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Some Background

Idea that an electrically neutral fermion might be its own antiparticle (Majorana, 1937).

Later, idea of a conserved global baryon no.

Producing the observed baryon asymmetry in the universe requires interactions that
violate baryon number, B (as well as CP violation and deviation from thermal
equilibrium) (Sakharov, 1967).

Suggestion of n− n̄ transitions as a mechanism involved in generating baryon
asymmetry in the universe (Kuzmin, 1970).

Since (anti)quarks and (anti)leptons are placed in same representations in grand unified
theories (GUT’s), the violation of B and L is natural in these theories. Besides proton
decay, n− n̄ oscillations can occur (Glashow, 1979; Marshak and Mohapatra, 1980;
Kuo and Love, 1980).

Calculation of matrix elements for n− n̄ transitions (Rao and Shrock, 1982).



Although the Standard Model (SM) conserves B perturbatively, SU(2) instantons
produce nonperturbative violation B and L, while conserving B − L (’t Hooft, 1976).
This is negligible (exponentially small) at zero temperature, T but is important at T of
order the electroweak scale (Kuzmin, Rubakov, Shaposhnikov, 1985).

Current interest in various models of baryogenesis.

B and L are global symmetries in the original SM. Neutrino masses and lepton mixing
are confirmed physics beyond the SM; the most natural mechanism to explain light
neutrino masses is the seesaw mechanism, which involves a combination of Dirac mass
terms ν̄iLM

(D)
ij νj,R + h.c. and Majorana mass terms νTi,RCM

(R)
ij νj,R + h.c.; the

Majorana terms break L, as ∆L = 2 operators.

In addition to the conventional GUT-scale seesaw, there are also low-scale seesaw
mechanisms, e.g., T. Appelquist and R. Shrock, Phys. Lett. B548, 204 (2002); Phys.
Rev. Lett. 90, 201801 (2003).

The occurrence of ∆L = 2 operators, possibly at a low-scale, in neutrino mass models
gives further motivation to explore the possibility that there might also be ∆B = 2
operators at scales well below a GUT scale.



General Formalism and Experimental Limits

n− n̄ Oscillations in Field-Free Vacuum:

CPT: 〈n|Heff |n〉 = 〈n̄|Heff |n̄〉 = mn − iλn/2, where Heff denotes
relevant Hamiltonian and λ−1

n = τn = 0.88 × 103 sec. Heff may also mediate
n ↔ n̄ transitions: 〈n̄|Heff |n〉 ≡ δm. Consider the matrix in (n, n̄) basis:

M =

(

mn − iλn/2 δm
δm mn − iλn/2

)

Diagonalizing M yields mass eigenstates |n±〉 = (|n〉 ± |n̄〉)/
√

2

with mass eigenvalues m± = (mn ± δm) − iλn/2.

So if start with pure |n〉 state at t = 0, then there is a finite probability P for it to be
an |n̄〉 at t 6= 0:

P (n(t) = n̄) = |〈n̄|n(t)〉|2 = [sin2(t/τnn̄)]e
−λnt

where τnn̄ = ~/|δm| ≡ 1/|δm|. Current limits: τnn̄ >∼ 108 sec, i.e. (with

~ = 0.66 × 10−21 MeV-s) |δm| <∼ 10−29 MeV), so τnn̄ >> τn.



General Formalism for n− n̄ Oscillations

In the (n, n̄) basis, write

M =

(

M11 δm
δm M22

)

Diagonalization yields mass eigenstates

(

|n1〉
|n2〉

)

=

(

cos θ sin θ
− sin θ cos θ

)(

|n〉
|n̄〉

)

where

tan(2θ) =
2δm

∆M

and ∆M = M11 −M22. The energy eigenvalues are

E1,2 =
1

2

[

M11 +M22 ±
√

(∆M)2 + 4(δm)2

]



Let

∆E = E1 − E2 =
√

(∆M)2 + 4(δm)2

Transition probability:

P (n(t) → n̄) = |〈n̄|n(t)〉|2 = sin2(2θ) sin2[(∆E)t/2] e−λnt

=

[

(δm)2

(∆M/2)2 + (δm)2

]

sin2
[

√

(∆M/2)2 + (δm)2 t
]

e−λnt

If
√

(∆M/2)2 + (δm)2 t << 1, then by expanding the sin, the quantity
(∆M/2)2 + (δm)2 cancels out, so

