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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.
Essentially the same issues were addressed in our

previous note [3]. There we emphasize the point that
parity P, such that P2 = 1, is broken in the neutron-
antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�µ@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! ei↵n, n̄! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.
Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
ei��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

nTCn , nTC�5n , n̄Cn̄T , n̄C�5n̄
T . (4)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices.
Using the chiral basis we show in the part 4 that all

these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�µ@µn as it is demonstrated in the part
4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and nc

fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where

nc = n⇤ . (7)
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0n .

(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P2 = 1

P :

P 2
↵ = e2iB↵ 6= 1

P 2
z = �1

↵ = ⇡/2

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄
2

6

9. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP

VIOLATION
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Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
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How does baryon number non-conservation shows up? 
At the level of free particles it could be only bilinear           
                mass terms:
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P2 = 1, is broken in the neutron-
antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�µ@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! ei↵n, n̄! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
ei��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

nTCn , nTC�5n , n̄Cn̄T , n̄C�5n̄
T . (4)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices.

Using the chiral basis we show in the part 4 that all
these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�µ@µn as it is demonstrated in the part
4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and nc

fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where

nc = n⇤ . (7)
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we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
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2. Let us start with the Dirac Lagrangian
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with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
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charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry
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of Lagrangian (1). At each spatial momentum there are
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structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
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fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where
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All these bilinear in fields, presenting the most generic 
Lorentz invariant modifications, are reduced by field 
redefinitions to the only one term, breaking baryon charge 
by two units,
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We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet

(7)  i ↵ , i = 1, 2, ↵ = 1, 2 ,

together with their complex conjugates, representing the right-handed spinors,

(8)  
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 .

One can raise and lower space ↵, ↵̇ and flavor i indices using ✏↵�, ✏↵̇�̇ and ✏ik. In terms
of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)⇤. The most generic
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P2 = 1, is broken in the neutron-
antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�µ@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! ei↵n, n̄! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
ei��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

nTCn , nTC�5n , n̄Cn̄T , n̄C�5n̄
T . (4)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices.

Using the chiral basis we show in the part 4 that all
these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�µ@µn as it is demonstrated in the part
4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and nc

fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where

nc = n⇤ . (7)
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1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P2 = 1, is broken in the neutron-
antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�µ@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! ei↵n, n̄! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
ei��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

nTCn , nTC�5n , n̄Cn̄T , n̄C�5n̄
T . (4)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices.

Using the chiral basis we show in the part 4 that all
these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�µ@µn as it is demonstrated in the part
4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and nc

fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where

nc = n⇤ . (7)
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1Dipartimento di Fisica e Chimica, Università dell’Aquila, Via Vetoio, 67100 Coppito, L’Aquila, Italy
2INFN, Laboratori Nazionali Gran Sasso, 67010 Assergi, L’Aquila, Italy

3School of Physics and Astronomy and William I. Fine Theoretical Physics Institute,
University of Minnesota, Minneapolis, MN 55455, USA

4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.

Essentially the same issues were addressed in our
previous note [3]. There we emphasize the point that
parity P, such that P2 = 1, is broken in the neutron-
antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�µ@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! ei↵n, n̄! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.

Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
ei��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

nTCn , nTC�5n , n̄Cn̄T , n̄C�5n̄
T . (4)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices.

Using the chiral basis we show in the part 4 that all
these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�µ@µn as it is demonstrated in the part
4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and nc

fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where

nc = n⇤ . (7)

FTPI-MINN-15/29, NSF-KITP-15-073

Neutron–Antineutron Oscillation and Discrete Symmetries

Zurab Berezhiani1, 2 and Arkady Vainshtein3, 4
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i
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⇥
n̄�µ@µn + nc�µ@µn

c
⇤
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m
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n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
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◆
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1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
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Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
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Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-
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with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
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making it complex and satisfying P2

z = �1 instead of
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subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
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4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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T invariance follows from CPT theorem provided by
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of parity transformation defines a specific T transforma-
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n and nc equal to i is still consistent with the notion of
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mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n
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more comment is to notice that Pz commute with C, i.e.
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field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2
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Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a
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Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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leftt-handed spinors,
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subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
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together with their complex conjugates, representing the
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The parity transformation    involves, besides reflection of 
space coordinates, the substitution

NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP VIOLATION 3

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
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ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet
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of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)⇤. The most generic
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How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
pseudoscalar. Clearly, the parity violation comes together with breaking of T invariance
since CPT invariance is guaranteed by a local, Lorentz invariant form of the Lagrangian.

Thus, we demonstrated that observation of neutron-antineutron oscillation signals break-
ing of CP invariance together with breaking of baryon charge.

2. To show that the above consideration covers indeed a generic case it is convenient to
introduce two left-handed Weyl spinors [3], forming a flavor doublet

(7)  i ↵ , i = 1, 2, ↵ = 1, 2 ,

together with their complex conjugates, representing the right-handed spinors,

(8)  
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 .

One can raise and lower space ↵, ↵̇ and flavor i indices using ✏↵�, ✏↵̇�̇ and ✏ik. In terms
of Dirac spinor n these two left-handed Weyl spinors are nL and (nR)⇤. The most generic
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Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P2 = 1

P :

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,
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6

9. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =
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◆
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1 See, e.g., the book [11] where it is graciously applied to descrip-
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
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that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
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new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are
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Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
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mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
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more comment is to notice that Pz commute with C, i.e.
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the same and equal to i, so their mixing does not break
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and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
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with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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which makes their C invariance explicit.
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
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that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,
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T invariance follows from CPT theorem provided by
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of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
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This CP-oddness, however, does not translates 
immediately into observable CP-breaking effects. 
To get them one needs an interference of amplitudes 
provided by interaction.

