

Neutron reflection from fluorinated nanodiamonds for N-Nbar

- Introduction to nano-diamond neutron reflectors
- The problem of hydrogen impurities
- The impact of hydrogen substitution by fluor
- Conclusions and prospects

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Introduction to nano-diamond reflectors (broader than particle physics)

Complementarity of neutron and synchrotron radiation.

NEUTRONS FOR SCIENCE

Neutron radiation: particularly light elements and magnetic structures; the object of research in particle physics - in this sense, complementary to high-energy particle accelerators; mostly sensitive to nuclei in atoms.

Synchrotron radiation: mostly sensitive to electrons in atoms.

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Slow neutrons are traditionally subdivided into several groups as a function of their energy/velocity:

- Cold neutrons (CNs): a typical velocity 1000 m/s; you have a lot of CNs from all typical neutron sources (nuclear reactors and spallation neutron sources), if they are equipped, for instance, with a cold liquid-deuterium or liquid-hydrogen source;
- Ultracold neutrons (UCNs): a typical velocity 5 m/s; in spite of all worldwide efforts, extremely low densities available for experiments, however a unique property of total reflection from material and magnetic walls thus storage of UCNs in traps;
- Very cold neutrons (VCNs): a typical velocity 100 m/s; limited fluxes and no efficient reflectors ... until recently

Introduction to nano-diamond reflectors

Worldwide trend to increase the range of useful neutrons towards smaller energies (larger wavelengths), driven in particular by largescale-structure diffractometers, reflectometers, time-of-flight and spin-echo techniques, by particle physics.

The progress is limited by low fluxes of slow neutrons (the wavelength larger than 0.5 nm, or the energy smaller than 3 meV).

The drop of flux is due to a fundamental reason: independently of the choice of materials for neutron reflectors, they are composed of atoms, thus a finite interatomic distance, thus diffraction and thus simply mean neutron-nuclei optical potential.

The solution of this problem: "Mimicking" conventional reflectors with nanoparticles.

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Introduction to nano-diamond reflectors

Neutron-atom: the neutron-electron interaction is usually a minor correction compared to the neutron-nuclei interaction; **Neutron-nucleus**: as the wavelength of a slow neutron is larger than the size of a nucleus, we always deal with isotropic s-scattering and can characterize it with a single parameter: a scattering length; **Neutron-matter**: as the wavelength of a slow neutron is also larger than a typical inter-atomic distance, we deal with coherent scattering of neutrons at many nuclei simultaneously; **Optical potential**: as a result, any medium can be represented as a uniform effective optical potential; **Potential strength**: a typical value of the optical neutron-nuclei potential is $\sim 10^{-7}$ eV (could be thought of as a typical nuclear potential of ~10 MeV diluted over volume).

Two contradicting tendencies: 1) Cross-section increases rapidly as a function of the nanoparticle size; 2) Angular divergence and cross-section drop down rapidly, if the size is large. 1) The optimum neutron

wavelength is approximately equal to the nanoparticle size;
2) The cross-section is then measured in square nanometers;
3) The best material is diamond.

Introduction to nano-diamond reflectors

The (elastic) **reflection** of VCNs from powder of diamond nanoparticles, the **storage** of VCNs in closed volumes with nano-powder walls, and **quasi-specular** reflection of cold neutrons (CNs) from diamond nano-powder have been proven.

NEUTRONS FOR SCIENCE

The danger of hydrogen impurities

An important limitation for further improving the reflectivity consisted of the presence of hydrogen in the amorphous shells of diamond nanoparticles.

 $\sigma^{C}_{abs} = 3.5 \text{ mb}$ $\sigma^{H}_{abs} = 333 \text{ mb}$ $\sigma^{F}_{abs} = 9.6 \text{ mb}$ b^C = 6.65 fm b^H = -3.74 fm b^F = 5.65 fm

1% of mass but !! $\sigma_{in.sc.}^{H} = 108(3) b$

We have explored three methods to remove hydrogen:

- Thermal treatment;
- Isotopic substitution;
- Chemical treatment.

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

23.10.17

Fluorination of nanodiamonds

An important limitation for further improving the reflectivity consisted of the presence of hydrogen in the amorphous shells of diamond nanoparticles

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Fluorination of nanodiamonds

X-ray diffraction patterns of raw and fluorinated nanodiamond powder:

- Diamond sp³ cores remain unaffected;
- Destruction of sp² carbon shells.

Destruction of sp² carbon will lead to significantly higher efficiency of neutron scattering!

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Fluorination of nanodiamonds

A) Raman spectra (inelastic scattering of monochromatic light) of raw and fluorinated nanodiamond;
B) FTIR (Fourier-

transform infrared spectroscopy) spectra of raw and fluorinated nanodiamond.

Disappearance of sp² carbon, C-H and O-H.

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky

23.10.17

Fluorination of nanodiamonds

¹³C (a), ¹H (b) and ¹⁹F (c) MAS NMR spectra of raw and fluorinated nano-diamonds

- The departure of -OH groups and their replacement by -F groups;
- Minor residual H content upon fluorination;
- C-F bonds with sp³ carbons, very low amount of C-F bonds with sp² carbons.