P (n(t) → n̄) ≃ [(δm)t]2 e−λnt = (t/τnn̄)
2 e−λnt



Most sensitive reactor n− n̄ exp. done with ILL High Flux Reactor (HFR) at Grenoble
(Baldo-Ceolin, Fidecaro,.., 1985-1994; M. Baldo-Ceolin et al., Z. Phys. C63, 409
(1994))) with neutrons cooled to liquid D2 temp., kinetic energy E ≃ 2 × 10−3 eV,
typical velocity v ≃ 700 m/s, L ≃ 76 m, t ≃ 0.11 sec., φ ≃ 1.25 × 1011 n/s; set
limit

τnn̄ ≥ 0.86 × 108 sec (90 % CL) , i.e.,

|δm| =
~

τnn̄
=

0.66 × 10−21 MeV − sec

τnn̄
≤ 0.77 × 10−29 MeV

In general,

|δm| = (0.66 × 10−29 MeV)

(

108 sec

τnn̄

)

Promising prospects for improvements of this old limit for free neutron propagation with
exp. at European Spallation Source, ESS



n− n̄ Oscillations in Matter:

For n− n̄ oscillations involving a neutron bound in a nucleus, consider

M =

(

mn,eff. δm
δm mn̄,eff.

)

with

mn,eff = mn + Vn , mn̄,eff. = mn + Vn̄

where the nuclear potential Vn is real, Vn = VnR, but Vn̄ has an imaginary part
representing the n̄N annihilation: Vn̄ = Vn̄R − iVn̄I with
VnR, Vn̄R, Vn̄I ∼ O(100) MeV (Dover, Gal, Richard; Friedman, Gal...).

Mixing is thus strongly suppressed; tan(2θ) is determined by

2δm

|mn,eff. −mn̄,eff.|
=

2δm
√

(VnR − Vn̄R)2 + V 2
n̄I

<< 1

Using the reactor exp. bound on |δm|, this gives |θ| <∼ 10−31. This suppression in
mixing is compensated for by the large number of nucleons in a nucleon decay detector
such as Soudan-2 or SuperKamiokande e.g., ∼ 1033 n’s in SuperK.



Eigenvalues:

m1,2 =
1

2

[

mn,eff. +mn̄,eff. ±
√

(mn,eff. −mn̄,eff.)2 + 4(δm)2

]

Expanding m1 for the mostly n mass eigenstate |n1〉 ≃ |n〉,

m1 ≃ mn + Vn − i
(δm)2 Vn̄I

(VnR − Vn̄R)2 + V 2
n̄I

Imaginary part leads to matter instability via n̄n, n̄p → π’s, with rate

Γm =
1

τm
=

2(δm)2|Vn̄I|
(VnR − Vn̄R)2 + V 2

n̄I

So τm ∝ (δm)−2 = τ 2
nn̄. Writing τm = Rτ 2

nn̄, one has R ∼ O(100) MeV,
dependent on nucleus, equivalently, R ∼ 1023 s−1; e.g. calculations give
R ∼ 1 × 1023 s−1 for Fe, R ∼ 0.5 × 1023 s−1 for Oxygen.



After earlier limits from other detectors, Soudan-2 and SuperK have reported matter
instability limits:

Soudan-2: τm > 0.72 × 1032 yr (90 % CL) [Chung et al., PRD 66, 032004 (2002)]

From τnn̄ =
√

τm
R

with R ≃ 1 × 1023 s−1 for Fe, this gives τnn̄ >∼ 1.5 × 108 s.

SuperK [Abe et al., PRL 91, 072006 (2015)]: τm > 1.9 × 1032 yr (90 % CL); with

R ≃ 0.5 × 1023 s−1, this yields τnn̄ >∼ 2.7 × 108 s

Weaker limit τm > 1.5 × 1031 yr (90 % CL) from SNO using deuterium, yielding

τnn̄ >∼ 1.3 × 108 s [SNO Collab., Aharmim et al., arXiv:1705.00696].