This subtlety is discussed in textbooks, see e.g. 

Let’s remind it.
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9. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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When    is conserved there is there is no transition 
between sectors with different .  . One can combine    
with a          phase rotation and define 

Of coarse, then                    but the phase is 
unobservable while     is is conserved.
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i
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⇤
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(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1
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k=1,2
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⇤
,
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(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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together with their complex conjugates, representing the
leftt-handed spinors,
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1 See, e.g., the book [11] where it is graciously applied to descrip-
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It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
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Di↵erent parities of neutron and antineutron imply
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and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n
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c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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together with their complex conjugates, representing the
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1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.
Essentially the same issues were addressed in our

previous note [3]. There we emphasize the point that
parity P, such that P2 = 1, is broken in the neutron-
antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�µ@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! ei↵n, n̄! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.
Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
ei��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

nTCn , nTC�5n , n̄Cn̄T , n̄C�5n̄
T . (4)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices.
Using the chiral basis we show in the part 4 that all

these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�µ@µn as it is demonstrated in the part
4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and nc

fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where

nc = n⇤ . (7)
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2
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n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2
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n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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The Lagrangians are diagonalized in terms of Majo-
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2
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Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =
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1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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(besides reflection of the space coordinates) the substitu-
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orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,
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, (9)

which are even and odd under the charge conjugation C,
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
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with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.
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states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
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parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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CPz=PzC, in contrast with P which anticommute with
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Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1
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together with their complex conjugates, representing the
leftt-handed spinors,
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1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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We analyze status of C, P and T discrete symmetries in application to neutron-antineutron
transitions breaking conservation of baryon charge B by two units. At the level of free particles
all these symmetries are preserved in spite of the opposite parities of neutron and antineutron.
Explaining the subtlety in definition of parity we apply this to C, P and T classification of six-
quark operators with |�B| = 2. It allows to specify operators contributing to neutron-antineutron
oscillations. Remaining operators contribute to other |�B| = 2 processes and, in particular, to
nuclei instability.

We also show that presence of external magnetic field does not induce any new operator mixing
the neutron and antineutron provided that rotational invariance is not broken.

1. Experimental search for neutron-antineutron oscil-
lation [1] is under active discussion (see the resent re-
view [2]). A discovery of the oscillations would be a clear
evidence of baryon charge nonconservation, |�B| = 2.
In this note we discuss the issue of C, P and T sym-
metries in the |�B| = 2 transitions. We also analyze
e↵ects of external magnetic field and show that it does
not add any new |�B| = 2 operator if the rotational
invariance is not broken.
Essentially the same issues were addressed in our

previous note [3]. There we emphasize the point that
parity P, such that P2 = 1, is broken in the neutron-
antineutron transition, as well as CP. Although we
also noted that in absence of interaction it does not
automatically imply an existence of CP breaking physics
we did not present a detailed analysis of the problem. So
here we are trying to correct this. Following our note [3]
the issue of parity definition was addressed in a number
of related publications [4].

2. Let us start with the Dirac Lagrangian

LD = in̄�µ@µn�mn̄n (1)

with the four-component spinor n↵ , (↵ = 1, ..., 4) and
the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free
neutron and antineutron states and preserves the baryon
charge, B = 1 for n and B = �1 for n̄. This conserva-
tion corresponds to the continuous U(1)B symmetry

n! ei↵n, n̄! e�i↵n̄ (2)

of Lagrangian (1). At each spatial momentum there are
four degenerate states, the spin doublet of neutron states
with the baryon charge B = 1, and the spin doublet of
antineutron states with B = �1, i.e., two spin doublets
which di↵er by the baryon charge B.
Note that another bilinear mass term,

�ifmn̄�5n , (3)

consistent with the baryon charge conservation, can
be rotated away by chiral U(1) transformation n !
ei��5n.
How the baryon number non-conservation shows up

at the level of free one-particle states? In Lagrangian
description it could be only modification of the bilinear
mass term. Generically, there are four such Lorentz in-
variant bilinear terms:

nTCn , nTC�5n , n̄Cn̄T , n̄C�5n̄
T . (4)

Here C = i�2�0 is the charge conjugation matrix in the
standard representation of gamma matrices.
Using the chiral basis we show in the part 4 that all

these modifications (4) with a help of field redefinitions
reduce to one possibility for the baryon charge breaking
by two units,

�LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
, (5)

where ✏ is a real positive parameter. The possibility
of such redefinitions is based on U(2) symmetry of the
kinetic term in̄�µ@µn as it is demonstrated in the part
4. Four parameters of U(2) transformations allow to
exclude the term (3) and reduce four terms (4) to one
structure (5).

3. What is the status of discrete C, P and T symmetries
under the baryon charge breaking modification (5)? Let
us first consider the charge conjugation C, which can be
viewed as a plain exchange symmetry between n and nc

fields,

C : n ! nc = Cn̄T . (6)

This is a sort of discrete Z2 symmetry, C2 = 1. The
most simple it looks in the Majorana representation
where

nc = n⇤ . (7)
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stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0n .

(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0n .

(8) n ! �0n , nc ! ��0n .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

M± = m ± ✏

P2 = 1

P :

P 2
↵ = e2iB↵ 6= 1

P 2
z = �1

↵ = ⇡/2

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄
2

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.

