Progress toward a new beam measurement of the neutron lifetime

Mike Snow For the BL2 Collaboration

Indiana University/CEEM IU Center for Spacetime Symmetries

INT NNbar Workshop

Thanks for slides: Shannon Hoogerheide, Nadia Fomin, Eamon Anderson,...

WMS support: NSF and NIST Precision Measurement Grant program

BL2 Collaboration

E. Adamek¹, E. S. Anderson², J. Caylor¹, B. Crawford³, M. S. Dewey⁴,
N. Fomin¹, D. M. Gilliam⁴, K. Grammer⁵, G. L. Greene^{1,5}, R. Haun⁶,
S. F. Hoogerheide⁴, H. P. Mumm⁴, J. S. Nico⁴, W. M. Snow², and
F. E. Wietfeldt⁶

University of Tennessee
 Indiana University
 Gettysburg College
 National Institute of Standards and Technology
 Oak Ridge National Laboratory
 Tulane University

Neutron Lifetime

Measuring τ_n :

 $N = N_0 e^{-t/\tau_n}$

I. Neutron "bottle": $N(t_1) / N(t_2) = e^{-(t_1 - t_2)/\tau_n}$

Measure **relative** change in population of ultra-cold neutrons (UCN) confined to a storage vessel

2. Direct observation of exponential decay: $\ln{(N/N_0)} = -t/ au_n$

Measure **relative** decay rate of an ensemble of neutrons as a function of time and measure the slope

3. "In-beam" method: $-\frac{dN}{dt} = N/\tau_n$

Measure **absolute** neutron decay rate in a well-defined region of a neutron beam of well-measured **absolute** fluence

Cold neutron beam τ_n measurement

ABSOLUTE MEASUREMENT of beam fluence and decay rate

Requires known proton trapping/detection efficiency and known neutron detection efficiency

The 2003 Cold Beam Experiment

M. S. Dewey, D.M. Gilliam, and J.S. Nico National Institute of Standards and Technology

> F.E. Wietfeldt Tulane University

X. Fei and W.M. Snow Indiana University M. S. Dewey et al., **Measurement of the Neutron Lifetime Using a Proton Trap**, Phys. Rev. Lett. **91**, 152301 (2003).

G.L. Greene University of Tennessee/ORNL

J. Pauwels, R. Eykens, A. Lamberty, and J. Van Gestel Institute for Reference Materials and Measurements, Belgium

Support from NIST and DoE Nuclear Physics

R.D. Scott Scottish Universities Research and Reactor Centre, U.K.

The NIST beam lifetime experiment

- Penning trap electrostatically traps decay protons and directs them to detector via B field
- Neutron fluence monitor measures incident neutron rate via n + ⁶Li reaction products (α + t)

Proton trap

 $N_n = \int_{\Lambda} \int da I(v) \frac{L}{v} dv = L \int_{\Lambda} \int da I(v) \frac{1}{v} dv$ $\dot{N}_n = -\tau_n^{-1}L \int da I(v) \frac{1}{v} dv$ $\dot{N}_p = \epsilon_p \tau_n^{-1} L \left| \int da I(v) \frac{1}{v} dv \right|$

 $\dot{N}_{\alpha+t} = \int_{\Lambda} \int da I(v) \epsilon(v) dv = \epsilon_0 v_0 \int_{\Lambda} \int da I(v) \frac{1}{v} dv$

The Proton Trap

Gold-coated, fused silica segmented electrode structure

Absolute dimensions from coordinate measuring machine

Nonmagnetic, ~UHV/compatible materials

The NCNR guide hall

NG-6

NG-6m (under mezzanine)

The beam lifetime apparatus

Data: Proton Counting

S/N improvement from trapping goes like trapping time/measurement time ≈10 ms/80 µs = 125/1

➣ 50 V ramp kicks out protons.

Data: Extrapolation in Electrode Length

$\tau_n = 886.3(1.2)_{stat}(3.2)_{sys}$

Source of correction	Correction (s)	Uncertainty (s)
⁶ LiF deposit areal density		2.2
⁶ Li cross section		1.2 -2.7s
Neutron detector solid angle		1.0
Absorption of neutrons by ⁶ Li	+5.2	0.8
Neutron beam profile and detector solid angle	+1.3	0.1
Neutron beam profile and ⁶ Li deposit shape	-1.7	0.1
Neutron beam halo	-1.0	1.0
Absorption of neutrons by Si substrate	+1.2	0.1
Scattering of neutrons by Si substrate	-0.2	0.5
Trap nonlinearity	-5.3	0.8
Proton backscatter calculation		0.4
Neutron counting dead time	+0.1	0.1
Proton counting statistics		1.2
Neutron counting statistics		0.1
Total	-0.4	3.4

J. S. Nico et al, Phys. Rev. C 71, 055502 (2005).

Definition of fluence monitor (FM) ϵ_0

Measuring ϵ_0 directly with Alpha-Gamma

A new ϵ_0 :

