page-20-0)[or](#page-21-0) $\eta_c \eta_{p_c}$ $\eta_c \eta_{p_c}$ $\eta_c \eta_{p_c}$ $\eta_c \eta_{p_c}$ $\eta_c \eta_{p_c}$

 QQ

Phase constraints for Dirac field in B-L violation theories

The plane-wave expansion of a Dirac field $\psi(x)$ is given by

$$
\psi(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}} \sum_{s=\pm} \left\{ b(\mathbf{p}, s)u(\mathbf{p}, s)e^{-i\mathbf{p}\cdot x} + d^{\dagger}(\mathbf{p}, s)v(\mathbf{p}, s)e^{i\mathbf{p}\cdot x} \right\}
$$

Construct a Majorana field from Dirac fields:

$$
\psi_{m\pm}(x) = \frac{1}{\sqrt{2}}(\psi(x) \pm \mathbf{C}\psi(x)\mathbf{C}^{\dagger})
$$

then plane-wave expansion is

$$
\psi_{m\pm}(x)=\int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}}\sum_{s}\left\{w_{\pm}(\mathbf{p},s)u(\mathbf{p},s)e^{-i\boldsymbol{p}\cdot x}\pm\eta_c w_{\pm}^{\dagger}(\mathbf{p},s)v(\mathbf{p},s)e^{i\boldsymbol{p}\cdot x}\right\}.
$$

where $w_{m\pm}(\mathbf{p},s)\equiv\frac{1}{\sqrt{2}}$ $\frac{1}{2}[b(\mathbf{p},s) \pm \eta_c d(\mathbf{p},s)]$ and $\lambda = \pm \eta_c$. We find the same phase constraints for Dirac fields as Majorana fields.

つひひ

The plane-wave expansion of a general Majorana field ψ_m is

$$
\psi_m(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}} \sum_{s} \left\{ f(\mathbf{p}, s) u(\mathbf{p}, s) e^{-i p \cdot x} + \lambda f^{\dagger}(\mathbf{p}, s) v(\mathbf{p}, s) e^{i p \cdot x} \right\} ,
$$

where λ is the creation phase factor and can be chosen arbitrarily. Now applying C transformation and Majorana condition,

$$
i\gamma^2\psi_m^*(x)=\lambda^*\psi_m(x),
$$

yields

$$
\mathbf{C}\psi_m(x)\mathbf{C}^{-1} = \eta_c\lambda^*\psi_m(x),
$$

i.e. $\mathsf{C}f(\mathsf{p},s)\mathsf{C}^{-1}=\eta_c\lambda^*f(\mathsf{p},s)$ and $\mathsf{C}f^\dagger(\mathsf{p},s)\mathsf{C}^{-1}=\eta_c\lambda^*f^\dagger(\mathsf{p},s).$ Since C is a unitary operator, Hermitian conjugate shows $\eta_c^*\lambda$ is real.

 QQ

Majorana phase constraints

Under CP, we find $\eta_p^*\eta_c^*\lambda$ must be imaginary, or η_p^* must be imaginary. Under **T**, we have $\eta_t \lambda$ must be real. Under CPT, we have

$$
\mathbf{CPT}\psi_m(x)(\mathbf{CPT})^{-1}=-\eta_c\eta_p\eta_t\gamma^5\psi_m^*(-x)\,,
$$

or

$$
\begin{array}{rcl}\n\mathbf{CPTf}(\mathbf{p},s)(\mathbf{CPT})^{-1} & = & s\lambda^* \eta_c \eta_p \eta_t f(\mathbf{p},-s)\,, \\
\mathbf{CPTf}^\dagger(\mathbf{p},s)(\mathbf{CPT})^{-1} & = & -s\lambda \eta_c \eta_p \eta_t f^\dagger(\mathbf{p},-s)\,. \n\end{array}
$$

Notice CPT is antiunitary and define CPT = KU_{cpt} , where U_{cpt} denotes a unitarity operator and K denotes complex conjugation. We find $\eta_c \eta_p \eta_t$ is pure imaginary!.

- **C**: $\eta_c^* \lambda$ is real;
- **CP**: $\eta_p^* \eta_c^* \lambda$ is imaginary or η_p^* is imaginary;
- T: $\eta_t \lambda$ is real;
- **CPT**: $\eta_c \eta_p \eta_t$ is imaginary. $\Rightarrow \eta_c \eta_t$ is real.