Moreover, in case of Majorana fermions it is the only 
possible choice.  Indeed, in Majorana representation  
where

only      preserves reality of the Majorana spinor.
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9. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.



Now     parities of     and     are the same   , so their 
mixing does not break the       parity.  It means that all 
discrete symmetries,     ,       and    are preserved by       . 

     A few comments. First, preservation of    follows from 
      theorem provided by Lorentz invariance and locality.
Second, it is amusing that the same parity for     and 
equal to   is consistent with the notion of the opposite 
parities for fermion and antifermion: one should compare 
        with           . Third,      commutes with    , i.e., 
             in contrast with   which anticommutes,             .
            .
Similar effects for neutrino was noted by Wolfenstein ’81.
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which
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NEUTRON–ANTINEUTRON OSCILLATION AS A SIGNAL OF CP

VIOLATION

ZURAB BEREZHIANI AND ARKADY VAINSHTEIN

Abstract. Assuming the Lorentz andCPT invariances we show that neutron-antineutron
oscillation implies breaking of CP along with baryon number violation – i.e. two of
Sakharov conditions for baryogenesis. The oscillation is produced by the unique operator
in the e↵ective Hamiltonian. This operator mixing neutron and antineutron preserves
charge conjugation C and breaks P and T. External magnetic field always leads to sup-
pression of oscillations. Its presence does not lead to any new operator mixing neutron
and antineutron.

1. Experimental search for neutron-antineutron oscillation [1] is under active discussion
nowadays (see the resent review [2]). Its discovery would be a clear evidence of baryon
charge nonconservation, |�B| = 2. In this note we would like to emphasize that neutron-
antineutron oscillation also breaks CP invariance. This conclusion is based on the Lorentz
invariance and CPT.

To demonstrate our assertion let us start with the Dirac Lagrangian

(1) L = in̄�µ@µn � mn̄n

with four-component spinor n and the mass parameter m which is real and positive. The
Lagrangian gives the Lorentz-invariant description of free neutron and antineutron states
and preserves the baryon charge, B = 1 for n andB = �1 for n̄. This charge corresponds
to the continuous symmetry

(2) n ! ei↵n, n̄ ! e�i↵n̄

of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
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We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
⇥
nTCn + n̄Cn̄T

⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,

(5) n ! nc = Cn̄T .

In fact, the expression (4) can be rewritten in the form �(1/2) ✏
⇥
ncn + n̄ nc

⇤
, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution

(6) Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc .

(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0nc .

(8) n ! �0n , nc ! ��0nc .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,
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, (9)

which are even and odd under the charge conjugation C,
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,
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the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
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of parity transformation defines a specific T transforma-
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stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
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It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
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between sectors with di↵erent B, and one can combine
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with P2
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the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .
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ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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1 See, e.g., the book [11] where it is graciously applied to descrip-
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of Lagrangian (1). At each spatial momentum there are four degenerate states, two spin
doublets which di↵er by the baryon charge B.

Another bilinear mass term,

(3) �Lm0 = �im0n̄�5n ,

consistent with the baryon charge conservation, can be rotated away by chiral transforma-
tion n ! ei��5n if there is no terms breaking the baryon charge. As we will see it is not
the case when the baryon charge is broken.

How the baryon number non-conservation shows up at the level of free one-particle
states? In Lagrangian description it could be only modification of the bilinear mass term.
We show below that the most generic Lorentz invariant modification of Eq. (1) reduces to
one possibility for the baryon charge breaking by two units,

(4) �LB6 = �
1

2
✏
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⇤
.

Here C = i�2�0 is the charge conjugation matrix in the standard representation of gamma
matrices, and ✏ is a real positive parameter. The reality of ✏ as a coe�cient for nTCn can
be always achieved by the phase rotation (2) of n field.

One could add also |�B| = 2 term of the form nTC�5n. However, it can be rotated
away by the chiral rotation n ! ei��5n. The price for this is, as we mentioned above, an
appearance of the �5 mass term (3). Also mixed kinetic terms / in̄�µC@µn̄T +h.c. can
be turned away with redefinition of the fermion field.

Hence, a generic Lagrangian containing the fermion bilinears can always be brought to
a form containing only the terms (1), (3) and (4).

What is the status of discrete C, P and T symmetries in this situation? It is simple
to verify that the Lagrangian terms (1), (3) and (4) are all invariant under the charge
conjugation C,
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, which

makes its C invariance explicit.
The parity transformation P involves (besides reflection of the space coordinates) the

substitution
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(7) P↵ = PeiB↵ : n ! e�i↵�0n , nc ! �ei↵�0nc .

(8) n ! �0n , nc ! ��0nc .

This substitution changes �LB6 to ��LB6 because �0C�0 = �C. The breaking of
parity in neutron-antineutron transition reflects the well-known feature of the opposite
parity of fermion and antifermion. The term �Lm0 also breaks P parity, it is evidently
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these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,
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1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form
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which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,
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1
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⇤
,
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,
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1 See, e.g., the book [11] where it is graciously applied to descrip-
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commutes with C,
i.e. CPz=PzC, in contrast with P which anticommute
with C, i.e. CP=�PC .
Thus, we demonstrated that neutron-antineutron mix-

ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,
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using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
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that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
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Let us remind it.
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between sectors with di↵erent B, and one can combine
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Of course, then P2
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means that besides the original P 2 = 1 we can consider
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with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
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Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
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more comment is to notice that Pz commutes with C,
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Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
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It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.

Di↵erent parities of neutron and antineutron imply
that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.

It shows a subtlety in the definition of parity transfor-
mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.

