Cold Neutron Reflective Optics for nnbar

Kosuke NAGAMOTO, Takahiro MORISHIMA, Go ICHIKAWA, Masaaki KITAGUCHI and Hirohiko M. SHIMIZU

Department of Physics, Nagoya University

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

neutron reflection

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Multilayer Mirror

Supermirror

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Quadruple-stack Multilayer m=10 the highest m-value ever realized

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

baseline optics

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Map of Figure-Of-Merit (NT²)

by Takahiro MORISHIMA

SARAH SET SHARE THE OWNER

by Takahiro MORISHIMA

SARAH SET SHARE THE OWNER

Viewing from the Detector

Transport Optic of NNbar@ESS http://phpshysnagoye-uscjp/JCANS/

Viewing from the Detector

Transport Optic of NNbar@ESS http://phpshysnagoye-uscjp/JCANS/

Metal Substrate Multilayer Mirror

Yutaka YAMAGATA*, Jiang GUO*, Shin-ya MORITA*, Jun-ichi KATO*, Katsuya HIROTA*, Yoshie OTAKE**, Atsushi TAKETANI**, Sheng WANG**, Shin TAKEDA****, Masahiro HINO*** and Michihiro FURUSAKA**** *Ultrahigh Precision Optics Technology Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, Japan yamagata@riken.jp **Neutron Beam Technology Team, RIKEN Center for Advanced Photonics, RIKEN, Japan ***Kyoto University Research Reactor Institute **** Hokkaido University

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Metal-Substrate Multilayer Mirror (catalogued by J-NOP Inc.)

Aluminum substrate with amorphous Ni-P plated surface

Advantages:

- Easy handling and fixture
- Robust and resistant to heat shock and radiation damage
- Very low surface roughness
- Usable as m=1 mirror without supermirror coating
- Full numerical control: flat surface, 1-D ellipsoidal surface, 2-d elliptic surface and other complicated optics
- Precision multiple-segment alignment technology enables large-scale mirror fabrication

Neutron Focusing Mirror with Metallic Substrate

Neutron Mirrors have been conventionally manufactured using brittle materials like glass or silicon, but handling, precision of such mirrors were not satisfactory. RIKEN and I-NOP have developed a new technology of neutron focusing mirrors using metallic substrate with easier handling, high precision and multiple segment capabilities.

A 550mm ellipsoidal mirror prototype with two segments

יואומ

The new technology mirror uses aluminum based substrate and amorphous Ni-P (Nickel Phosphate) plated surface.

Advantages:

- Easy handling and fixture using metallic substrate.
- Robust and resistant to heat shock and radiation damage
- Very low surface roughness by amorphous NI-P plating.
- It can be used as LQc mirror without super-mirror coating.
- Various types of super-mirror coating is available.
- Flat surface, 1-D ellipsoidal surface, 2-d elliptic surface and other complicated optics can be manufactured.
- Precision Multiple-segment alignment technology enables large-scale mirror fabrication.

 Profile error can be less than 1 micrometer .

Prototype of small 2-D ellipsoidal mirror

Japan Neutron Optics Inc. Riken-Wako Incubation Plaza 407 Minami 2-3-13, wako, Saitama, 351-0104, Japan e-mail: jnop-info@j-nop.com URL http://www.j-nop.com

cf.) This technique can be applied to stainless steel substrate, glass substrate, ..., if necessary.

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Neutron Optics

Metal substrate mirror

1.0

0.6

0.2

0.0

upstream

downstream

Q_z [nm⁻¹]

Summary 1

Additional optics doubles the FOM.

If we use only the additional optics, the flight-path radius can be reduced.

a thinner vacuum tube a smaller magnetic shield cost effective

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Dade

a discussion for more acceptance

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

K.Ishikawa, Y.Ezoe et al., DOI 10.1007/s00542-016-2980-6 Microsyst. Technol. (2016)

4) Grinding and polishing of backside

K.Ishikawa, Y.Ezoe et al., DOI 10.1007/s00542–016–2980–6 Microsyst. Technol. (2016)

32

page

Date(2017/10/23) At(Seattle)

K.Ishikawa, Y.Ezoe et al., DOI 10.1007/s00542-016-2980-6 Microsyst. Technol. (2016)

K.Ishikawa, Y.Ezoe et al., DOI 10.1007/s00542-016-2980-6 Microsyst. Technol. (2016)

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillatio Date(2017/10/23) At(Seattle)

Radiation hardness is the key

for cost effective apparatus

a thinner vacuum tube a smaller magnetic shield

and for additional acceptance.

Title(Cold Neutron Reflective Optics for nnbar) Conf(INT Workshop INT-17-69W "Neutron Antineutron Oscillations) By(H.M.Shimizu) Date(2017/10/23) At(Seattle)