Allows for re-evaluation of τ_n without running experiment again

Enables a re-run of the experiment for higher accuracy

Makes result insensitive to absolute cross sections

Calibration of Alpha-Gamma as an absolute neutron flux monitor

- 1.Measure the absolute activity of an alpha source
- 2.Use this source to determine solid angle of alpha detector
- 3.Use an (n, $\alpha\gamma$) reaction to transfer the calibration to the gamma detectors

Alpha source (²³⁹Pu) disintegration rate measured in simple geometry with metrologically determined solid angle

Source loaded into vacuum chamber and counted

Known source activity gives us detector Ω without direct metrology ²³⁹Pu replaced with thin ¹⁰B foil, beam on

 $-n + {}^{10}B \rightarrow {}^{7}Li + \alpha + \gamma$

-Observed alpha and gamma rates calibrate gamma detectors

Thin foil replaced with thick (totally absorbing) ¹⁰B foil

-Every neutron participates in n + ¹⁰B reaction -Gamma efficiency gives incident neutron rate

Experiment ran on NCNR beamline NG-6m

Uncertainty budget: factor of 5 Improvement!

Source of uncertainty	Fractional uncertainty
α -source calibration of AG α -detector	3.1×10^{-4}
Neutron beam wavelength	2.4×10^{-4}
γ attenuation in B ₄ C target	2.3×10^{-4}
Correction to AG α -detector efficiency for beam spot	1.5×10^{-4}
γ attenuation in thin ¹⁰ B target	1.2×10^{-4}
Correction to FM solid angle for beam spot	9.0×10^{-5}
Neutron backscatter in FM substrate	4.0×10^{-5}
γ detection dead time	2.9×10^{-5}
Neutron loss in Si substrate	1.8×10^{-5}
Neutron absorption by ⁶ Li	1.2×10^{-5}
FM misalignment	6.1×10^{-6}
Self-shielding of ⁶ Li deposit	6.1×10^{-6}
γ production in thin ¹⁰ B target Si subtrate	3.3×10^{-6}
Neutron scattering from B_4C	3.5×10^{-7}
Neutron counting statistics	3.2×10^{-4}
Total	6.0×10^{-4}

Goal of BL2: 0.1% Accuracy

Source of uncertainty	_ past _ BL1 [s]	_ present _ BL2 projected [s]
Source of uncertainty		projected [5]
Neutron flux monitor efficiency	2.7	0.5
Absorption of neutrons by ⁶ Li	0.8	0.1
Neutron beam profile and detector solid angle	0.1	0.1
Neutron beam profile and ⁶ Li deposit shape	0.1	0.1
Neutron beam halo	1.0	0.1
Absorption of neutrons by Si substrate	0.1	0.1
Scattering of neutrons by Si substrate	0.5	0.1
Trap nonlinearity	0.8	0.2
Proton backscatter calculation	0.4	0.4
Neutron counting dead time	0.1	0.1
Proton counting statistics	1.2	0.6
Neutron counting statistics	0.1	0.1
Total	3.4	1

NIST Center for Neutron Research (NCNR)

2005 Measurement Uncertainty Budget

Source of correction	Correction (s)	Uncertainty (s)
⁶ LiF deposit areal density		2.2
⁶ Li cross section		1.2
Neutron detector solid angle		1.0
Absorption of neutrons by ⁶ Li	+5.2	0.8
Neutron beam profile and detector solid angle	+1.3	0.1
Neutron beam profile and ⁶ Li deposit shape	-1.7	0.1
Neutron beam halo	-1.0	1.0
Absorption of neutrons by Si substrate	+1.2	0.1
Scattering of neutrons by Si substrate	-0.2	0.5
Trap nonlinearity	-5.3	0.8
Proton backscatter calculation		0.4
Neutron counting dead time	+0.1	0.1
Proton counting statistics		1.2
Neutron counting statistics		0.1
Total	-0.4	3.4

2005 Measurement Uncertainty Budget

Source of correction	Correction (s)	Uncertainty (s)
⁶ LiF deposit areal density		2.2
⁶ Li cross section		1.2
Neutron detector solid angle		1.0
Absorption of neutrons by ⁶ Li	+5.2	0.8
Neutron beam profile and detector solid angle	+1.3	0.1
Neutron beam profile and ⁶ Li deposit shape	-1.7	0.1
Neutron beam halo	-1.0	1.0
Absorption of neutrons by Si substrate	+1.2	0.1
Scattering of neutrons by Si substrate	-0.2	0.5
Trap nonlinearity	-5.3	0.8
Proton backscatter calculation		0.4
Neutron counting dead time	+0.1	0.1
Proton counting statistics		1.2
Neutron counting statistics		0.1
Total	-0.4	3.4

Alpha-Gamma Device

Reduces neutron counting efficiency uncertainty: 2.7 s \rightarrow 0.5 s Retroactively update the 2005 measurement (Yue, *et.al.*, PRL **111** 222501 (2013))

$$\tau_n = 886.3(1.2)_{stat}(3.2)_{sys} \rightarrow \tau_n = 887.7(1.2)_{stat}(1.9)_{sys}$$