When baryon charge is conserved there is no transition
between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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making it complex and satisfying P2
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Note that in connection with Majorana neutrino the
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case it is convenient to introduce two right-handed Weyl
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Six-quarks operators: discrete symmetries
New physics beyond the Standard Model, leading to              
transitions, induces the effective six-quark interaction, 

                    

where coefficients      account for color, flavor and spinor 
structures. 
     In particular, for n-nbar mixing
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So while C parity is preserved, we have P even, Eq. (1), and P odd, Eqs. (3), (4), mass
terms. Thus, we proved for generic case the association of baryon charge breaking with
CP violation.

Note that in terms of remaining 3 parameters the masses of C even and C odd Majorana
fermions are

(21) M2
1 = (m + ✏)2 + (m0)2 , M2

2 = (m � ✏)2 + (m0)2 ,

what di↵erent from standard expressions when m0 is nonvanishing. In particular, it implies
that the oscillation time ⌧nn̄ in free neutron transition probability, Pnn̄(t) = sin2(t/⌧nn̄)

is
p
1 + (m0/m)2/✏ instead of 1/✏.

The CP odd nature of the operator (4) was noted recently in Ref. [4]. However, the
authors of this paper discussed also the CP even operator nT�5Cn which, as we showed,
can be rotated away by field redefinition. These authors also analyzed modifications in-
duced by external magnetic field claiming an existence of a new n� n̄ transition magnetic
moment and also an absence of the usual suppression of n � n̄ oscillation in presence of
magnetic field. We will show below that both claims are invalid.

3. Our consideration above refers to the neutron-antineutron oscillation in vacuum. Now
we show that even in the presence of magnetic field no new |�B| = 2 operator appears.
Similar consideration was done in Ref. [5] in application to magnetic moment of neutrinos.

In the Weyl formalism the field strengths tensor Fµ⌫ is substituted by the symmetric

tensor F↵� and its complex conjugate F̄↵̇�̇. They correspond to ~E ± i ~B combinations of
electric and magnetic fields. Then Lorentz invariance allows only two structures involving
electromagnetic fields,

(22) F↵� 
i↵ k�✏ik , F̄↵̇�̇ ̄

↵̇
i  ̄

�̇
k ✏

ik

Antisymmetry in flavor indices implies that spinors with the opposite baryon charge enter.
So both operators preserve the baryon charge, they describe interactions with the magnetic
and electric dipole moments of the neutron.

The authors of [4] realize that the operator nT�µ⌫CnFµ⌫ is vanishing due to Fermi
statistics. They believe, however, that a composite nature of neutron changes the situation
and a new type of magnetic moment in �B = ±2 transitions may present. In other words
they think that the e↵ective Lagrangian description is broken for composite particles.

To show that is not the case let us consider the process

(23) n(p1) + n(p2) ! �⇤(k)

in the crossing channel to n � n̄�⇤ transition. The number of invariant amplitudes for
the process (23) which is 1/2+ + 1/2+ ! 1� transition is equal to one. Only orbital
momentum L = 1 and total spin S = 1 in two neutron system are allowed by angular
momentum conservation and Fermi statistics. The gauge-invariant form of the amplitude
is

(24) uT(p1)C�
µ�5u(p2) k

⌫Fµ⌫ , Fµ⌫ = kµ✏⌫ � k⌫✏µ,

it lead to an estimate                            .

4

Antisymmetry in flavor indices implies that spinors with
the opposite baryon charges enter. So both operators
preserve the baryon charge, they describe interactions
with the magnetic and electric dipole moments of the
neutron.
The authors of Ref. [12] realize that the operator

nT�µ⌫CnFµ⌫ with �B = 2 is vanishing due to Fermi
statistics. They believe, however, that a composite na-
ture of neutron changes the situation and a new type of
magnetic moment in �B = ±2 transitions may present.
In other words, they think that the e↵ective Lagrangian
description is broken for composite particles.
To show that is not the case let us consider the process

of annihilation of two neutrons into virtual photon,

n(p1) + n(p2) ! �⇤(k) , (27)

which is the crossing channel to n� n̄�⇤ transition. The
number of invariant amplitudes for the process (27) which
is 1/2+ + 1/2+ ! 1� transition is equal to one. Only
orbital momentum L = 1 and total spin S = 1 in the
two neutron system are allowed by angular momentum
conservation and Fermi statistics. The gauge-invariant
form of the amplitude is

uT(p1)C�µ�5u(p2) k
⌫
�
kµ✏⌫ � k⌫✏µ

�
, (28)

where u1,2 are Dirac spinors describing neutrons and ✏µ
refers to the gauge potential. In space representation we
deal with @⌫Fµ⌫ the quantity which vanishes outside of
the source of the electromagnetic field, and, in particular,
for the distributed magnetic field. It proves that there is
no place for magnetic moment of n � n̄ transition, and
e↵ective Lagrangian description does work.2

Even in the absence of new n�n̄magnetic moment the
authors of [12] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.
In their first example where the transversal field is time

-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [12]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [12] is also in-
correct – after a change of variables indicated in [12] the
consideration is similar to the first example with time-
independent field.