Future ESS quasi-free neutron propagation exp. could improve substantially on existing
limits; a limit of τnn̄ > 109 s is equivalent to

τm > (1.6 × 1033 yr)
( τnn̄

109 s

)2
(

R

0.5 × 1023 s−1

)



Operator Analysis and Estimate of Matrix Elements

At the quark level n → n̄ is (udd) → (ucdcdc). This is mediated by 6-quark
operators Oi, so the effective Hamiltonian is

Heff =
∑

i

ciOi

For d-dimensional spacetime the dimension of a fermion field ψ in mass units is
dψ = (d− 1)/2, so dimension dOi

= 6dψ = 3(d− 1) and
dci = d− dOi

= 3 − 2d. For d = 4, dψ = 3/2, dOi
= 9, and dci = −5.

With Heff =
∫

d3xHeff , the transition amplitude is

δm = 〈n̄|Heff |n〉 =
1

M 5
X

∑

i

ai〈n̄|Oi|n〉

where ci = ai/M
5
X, and MX is an effective mass scale characterizing the

interaction(s) responsible for the n− n̄ transition.

This effective mass scale MX can arise as a function of several particle mass scales and
dimensionless couplings.



For example, one type of Feynman diagram contributing to n− n̄ transition amplitude
involves ingoing uud quarks and outgoing ucdcdc quarks with Higgs coupling to these,
each transforming q → qc. Denote these Higgs couplings to the quarks generically as
yi and the Higgs masses as mHi. The three Higgs propagators meet at a triple-Higgs
vertex, denoted gH . Resultant coefficient

ci =
ai

M 5
X

=
y1 y2 y3 gH

m2
H1
m2
H2
m2
H3

The matrix element 〈n̄|O〉|n〉 ∼ Λ6
QCD, where ΛQCD ≃ 200 MeV. Then

|δm| =
1

τnn̄
∼

Λ6
QCD

M 5
X

Numerically,

τnn̄ = (2 × 108 s)

(

MX

4 × 105 GeV

)5( 3 × 10−5 GeV6

|〈n̄|∑i aiOi|n〉|

)



Operators Oi must be color singlets and, for MX larger than the electroweak
symmetry breaking scale, also SU(2)L × U(1)Y -singlets. Relevant SU(3)c and
SU(2)L contractions:

[3 × 3]a × [3 × 3]a × [3 × 3]s → [3̄ × 3̄]s × 6 → 6̄ × 6 → 1

[3 × 3]s × [3 × 3]s × [3 × 3]s → [6 × 6]s × 6 → 6̄ × 6 → 1

The color tensors that perform these contractions are

(Ts)αβγδρσ = ǫραγǫσβδ + ǫσαγǫρβδ + ǫρβγǫσαδ + ǫσβγǫραδ

(Ta)αβγδρσ = ǫραβǫσγδ + ǫσαβǫργδ

(Ts)αβγδρσ is symmetric in the indices (αβ), (γδ), (ρσ).

(Ta)αβγδρσ is antisymmetric in (αβ) and (γδ) and symmetric in (ρσ).



Types of quark bilinears involve SU(2) singlets such as (where C = iγ2γ0)

[uαTR CuβR], [dγTR Cd
δ
R], [uαTR CdβR]

and SU(2) doublets Qiα
L =

(uα

dα

)

L
and Qiβ

L in bilinears [QiαT
L CQjβ

L ], etc., with
appropriate SU(2) ǫij tensors to yield SU(2)L-invariant operator products. Operators:

O1 = [uαTR CuβR][dγTR Cd
δ
R][dρTR Cd

σ
R](Ts)αβγδρσ

O2 = [uαTR CdβR][uγTR Cd
δ
R][dρTR Cd

σ
R](Ts)αβγδρσ

O3 = [QiαT
L CQjβ

L ][uγTR Cd
δ
R][dρTR Cd

σ
R]ǫij(Ta)αβγδρσ

O4 = [QiαT
L CQjβ

L ][QkγT
L CQmδ

L ][dρTR Cd
σ
R]ǫijǫkm(Ta)αβγδρσ

A given theory determines the coefficients ci and the effective mass scale MX. Then
one needs to calculate the matrix elements 〈n̄|Oi|n〉 to predict δm and thus the
resultant n− n̄ rate.



Calculation of these matrix elements 〈n̄|Oi|n〉 was performed using the MIT bag
model (Rao and Shrock, Phys. Lett. B 116, 239 (1982); further results taking into
account multigenerational contributions and varying MIT bag parameters in Rao and
Shrock, Nucl. Phys. B 232, 143 (1984).