For BL2: Operate simultaneously with 1/v neutron monitor & lifetime measurement

NE

Uncertainty Budget Projection

Source of correction	Correction (s)	Uncertainty (s)
⁶ LiF deposit areal density		2.2
⁶ Li cross section		1.2 0.5 s
Neutron detector solid angle		1.0
Absorption of neutrons by ⁶ Li	+5.2	0.8
Neutron beam profile and detector solid angle	+1.3	0.1
Neutron beam profile and ⁶ Li deposit shape	-1.7	0.1
Neutron beam halo	-1.0	1.0
Absorption of neutrons by Si substrate	+1.2	0.1
Scattering of neutrons by Si substrate	-0.2	0.5
Trap nonlinearity	-5.3	0.8
Proton backscatter calculation		0.4
Neutron counting dead time	+0.1	0.1
Proton counting statistics		1.2
Neutron counting statistics		0.1
Total	-0.4	3.4

Absorption of neutrons by ⁶Li

- Perform wavelength measurement of NG-C beamline
 Test measurement already performed on NG-6
- Operate with multiple, thinner ⁶Li deposits in neutron monitor
 - 20, 30, and 40 μg/cm² nominal Li deposits already characterized
- Operate with B deposit(s) in neutron monitor
 - Multiple deposits available but not yet characterized

Reduce correction and uncertainty by ~ factor of 2

Counting Neutrons: 1/v Flux Monitor

NG-C Wavelength Measurement

Uncertainty Budget Projection

Source of correction	Correction (s)	Uncertainty (s)	
⁶ LiF deposit areal density		2.2	
⁶ Li cross section		1.2 0.	.5 s
Neutron detector solid angle		1.0	
Absorption of neutrons by ⁶ Li	+5.2	0.8 0.	.4 s
Neutron beam profile and detector solid angle	+1.3	0.1	
Neutron beam profile and ⁶ Li deposit shape	-1.7	0.1	
Neutron beam halo	-1.0	1.0	
Absorption of neutrons by Si substrate	+1.2	0.1	
Scattering of neutrons by Si substrate	-0.2	0.5	
Trap nonlinearity	-5.3	0.8	
Proton backscatter calculation		0.4	
Neutron counting dead time	+0.1	0.1	
Proton counting statistics		1.2	
Neutron counting statistics		0.1	
Total	-0.4	3.4	

Beam Halo

1 s uncertainty in 2005 measurement

- More recent measurements suggest this uncertainty was overestimated
- 3 imaging methods plus simulation will be used to measure beam profile and constrain halo
- 2 sizes of proton detector will be used to minimize this uncertainty (300 mm² and 600 mm²)

Trap Non-linearity

• Trap Non-linearity

5.3 ± 0.8 s correction from
large magnetic field gradient
at longest trap length
(10 electrodes)
Run with shorter

traps to reduce correction and minimize uncertainty

Uncertainty Budget Projection

Source of correction	Correction (s)	Uncertainty (s)
⁶ LiF deposit areal density		2.2
⁶ Li cross section		1.2 0.5 s
Neutron detector solid angle		1.0
Absorption of neutrons by ⁶ Li	+5.2	0.8 0.4 s
Neutron beam profile and detector solid angle	+1.3	0.1
Neutron beam profile and ⁶ Li deposit shape	-1.7	0.1
Neutron beam halo	-1.0	1.0 0.1 s
Absorption of neutrons by Si substrate	+1.2	0.1
Scattering of neutrons by Si substrate	-0.2	0.5
Trap nonlinearity	-5.3	0.8 0.2 s
Proton backscatter calculation		0.4
Neutron counting dead time	+0.1	0.1
Proton counting statistics		1.2
Neutron counting statistics		0.1
Total	-0.4	3.4

Proton Counting Improvements

- Extensive modeling of the apparatus (MCNP and GEANT)
- NCNR Cold source upgrade -> 50% more neutrons
- New low-noise pre-amp
 - Allows operation at lower proton acceleration voltages, reducing backscatter uncertainties & improving stability
- Two parallel data acquisition systems
 - Digitization of all proton waveforms, enabling detailed study of multiple-proton events and background events
 - Consistency check
- Extensive off-line testing of the proton trap and detector
 - Trap instability was a major issue during the previous run of the experiment
- New version of the proton trap

Two versions of the proton trap

Mark II trap:

- Used in 2005 measurement
- Well characterized
- Offline testing shows stable operation under a wide range of conditions

Mark III trap:

- Better pumping of trap volume
- Better metrology of relevant electrode edges
- Offline testing shows stable operation under a wide range of conditions

Two traps will allow for a wider range of systematic tests

Proton Trapping Cycle

Proton timing and energy spectra

S. F. Hoogerheide

S. F. Hoogerheide

BL2 Experiment Status

- Running on NG-C
- 2 cycles of initial data and testing
 - 2 types of detector
 - Multiple trap lengths
 - Multiple trapping times
 - Multiple proton acceleration voltages
- Currently in 4 month long reactor shutdown
 - Data analysis
 - Equipment repairs and upgrades
 - DAQ improvements
 - Additional testing