2 Let us also remark that n�n̄�⇤ transition with a virtual photon
connected to the proton, as well as nn ! �⇤ annihilation, would
destabilise the nuclei even in the absence of n� n̄ mass mixing.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [12] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

5. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.
Such operators were analyzed in Ref. [15] for putting

limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.
Note, however, that besides breaking of Lorentz

invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

6. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
ciOi ,

Oi = T i
A1A2A3A4A5A6

qA1qA2qA3qA4qA5qA6 ,

(29)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.
In particular, the nn̄ mixing term (5) emerges as a

matrix element between n and n̄ states of the operator
(29), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄C un , (30)

where un, vn̄ are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧nn̄, is

✏ =
1

⌧nn̄
⇠

⇤6
QCD

M5
. (31)

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [14]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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the opposite baryon charges enter. So both operators
preserve the baryon charge, they describe interactions
with the magnetic and electric dipole moments of the
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The authors of Ref. [12] realize that the operator
nT�µ⌫CnFµ⌫ with �B = 2 is vanishing due to Fermi
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ture of neutron changes the situation and a new type of
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description is broken for composite particles.
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which is the crossing channel to n� n̄�⇤ transition. The
number of invariant amplitudes for the process (27) which
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orbital momentum L = 1 and total spin S = 1 in the
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form of the amplitude is
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where u1,2 are Dirac spinors describing neutrons and ✏µ
refers to the gauge potential. In space representation we
deal with @⌫Fµ⌫ the quantity which vanishes outside of
the source of the electromagnetic field, and, in particular,
for the distributed magnetic field. It proves that there is
no place for magnetic moment of n � n̄ transition, and
e↵ective Lagrangian description does work.2

Even in the absence of new n�n̄magnetic moment the
authors of [12] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [12]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±
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1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [12] is also in-
correct – after a change of variables indicated in [12] the
consideration is similar to the first example with time-
independent field.

2 Let us also remark that n�n̄�⇤ transition with a virtual photon
connected to the proton, as well as nn ! �⇤ annihilation, would
destabilise the nuclei even in the absence of n� n̄ mass mixing.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [12] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

5. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [15] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

6. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B by
two units can originate only from new physics beyond SM
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where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
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violation.
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where un, vn̄ are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧nn̄, is

✏ =
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QCD

M5
. (31)
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independent field.
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example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.
Note, however, that besides breaking of Lorentz
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ance, i.e., isotropy of space. Such anisotropy could be
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B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B by
two units can originate only from new physics beyond SM
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hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄C un , (30)

where un, vn̄ are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧nn̄, is

✏ =
1

⌧nn̄
⇠

⇤6
QCD

M5
. (31)

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [14]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.

4

Antisymmetry in flavor indices implies that spinors with
the opposite baryon charges enter. So both operators
preserve the baryon charge, they describe interactions
with the magnetic and electric dipole moments of the
neutron.

The authors of Ref. [12] realize that the operator
nT�µ⌫CnFµ⌫ with �B = 2 is vanishing due to Fermi
statistics. They believe, however, that a composite na-
ture of neutron changes the situation and a new type of
magnetic moment in �B = ±2 transitions may present.
In other words, they think that the e↵ective Lagrangian
description is broken for composite particles.

To show that is not the case let us consider the process
of annihilation of two neutrons into virtual photon,

n(p1) + n(p2) ! �⇤(k) , (27)

which is the crossing channel to n� n̄�⇤ transition. The
number of invariant amplitudes for the process (27) which
is 1/2+ + 1/2+ ! 1� transition is equal to one. Only
orbital momentum L = 1 and total spin S = 1 in the
two neutron system are allowed by angular momentum
conservation and Fermi statistics. The gauge-invariant
form of the amplitude is

uT(p1)C�µ�5u(p2) k
⌫
�
kµ✏⌫ � k⌫✏µ

�
, (28)

where u1,2 are Dirac spinors describing neutrons and ✏µ
refers to the gauge potential. In space representation we
deal with @⌫Fµ⌫ the quantity which vanishes outside of
the source of the electromagnetic field, and, in particular,
for the distributed magnetic field. It proves that there is
no place for magnetic moment of n � n̄ transition, and
e↵ective Lagrangian description does work.2

Even in the absence of new n�n̄magnetic moment the
authors of [12] claim that suppression of n�n̄ oscillations
by external magnetic field can be overcome by applying
the magnetic field transversal to quantization axis.

In their first example where the transversal field is time
-independent (after switching) they obtained four di↵er-
ent energy eigenvalues (Eq. (26) in [12]) which depend on
direction of magnetic field. This clearly breaks rotational
invariance. The source of this breaking is the wrong sign
of the H34 and H43 in the Hamiltonian matrix H in
Eq. (20). The existing sign implies that �B = 2 ampli-
tude is of di↵erent sign for spins up and down. Changing
sign of H34 and H43 restores rotational invariance, the
eigenvalues become E = M1 ±

p
!2

0 + !2
1 + �2, each

doubly degenerate. In their second example, where the
transversal field is rotating, the result of [12] is also in-
correct – after a change of variables indicated in [12] the
consideration is similar to the first example with time-
independent field.

2 Let us also remark that n�n̄�⇤ transition with a virtual photon
connected to the proton, as well as nn ! �⇤ annihilation, would
destabilise the nuclei even in the absence of n� n̄ mass mixing.

As a consequence the magnetic field suppression
does present indeed, and the suggestion in [12] that
n � n̄ oscillations can be measured without minimizing
magnetic field does not work.3

5. Our use of the e↵ective Lagrangian for the proof
means that the Lorentz invariance and CPT are cru-
cial inputs. Once constraints of Lorentz invariance are
lifted new |�B| = 2 operators could show up.

Such operators were analyzed in Ref. [15] for putting
limits on the Lorentz invariance breaking. In particular,
the authors suggested the operator nTC�5�2n as an
example which involves spin flip and, correspondingly,
less dependent on magnetic field surrounding.