Recall that the MIT bag model is a phenomenological model of hadrons (DeGrand,
Jaffe, Johnson, Kiskis, PRD 12, 2060 (1975)). For ground-state hadrons, quarks with
effective mass mq are confined inside a spherical cavity, and the Dirac equation is
solved to obtain their eigenfunctions and and energy eigenvalues. Taking mq = 0 for
u and d quarks, this yields the quark energy Eq = Nqκ/R, where κ = 2.04 and
Nq = 3 for baryons (and Nq = 2 for qq̄ mesons).

The second main contribution to the hadron energy is from a gluonic energy
Eg = BV , where B is the gluonic energy density and V = (4π/3)R3 is the volume.

So in the simplest bag model, the hadron mass is

mhadron =
Nqκ

R
+

4πBR3

3
One then minimizes this mass-energy, setting dmhadron/dR = 0 with
d2mhadron/dR

2 > 0 and solves for the radius R, obtaining



R =
(Nfκ

4πB

)1/4

Substituting R back into mhadron, one gets

mbaryon = 4(4π/3)1/4κ3/4B1/4 = 9.77B1/4

and

mbaryon

mmeson

= (3/2)3/4 = 1.36

Compare mN/mρ = 1.2 and m∆/mρ = 1.6. In the full bag model there are
several additional terms contributing to mhadron, including a color hyperfine
interaction, etc., giving reasonable fit to ground-state hadron masses. MIT fit A with
mu,d taken to be negligibly small yields B1/4 = 145 MeV. MIT fit B with effective
constituent mu,d = 108 MeV yields B1/4 = 125 MeV.



The n− n̄ matrix element calculations involve integrals over sixth-power polynomials
of spherical Bessel functions from the six quarks in the transition operator. Illustrative
results for the two MIT fits: properties:

〈O1〉 = −6.6 × 10−5 GeV6 (Fit A)

〈O1〉 = −5.3 × 10−5 GeV6 (Fit B)

〈O2〉 = 1.6 × 10−5 GeV6 (Fit A)

〈O2〉 = 1.3 × 10−5 GeV6 (Fit B)

Similarly for others; details in our papers. In general, MIT bag calc. gives

|〈n̄|Oi|n〉| ∼ 10−4 − O(10−5) GeV6 ≃ (200 MeV)6 ≃ Λ6
QCD

These will be sufficient for our estimates here. Preliminary lattice calcs. by Buchoff,
Syritsyn, Wagman; eventually, lattice calcs. should determine the matrix elements.



n− n̄ Oscillations in an Extra-Dimensional Model

We provide an illustrative model in which n− n̄ oscillations can occur observable level
(Nussinov and Shrock, Phys. Rev. Lett. 88, 171601 (2002)), while proton decay is
strongly suppressed. This model involves extra (spatial) dimensions, associated BSM
physics.

We focus on theories where SM fields can propagate in the extra dimensions and the
wavefunctions of SM fermions have strong localization (with Gaussian profiles) in this
extra-dimensional space. Effective size of extra dimension(s) is L; ΛL = L−1 can be
∼ 100 TeV, << MPl.

Such models are of interest partly because they can provide a mechanism for obtaining
a hierarchy in fermion masses and quark mixing. They show how observable n− n̄
oscillations can arise in physics beyond the SM.

In generic models of this type, excessively rapid proton decay, e.g., via p → e+π0,
etc., can be avoided by arranging that the wavefunction centers of the u and d quarks
are separated far from those of the e and µ. However, this does not guarantee
adequate suppression of n− n̄ oscillations. We have analyzed this.



Denote usual spacetime coords. as xν, ν = 0, 1, 2, 3 and consider ℓ extra compact
coordinates, yλ, so d = 4 + ℓ. Let SM fermion have the form
Ψ(x, y) = ψ(x)χ(y), where χ(y) has support for 0 ≤ yλ ≤ L.

Use a low-energy effective field theory approach with an ultraviolet cutoff M∗ and
consider only lowest relevant mode in the Kaluza-Klein (KK) mode decompositions of
each Ψ field.

To get hierarchy in 4D fermion mass matrices, have the fermion wavefunctions χ(y)
localized with Gaussian profiles of half-width µ−1 << L at various points in the
higher-dimensional space:

χf(y) = Ae−µ2|y−yf |2

where |yf | = (
∑ℓ

λ=1 y
2
f,λ)

1/2.