Notice order does not matter and no constr[ai](#page-23-0)[nt](#page-25-0) [f](#page-23-0)[or](#page-24-0) $\eta_c\eta_p$ $\eta_c\eta_p$ $\eta_c\eta_p$ $\eta_c\eta_p$ [ex](#page-0-0)[ist](#page-31-0)[s.](#page-0-0)

Phase constraints for Dirac field in B-L violation theories

The plane-wave expansion of a Dirac field $\psi(x)$ is given by

$$
\psi(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}} \sum_{s=\pm} \left\{ b(\mathbf{p}, s)u(\mathbf{p}, s)e^{-i\mathbf{p}\cdot x} + d^{\dagger}(\mathbf{p}, s)v(\mathbf{p}, s)e^{i\mathbf{p}\cdot x} \right\}
$$

Construct a Majorana field from Dirac fields:

$$
\psi_{m\pm}(x) = \frac{1}{\sqrt{2}}(\psi(x) \pm \mathbf{C}\psi(x)\mathbf{C}^{\dagger})
$$

then plane-wave expansion is

$$
\psi_{m\pm}(x)=\int \frac{d^3\mathbf{p}}{(2\pi)^{3/2}\sqrt{2E}}\sum_{s}\left\{w_{\pm}(\mathbf{p},s)u(\mathbf{p},s)e^{-i\boldsymbol{p}\cdot x}\pm\eta_c w_{\pm}^{\dagger}(\mathbf{p},s)v(\mathbf{p},s)e^{i\boldsymbol{p}\cdot x}\right\}.
$$

where $w_{m\pm}(\mathbf{p},s)\equiv\frac{1}{\sqrt{2}}$ $\frac{1}{2}[b(\mathbf{p},s) \pm \eta_c d(\mathbf{p},s)]$ and $\lambda = \pm \eta_c$. Therefore, we find the same phase constraints for Dirac fields as Majorana fields.

Phase constraints are intrinsic

Now,

Once the anticommuting nature of the fermion fields is taken into account, only CPT even operators survive.

A natural way to understand the existence of phase constraints is to consider them as intrinsic properties of discrete symmetry transformations.

∢ ロ ▶ - ィ _ロ ▶ - ィ

 QQ

4×4 effective Hamiltonian framework

Work in the basis $|n(\mathbf{p}, +)\rangle$, $|\bar{n}(\mathbf{p}, +)\rangle$, $n(\mathbf{p}, -)\rangle$, $|\bar{n}(\mathbf{p}, -)\rangle$. [SG and Jafari (2015)]

Spin-dependent SM effects involving transverse magnetic fields could realize $n - \bar{n}$ transitions in which the particle spin flips without magnetic quenching.

However, it is sensitive to the CPT phase constraint.

Consider $n - \bar{n}$ oscillate in a static B_0 with $\omega_0 \equiv -\mu_n B_0$. Apply a static B_1 suddenly at $t = 0$ and define $\omega_1 \equiv -\mu_n B_1$. The Hamiltonian matrix at $t > 0$ is

$$
\mathcal{H} = \left(\begin{array}{cccc} M+\omega_0 & \delta & \omega_1 & 0 \\ \delta & M-\omega_0 & 0 & -\omega_1 \\ \omega_1 & 0 & M-\omega_0 & -\delta\eta_{cpt}^2 \\ 0 & -\omega_1 & -\delta\eta_{cpt}^2 & M+\omega_0 \end{array}\right)\,,
$$

where δ denotes a $n(+) \rightarrow \bar{n}(+)$ transition matrix element.

 QQQ

The matrix element $\langle \bar{n} | O | n \rangle$ can be calculated in the MIT bag model [Rao and Shrock (1982)] **Or through lattice QCD.** [M. Buchoff et al (2012), S. Syritsyn et al (2015)]