Note, however, that besides breaking of Lorentz
invariance this operator breaks also 3d rotational invari-
ance, i.e., isotropy of space. Such anisotropy could be
studied by measuring spin e↵ects in neutron-antineutron
transitions.

6. In the Standard Model (SM) conservations of baryon
B and lepton L numbers are related to accidental global
symmetries of the SM Lagrangian.4 The violation of B by
two units can originate only from new physics beyond SM
which would induce the e↵ective six-quark interaction

L (�B = �2) =
1

M5

X
ciOi ,

Oi = T i
A1A2A3A4A5A6

qA1qA2qA3qA4qA5qA6 ,

(29)

where coe�cients T i account for di↵erent flavor, color
and spinor structures and the large mass scale M com-
ing from new physics leads to the smallness of baryon
violation.

In particular, the nn̄ mixing term (5) emerges as a
matrix element between n and n̄ states of the operator
(29), see diagram in Fig. 1,

hn̄| L (�B = �2) |ni = �
1

2
✏ vT

n̄C un , (30)

where un, vn̄ are Dirac spinors for n, n̄. Generically, it
gives a complex value for ✏ but by a phase redefinition
of n, n̄ states we always can make it real and positive.
Thus, an estimate of the parameter ✏, which is inverse of
the oscillation time ⌧nn̄, is

✏ =
1

⌧nn̄
⇠

⇤6
QCD

M5
. (31)

3 The situation is di↵erent if one considers oscillation n � n0

where n0 is a mirror neutron, twin of the neutron from hidden
mirror sector [14]. In this case, operators n�µ⌫n0Fµ⌫ and/or
nT�µ⌫Cn0Fµ⌫ are allowed. Hence, n�n0 and/or n�n̄0 tran-
sition probabilities may not depend on the value of magnetic field
provided that it is large enough, with possible implications for
the experimental search of neutron�mirror neutron oscillations.

4 Nonperturbative breaking of B and L, preserving B � L, is
extremely small.
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For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
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�1�2�3
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+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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9. In summary, we show that the Lorentz and CPT
invariance lead to the unique |�B| = 2 operator in the
e↵ective Lagrangian for the neutron-antineutron mixing.
This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of

|�B| = 2 operators coming from new physics, par-
ticularly in association with Sakharov conditions for
baryogenesis which involves both, non-conservation of
baryon charge and CP-violation.
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This mixing is even under the charge conjugation C as
well as under the modified parityPz which takes the same
value i for both, neutron and antineutron in contrast with
standard (+1) and (-1) values. It means that observation
of the neutron-antineutron mixing per se does not give a
signal of CP violation. It could be compared with the

K0 � K
0
transition amplitude with |�S| = 2 where

to separate CP conserving and CP breaking parts one
needs to relate it to |�S| = 1 decay amplitudes.

We also showed that switching on external magnetic
field influences the level splitting, what suppresses n� n̄
oscillations, but does not add any new |�B| = 2 opera-
tor in contradistinction with recent claims in literature.

Our analysis could be useful for classification of
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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,
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;
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⇤
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(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.

5

!

!

"

!

!

"! !! "!

FIG. 1. Diagram for generating n � n̄ mixing terms

!!
!

"

"

!!
!

"

"

"
!#$

"
!

#$
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.

5

!

!

"

!

!

"! !! "!

FIG. 1. Diagram for generating n � n̄ mixing terms

!!
!

"

"

!!
!

"

"

"
!#$

"
!

#$

FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators
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Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
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. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz
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Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.



Only combinations of operators which are      even 
contributes to n-nbar mixing.  The     reflection 
interchanges    and     chiralities     in the operators           . 
Thus, only 7 combinations 

of 14 operators contribute to n-nbar mixing.  
     What about remaining     odd combinations 
                     ? Although they do not contribute to n-nbar 
mixing their effect shows up in instability of nuclei.  This 
source of instability is due to two nucleon annihilation into 
pions.     
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1
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Cd l
�2

dmT
�3

Cdn
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✏ijm✏kln+
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3
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Cdj
�1
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�2
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�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+
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⇤
,
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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,
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,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3
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�3

⇥
✏ikm✏jln+
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⇤
,

O2
�1�2�3
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�1
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�1
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�2
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�2
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�3
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�3

⇥
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⇤
,

O3
�1�2�3
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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�1
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d kT
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,
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,
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
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⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
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�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators (29)

For u and d quarks of the first generation the full list
of �B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1
Cuj

�1
d kT
�2

Cd l
�2
dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1
Cdj�1

u kT
�2

Cd l
�2
dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1
Cdj�1

u kT
�2

Cd l
�2
dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 �O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix element
(30). It is, of course, up to small corrections due to elec-
troweak interactions where the discrete symmetries are
broken. The Pz reflection interchanges L and R chirality
�i in the operators Oi

�1�2�3
. Note, that the Pz reflection

for u and d quarks is defined similar to the neutron by
Eq. (13). This is consistent with the udd wave function
of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

�L $ R
�
? Although they do not contribute to

the n� n̄ transition, their e↵ect show up in instability of

nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N +N ! ⇡ + ⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
�H.c.