Starting from the Lagrangian in the d-dimensional spacetime, one obtains the resultant
low-energy effective field theory in 4D by integrating over the extra ℓ dimension(s).
The normalization factor A = (2/π)ℓ/4µℓ/2 is included so that after this integration
the 4D kinetic term ψ̄(x)i∂/ψ(x) has canonical normalization.

Denote ξ = µ/ΛL; choice ξ ∼ 30, i.e., µ−1 ∼ L/30, yields adequate separation of
fermions while fitting in interval [0, L]. (Localization method for ℓ = 1: coupling
fermion to scalar field with a kink; similarly for ℓ = 2.)



A Yukawa interaction in the d-dimensional space with coefficients of order unity and
moderate separation of localized wavefunctions yields a strong hierarchy in the effective
low-energy 4D Yukawa interaction because the convolution of two of the fermion
Gaussian wavefunctions is another Gaussian,

∫

dℓyχ̄(yf)χ(yf ′) ∼
∫

dℓye−µ2|y−yf |2e−µ2|y−yf ′|2 ∼ e−(1/2)µ2|yf−yf ′|2

Have UV cutoff M∗ satisfying M∗ > µ for the validity the low-energy effective field
theory analysis. Take ΛL ∼ 100 TeV for adequate suppression of neutral
flavor-changing currents; with ξ = µ/Λ = 30, this yields µ ∼ 3 × 103 TeV.

In d-dimensions, Heff,4+ℓ =
∑4

i=1 κiOi, where the operators Oi are comprised of
the (4 + ℓ)-dimensional quark fields corresponding to those in Oi as Ψ corresponds to
ψ. Here mass dimension of coefficients dκi = 3 − 2d = −(5 + 2ℓ). Hence we write

κi = ηi/M
5+2ℓ
X and, with no loss of generality, take η4 = 1. Assume MX ∼ ΛL.

Now carry out the integrations over y to get, for each i,

ciOi(x) = κi

∫

dℓyOi(x, y)



Consider case ℓ = 2. Denoting

ρc ≡ 4µ4

3π2M 9
X

we find
ci = ρcηi exp

[

−(4/3)µ2|yuR − ydR|2
]

, i = 1, 2

c3 = ρcη3 exp[−(1/6)µ2(2|yQL − yuR|2 + 6|yQL − ydR|2 + 3|yuR − ydR|2)]

c4 = ρc exp
[

−(4/3)µ2|yQL − ydR|2
]

Fit to values of quark masses and CKM mixing for ℓ = 2 gives

|yQL − yuR| = |yQL − ydR| ≃ 5µ−1

|yuR − ydR| ≃ 7µ−1

Can also include corrections due to Coulombic gauge interactions between fermions,
analyzed in Nussinov and Shrock, Phys. Lett. B 526, 137 (2002).

We find cj for j = 1, 2, 3 are << c4, and hence focus on c4.



To leading order (neglecting small CKM mixings), |yQL − ydR| is determined by md

via relation (with v = 246 GeV = 2mW/g)

md = hd
v

√
2

with
hd = hd,0 exp[−(1/2)µ2|yQL − ydR|2]

where hd,0 is the Yukawa coupling in the (4 + ℓ)-dimensional space, so that

exp
[

−(1/2)µ2|yQL − ydR|2
]

=
21/2md

hd,0v

Take hd,0 ∼ 1 and md ≃ 10 MeV; then contribution to δm from O4 term is

δm ≃ c4〈n̄|O4|n〉 ≃
(

4µ4

3π2M 9
X

)

(

21/2md

v

)8/3

〈n̄|O4|n〉

From MIT bag model calculation we have

〈n̄|O4|n〉 ≃ 0.9 × 10−4 GeV6



Requiring that the resultant |δm| be less than the experimental limit τnn̄ > 3 × 108

sec, i.e., |δm| < 2 × 10−30 MeV, we obtain the bound

MX
>∼ (50 TeV)

(

τnn̄

3 × 108 sec

)1/9

×
(

µ

3 × 103 TeV

)4/9( |〈n̄|O4|n〉|
0.9 × 10−4 GeV6

)1/9

Uncertainty in calculation of matrix element 〈n̄|O4|n〉 is relatively unimportant for this
bound because of the 1/9 power in the exponent.

Hence, for relevant values of MX ∼ 50 − 100 TeV, n− n̄ oscillations might occur
at levels that are in accord with the current experiment limit but not too far below this
limit.