	$Z(\text{lat} \rightarrow \overline{MS})$	$\sqrt{\sqrt{MS(2 \text{ GeV})}}[10^{-5} \text{GeV}^6]$	Bag "A"	LQCD Bag "A"	Bag "B"	LQCD Bag "B"
(RRR) ₃	0.62(12)	$\bf{0}$	$\bf{0}$	$\overline{}$	0	
$[(RRR)_1]$	0.454(33)	45.4(5.6)	8.190	5.5	6.660	6.8
$[R_1(LL)_0]$	0.435(26)	44.0(4.1)	7.230	6.1	6.090	7.2
(RR) ₁ L_0]	0.396(31)	$-66.6(7.7)$	-9.540	7.0	-8.160	8.1
$[(RR)_{2}L_{1}]^{(1)}$	0.537(52)	$-2.12(26)$	1.260	-1.7	-0.666	3.2
$[(RR)_{2}L_{1}]^{(2)}$	0.537(52)	0.531(64)	-0.314	-1.7	0.167	3.2
$[(RR)_{2}L_{1}]^{(3)}$	0.537(52)	$-1.06(13)$	0.630	-1.7	-0.330	3.2

Table 2: Preliminarly results for matrix elements of 6-quark operators 2.1 and comparison to the MIT Bag Model results [8]. The first line shows matrix elements for $I = 3_{pI}$ operators vanishing identically.

We use the MIT bag model to evaluate the matrix elements.

4 0 8

 200

In 1967, in attempting to rationalize the spectral pattern of the low-lying, light hadrons, Carruthers discovered a class of theories for which the CPT theorem does not hold. [Carruthers (1967)]

The pions form a self-conjugate isospin multiplet (π^+,π^0,π^-) , but the kaons form pair-conjugate multiplets $(\mathcal{K}^+,\mathcal{K}^0)$ and $(\bar{\mathcal{K}}^0,\mathcal{K}^-).$

Carruthers discovered that free theories of self-conjugate bosons with half-integer isospin are nonlocal, that the commutator of two self-conjugate fields with opposite isospin components do not vanish at space-like separations. [Carruthers (1967)]

Same conclusion for theories of arbitrary spin. [Lee (1967), Fleming and Kazes (1967), Jin (1967).]

 QQQ

イロト イ部 トイヨ トイヨ トー

B-L violation and theories of self-conjugate fermions

Failure of weak local communitivity \Rightarrow CPT symmetry is not expected to hold, nor should the CPT theorem of Greenberg apply. [Carruthers (1968), Streater and Wightman (2000), Greenberg (2002)]

The conclusion is it is possible to have self-conjugate theories of $I=0$, but it is not possible to have self-conjugate theories of $I=1/2$

Note neutron and antineutron are members of pair-conjugate $I =$ 1/2 multiplets. In addition, the quark-level operators that generate $n - \bar{n}$ oscillations would also produce $p - \bar{p}$ oscillations under the isospin transformation $u \leftrightarrow d$. In QCD in the chiral limit, $n - \bar{n}$ oscillations are indistinguishable with $p - \bar{p}$ oscillations. Then if $n - \bar{n}$ oscillation happens, neutron and proton would form a self-conjugate isofermion pair with a half- integer isospin and break weak locality.

Therefore, $B - L$ violation is not compatible with QCD in the chiral limit. QQ **4 ロト 4 何 ト 4** ヨメ メヨメ (University of Kentucky) n − \bar{n} [conversion](#page-0-0) October 26, 2017 31 / 32

For a general four-component fermion field:

$$
\mathbf{C}\psi(x)\mathbf{C}^{-1} = \eta_c C\gamma^0 \psi^*(x) = \eta_c i\gamma^2 \psi^*(x) \equiv \eta_c \psi^c(x),
$$

\n
$$
\mathbf{P}\psi(t, x)\mathbf{P}^{-1} = \eta_p \gamma^0 \psi(t, -x),
$$

\n
$$
\mathbf{T}\psi(t, x)\mathbf{T}^{-1} = \eta_t \gamma^1 \gamma^3 \psi(-t, x).
$$

Thus $\mathbf{C}^2\psi(x)\mathbf{C}^{-2}=\psi(x)$, $\mathbf{T}^2\psi(x)\mathbf{T}^{-2}=-\psi(x)$ and $\mathbf{P}^2\psi(x)\mathbf{P}^{-2}=\eta_p^2\psi(x)$.

Note: In normal case: $\mathcal{L} \ni \bar{\psi} \Gamma \psi$, Γ is some product of gamma matrices.

Under discrete symmetry transformations:

 $\bar\psi\mathsf{\Gamma}\psi\Rightarrow\pm|\eta|^2\bar\psi\mathsf{\Gamma}\psi=\pm\bar\psi\mathsf{\Gamma}\psi$, therefore, phases do not matter.

 QQ