�
. In total, we break all 28 op-

erators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and
C even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤� ⇤̄ mixing. However,
such operators would also lead to nuclear instability via
nucleon annihilation into kaons N + N ! K + K, see
the diagram in Fig. 2 where in upper lines d quark is
substituted by s quark (and ⇡+ by K+). In fact, nuclear
instability bounds on ⇤ � ⇤̄ mixing are only mildly,
within an order of magnitude, weaker than with respect
to n� n̄ mixing which makes hopeless the possibility to
detect ⇤ � ⇤̄ oscillation in the hyperon beam. (Instead,
it can be of interest to search for the nuclear decays
into kaons in the large volume detectors.) The nuclear
instability limits on ⇤� ⇤̄ mixing are about 15 orders of
magnitude stronger than the sensitivity �⇤⇤̄ ⇠ 10�6 eV
which can be achieved in the laboratory conditions
[18]. The nuclear stability limits make hopeless also the
laboratory search of bus-like baryon oscillation due to
operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le � Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.

9. In summary, we show that the Lorentz and CPT



     The charge conjugation    transforms operators           
into Hermitian conjugated              . So, we have 14       
C-even operators,                    ,  and 14 C-odd ones,
                  
      In total,we break all 28 operators in four sevens with 
different     ,     and       features,

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3
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�1

Cdj
�1
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dmT
�3

Cdn
�3
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(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1
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Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],
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,
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Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;
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⇤
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⇥
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�1�2�3
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⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.
The charge conjugation C transforms operators

Oi
�1�2�3

into the Hermitian conjugated [Oi
�1�2�3

]†.
Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..
A similar scenario can be staged in case of Dirac

massive neutrino.

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

Only the first seven which are both     and    even   
contribute to n-nbar mixing.           
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FIG. 2. Inducing pp ! ⇡+⇡+ annihilation via operators
(29)

For u and d quarks of the first generation the full list of
�B = �2 six-quark operators was determined in Refs.
[16, 17],

O1
�1�2�3

= uiT
�1

Cuj
�1

d kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O2
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ikm✏jln+

✏ikn✏jlm + ✏jkm✏nil + ✏jkn✏ilm
⇤
,

O3
�1�2�3

= uiT
�1

Cdj
�1

u kT
�2

Cd l
�2

dmT
�3

Cdn
�3

⇥
✏ijm✏kln+

✏ijn✏klm
⇤
.

(32)

Here �i stands for L or R quark chirality. Accounting
for relations

O1
�LR= O1

�RL , O2,3
LR�= O2,3

RL� ,

O2
���0 � O1

���0 = 3O3
���0 ,

(33)

we deal with 14 operators for �B = �2 transitions.
Only combinations of operators which are Pz even

(odd in terms of P) contribute to the nn̄ matrix ele-
ment (30). It is, of course, up to small corrections due to
electroweak interactions where the discrete symmetries
are broken. The Pz reflection interchanges L and R chi-
rality �i in the operators Oi

�1�2�3
. Note, that the Pz

reflection for u and d quarks is defined similar to the neu-
tron by Eq. (13). This is consistent with the udd wave
function of neutron. Thus, only 7 combinations

Oi
�1�2�3

+ L $ R (34)

of 14 operators contribute to nn̄ mixing.
What about the remaining Pz odd combinations�

Oi
�1�2�3

� L $ R
�
? Although they do not contribute

to the n� n̄ transition, their e↵ect show up in instability
of nuclei. This source of instability is not due to neutron-
antineutron oscillations but due to processes of annihila-
tion of two nucleons inside nucleus like N+N ! ⇡+⇡
shown on Fig. 2.

The charge conjugation C transforms operators
Oi

�1�2�3
into the Hermitian conjugated [Oi

�1�2�3
]†.

Again, our phase definitions for quarks are consistent
with those for neutron. So, it is 14 operators

�
Oi

�1�2�3
+

H.c.
�
which preserves the C invariance and 14 C-odd

operators
�
Oi

�1�2�3
� H.c.

�
. In total, we break all 28

operators into four sevens with di↵erent Pz, C and CPz

features,
⇥
Oi

�1�2�3
+L $ R

⇤
+H.c., Pz= + , C = + , CPz = + ;

⇥
Oi

�1�2�3
+L $ R

⇤
�H.c., Pz= + , C = � , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
+H.c., Pz= �, C = + , CPz = � ;

⇥
Oi

�1�2�3
�L $ R

⇤
�H.c., Pz= �, C = � , CPz = + .

(35)

Only the first seven operators, which are both Pz and C
even, contribute to nn̄ oscillations when we neglect by
SM electroweak corrections. Other operators contribute
to nuclei instability what could be particularly interesting
in case of suppressed nn̄ oscillations.
7. The operators of the type of (29) involving strange
quark, like udsuds, could induce ⇤ � ⇤̄ mixing. How-
ever, such operators would also lead to nuclear instability
via nucleon annihilation into kaons N +N ! K +K,
see the diagram in Fig. 2 where in upper lines d quark
is substituted by s quark (and ⇡+ by K+). In fact,
nuclear instability bounds on ⇤ � ⇤̄ mixing are only
mildly, within an order of magnitude, weaker than with
respect to n � n̄ mixing which makes hopeless the
possibility to detect ⇤ � ⇤̄ oscillation in the hyperon
beam. (Instead, it can be of interest to search for the
nuclear decays into kaons in the large volume detectors.)
The nuclear instability limits on ⇤� ⇤̄ mixing are about
15 orders of magnitude stronger than the sensitivity
�⇤⇤̄ ⇠ 10�6 eV which can be achieved in the labora-
tory conditions [18]. The nuclear stability limits make
hopeless also the laboratory search of bus-like baryon
oscillation due to operator usbusb suggested in Ref. [19].