This model also illustrates how baryon number violation can occur via n− n̄
oscillations with strongly suppressed proton decay.



Other models can also predict n− n̄ oscillations near to current limits, e.g., Babu,
Mohapatra, and Nasri, PRL 97, 131301 (2006), review in n− n̄ Collab. (D. Phillips et
al.), Phys. Rept. 612, 1 (2016).

A different possibility is that there might be a “mirror” world (Lee, Yang,
Okun,Berezhiani, Kamyshkov, Mohapatra, Nussinov,...) with weak coupling to our
world, allowing a n to oscillation to the mirror neutron, n′; so n disappearance.



Conclusions

• n− n̄ oscillations are an interesting possible manifestation of baryon number
violation, of |∆B| = 2 type, complementary to proton decay. A discovery of
n− n̄ oscillations would be of profound significance.

• Current lower limit on τnn̄ for n− n̄ oscillations: τnn̄ >∼ 3 × 108 s from SuperK.

• We have presented a model that shows how new physics beyond the SM can produce
n− n̄ oscillations at rates comparable with this current limit. This model also
demonstrates that n− n̄ oscillations can be the main manifestation of baryon
number violation, since proton decay is strongly suppressed.

• The possibility of n− n̄ oscillations with τnn̄ only slightly greater than current
lower limit provide a strong motivation for a new experiment to search for n− n̄
oscillations with greater sensitivity, e.g., at the ESS.



Some Backup Slides

n− n̄ Oscillations in a Magnetic Field ~B:

Relevant to Institut Laue-Langevin (ILL) and planned ESS experiments searching for
n− n̄ oscillations

n and n̄ interact with ~B via magnetic moment ~µ = µ~σ, µn = −µn̄ = κµN ,
where κ = −1.91, µN = e/(2mN) = 3.15 × 10−14 MeV/Tesla, so

M =

(

mn − ~µn · ~B − iλn/2 δm

δm mn + ~µn · ~B − iλn/2

)

So ∆M = M11 −M22 = −2~µn · ~B and diagonalization yields mass eigenstates
|n1〉, |n2〉, with mixing

tan(2θ) = − δm

~µn · ~B
and energy eigenvalues

E1,2 = mn ±
√

(~µn · ~B)2 + (δm)2 − iλn/2



ILL experiment reduced | ~B| = B to B ∼ 10−4 G = 10−8 T, so

|µn|B = (6.03 × 10−22 MeV)

(

B

10−8 T

)

Since |δm| <∼ 10−29 MeV << |µn|B from exp., it follows that

|θ| <∼ 10−8 << 1 and

∆E = 2

√

(~µn · ~B)2 + (δm)2 ≃ 2|~µn · ~B|

In a reactor n− n̄ experiment, arrange that n’s propagate a time t such that

|~µn · ~B|t = 0.92

(

B

10−8 T

)(

t

1 sec

)

<< 1 and t << τn

Then

P (n(t) → n̄) ≃ (2θ)2
(∆Et

2

)2

≃
(

δm

~µn · ~B

)2(

~µn· ~B t
)2

= [(δm) t]2 = (t/τnn̄)
2



So
Nn̄ = P (n(t) = n̄)Nn

where Nn = φTrun, with φ = neutron flux, Trun = running time. Sensitivity of exp.
depends in part on the product

Nn

(

t

τnn̄

)2

= φTrun

(

t

τnn̄

)2

so, with adequate magnetic shielding, want to maximize t, subject to condition
|~µn · ~B|t << 1 (and neutrons not falling too far in gravity to reach detector).



One may further generalize to a theoretical context with possible CPT violation. Then
mn 6= mn̄, τn 6= τn̄, µn 6= −µn̄. So

∆M = M11 −M22 = mn −mn̄ − (~µn − ~µn̄) · ~B − i(λn − λn̄)/2

Assume (|µn| − |µn̄|)/|µn| << 1 and use the fact that t << τn so that the
−i(λn − λn̄)/2 is not important; then

∆M ≃ mn −mn̄ − 2~µn · ~B

If one arranged so that |~µn · ~B|t << 1 and if an experiment would observe n− n̄
oscillations, then this would set an upper bound |mn −mn̄|t < 1, since a larger
|mn −mn̄| would suppress the mixing and hence the oscillation (Okun, 1984).

Numerically, one might achieve an upper bound |mn−mn̄| <∼ 10−23 MeV in this way.