8. The construction we used for neutron-antineutron
transition could be applied to mixing of massive neutri-
nos. As an example, let us take the system of left-handed
⌫e and ⌫µ and their conjugated partners, right-handed
⌫̄e and ⌫̄µ. One can ascribe them [20] a flavor charge
F = Le �Lµ (analog of B), to be (+1) for ⌫e and (-1)
for ⌫µ. Then, C conjugation is interchange of ⌫e and ⌫µ.
Again, F breaking mass term would be C and Pz even
but odd for P..

A similar scenario can be staged in case of Dirac
massive neutrino.

2

It is simple to verify that both Lagrangians above, (1)
and (5), are C invariant. Indeed, they could be rewritten
in the form

LD =
i

2

⇥
n̄�µ@µn + nc�µ@µn

c
⇤
�

m

2

⇥
n̄n + ncnc

⇤
,

�LB6 = �
1

2
✏
⇥
ncn + n̄ nc

⇤
,

(8)

which makes their C invariance explicit.
The Lagrangians are diagonalized in terms of Majo-

rana fields n1,2 ,

n1 =
n ± nc

p
2

, (9)

which are even and odd under the charge conjugation C,
Cn1,2 = ±n1,2. Namely,

LD =
1

2

X

k=1,2

⇥
n̄k�

µ@µnk � mn̄knk

⇤
,

�LB6 = �
1

2
✏
⇥
n̄1 n1 � n̄2 n2

⇤
.

(10)

It demonstrates that the baryon charge breaking leads to
splitting into two Majorana spin doublets, The C-even n1

field gets the mass M1 = m + ✏ while the mass of the
C-odd n2 is M2 = m � ✏.
Turn now to the parity transformation P. It involves

(besides reflection of the space coordinates) the substitu-
tion

P : n ! �0n , nc ! ��0nc , (11)

where �0C�0 = �C is used. The opposite signs in
transformations for n and nc reflect the well-known the-
orem on the opposite parities of fermion and antifermion
pioneered by Berestetsky [5]. The definition (11) satisfies
P2 = 1, so the eigenvalues of P are ±1 and opposite for
fermion and antifermion states.
Di↵erent parities of neutron and antineutron imply

that their mixing breaks P parity, and, indeed, the sub-
stitution (11) changes �LB6 to (��LB6 ) . Together with
C invariance it implies then that �LB6 is also CP odd.
However, this CP oddness does not translate immedi-
ately into observable CP breaking e↵ects. To get them
one needs an interference of amplitudes and this is pro-
vided only by interaction.
It shows a subtlety in the definition of parity transfor-

mation P, see textbook discussions, e.g., in Refs. [6, 7].
Let us remind it.
When baryon charge is conserved there is no transition

between sectors with di↵erent B, and one can combine
P with a baryonic U(1)B phase rotation and define P↵,

P↵ = PeiB↵ : n ! ei↵�0n , nc ! �e�i↵�0nc .
(12)

Of course, then P2
↵ = e2iB↵ 6= 1 but the phase is unob-

servable when B is conserved.

When baryon charge is not conserved the only remnant
of baryonic U(1)B rotations is Z2 symmetry associated
with changing sign of the fermion field, n ! �n. It
means that besides the original P 2 = 1 we can consider
a di↵erent parity definition Pz, such that P2

z = �1.
Thus, choosing ↵ = ⇡/2 in Eq. (12), we come to a

new parity Pz,

Pz = PeiB⇡/2 : n ! i�0n , nc ! i�0nc (13)

with P2
z = �1. Now Pz parities of n and nc states are

the same and equal to i, so their mixing does not break
Pz parity. It means that all discrete symmetries, C, Pz

and T are preserved by the baryon breaking term �LB6 .
Couple of related comments. First, preservation of

T invariance follows from CPT theorem provided by
Lorentz invariance and locality. A specific Pz definition
of parity transformation defines a specific T transforma-
tion. Second, it is amusing that the same Pz parity for
n and nc equal to i is still consistent with the notion of
opposite parities of fermion and antifermion, having in
mind that that for the complex value of parity we should
compare Pz(n) with [Pz(n

c)]⇤. Also for a fermion-
antifermion pair the product Pz(n)Pz(n

c) = �1. One
more comment is to notice that Pz commute with C, i.e.
CPz=PzC, in contrast with P which anticommute with
C, i.e. CP=�PC .

Thus, we demonstrated that neutron-antineutron mix-
ing by �B = ±2 Majorana term in the mass matrix
leads to a specific definition of the conserved parity Pz,
making it complex and satisfying P2

z = �1 instead of
(+1). It is this definition which should be used in ana-
lyzing CPz violating interactions.
Note that in connection with Majorana neutrino the

subtlety in a definition of parity P (and CP) and was
discussed long ago [8]. Here we apply this to mixing of
neutron and antineutron.

4. To show that the above consideration covers a generic
case it is convenient to introduce two right-handed Weyl
spinors, forming a flavor doublet1

 i ↵ , i = 1, 2, ↵ = 1, 2 , (14)

together with their complex conjugates, representing the
leftt-handed spinors,

 
↵̇
i = ( i ↵)⇤ , i = 1, 2, ↵̇ = 1, 2 . (15)

One can raise and lower space ↵, ↵̇ and flavor i indices
using ✏↵� , ✏↵̇�̇ and ✏ik. In terms of Dirac spinor n
these two right-handed Weyl spinors are associated with
nR and (nL)

⇤. Particularly, in the chiral (Weyl) basis
of gamma-matrices,

n =

✓
( 2)⇤

 1

◆
. (16)

1 See, e.g., the book [11] where it is graciously applied to descrip-
tion of massive neutrinos.