23.10.17

OR SCIENCE

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Chemical cleaning from isotopes posing the neutron activation danger

Fluorination does not affect most disturbing radioactive chemical elements (isotopes).

As revealed by neutron activation analysis of raw and fluorinated nano-diamond samples, most disturbing isotopes are ⁶⁴Cu, ²⁴Na, ⁵¹Cr. A chemical treatment reduces their amount by factors of 12, 6 and 2, respectively.

Wet chemical treatment in concentrated hydrochloric acid at the temperature of 140 °C for 18 hours (+ washing, centrifugation, air annealing at the temperature of 600 °C for 5 hours.

The amount of ³⁸Cl increases by an order of magnitude due to the chemical treatment, however, due to a relatively short lifetime of this radioactive isotope, it is not particularly disturbing (but contributes to absorption!).

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Fluorination procedure

0.5 kg fluorinated nano-diamonds were produced in 2-cycle fluorination of thin (2 mm) layers of raw nano-diamond powder with 99.9 % clean F_2 gas at the pressure of 0.6 bar, at the temperature of 450 °C for 12 hours.

V.V. Nesvizhevsky

23.10.17

The impact of removal of hydrogen from diamond nanoparticles

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky

23.10.17

The intensity of neutron scattering (within the angular acceptance of the D17 position-sensitive detector in the vertical direction) as a function of neutron wavelength and scattering angle, for the incidence angle of 1deg.

On the left - non-fluorinated nanodiamond; on the right - fluorinated nanodiamond

The total probability of neutron scattering (within the angular acceptance of the D17 position-sensitive detector) as a function of the neutron wavelength, for the incidence angles of 1deg., 2deg., 3deg.

The probability of neutron scattering as a function of the neutron wavelength, for the incidence angle of 1deg.

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Fluorinated powder

23.10.17

FOR SCIENCE

The intensity of neutron scattering (within the angular acceptance of the D17 position-sensitive detector) as a function of neutron wavelength and scattering angle, for the incidence angle of 1deg.

On the left - 5 nm nanodiamond; on the right - 30 nm nanodiamond

The total probability of neutron scattering (within the angular acceptance of the D17 position-sensitive detector) as a function of the neutron wavelength, for the incidence angles of 1deg., 2deg., 3deg.

^{23.10.17}

INSTITUT MAX VON LAUE - PAUL LANGEVIN

dP/dy A-1

Quasi-specular reflection

The probability of neutron scattering as a function of the neutron wavelength, for the incidence angle of 1deg.

Raw nanodiamonds

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Intermediate conclusions. Prospects. Applications.

- Powder of diamond nanoparticles provided the first efficient reflectors for VCNs and efficient quasi-specular reflection of CNs;
- Such powders can provide a major gain in fluxes and densities of slow neutrons in various configurations;
- Losses of neutrons in raw diamond nano-powders are dominated by hydrogen impurities; the amount of hydrogen has been largely reduced by fluorination;
- Samples of diamond nanoparticles with "close-to-ideal" parameters have been produced and successfully studied. We explore a possibility of larger-scale production in order to provide their real applications in neutron science/technology.
- More powerful sources of slow neutrons (CNs, VCNs, UCNs)!
 - A new generation of general-purpose neutron sources !?
 - More efficient nuclear reactors of the future?

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

UCNs versus VCNs

To remind advantages of VCNs:

- Longer observation times (compared to CNs and TNs) that is interesting for particle physics (nñ oscillations, neutron beta-decay etc);
- Larger absorption and fission cross-sections (compared to CNs and TNs) that is interesting for nuclear and particle physics;
- Relaxed geometrical constrains and higher sensitivity (compared to CNs and TNs) that is interesting for neutron reflectometers;
- Broader dynamical range for large-structure diffractometers, time-offlight spectrometers and reflectometers (compared to CNs and TNs);
- Much higher sensitivity for spin-echo techniques (compared to CNs and TNs);
- Higher fluxes than UCNs etc...

23.10.17

INSTITUT MAX VON LAUE - PAUL LANGEVIN

UCNs versus VCNs

However, huge disadvantages:

- Relatively low fluxes compared to CNs and TNs (as no efficient VCN reflectors have been available...), and
- Short observation times compared to UCNs (also ... as no efficient reflectors have been available).

Our method: Keep advantages and reduce disadvantages ! High fluxes and storage in closed traps The list of possible applications is long

INSTITUT MAX VON LAUE - PAUL LANGEVIN

INSTITUT MAX VON LAUE - PAUL LANGEVIN

Directional extraction of VCNs

INSTITUT MAX VON LAUE - PAUL LANGEVIN

V.V. Nesvizhevsky

23.10.17

References relevant to nano-diamond neutron reflectors:

V.V. N., "Interaction of neutrons with nanoparticles", Phys. At. Nucl. 65 (2002) 400; V.A. Artem'ev, "Estimation of neutron reflection from nanodispersed materials", At. En. 101 (2006) 901; V.V. N., E.V. Lychagin, A.Yu. Muzychka, A.V. Strelkov, G. Pignol, and K.V. Protasov, "The reflection of very cold neutrons from diamond powder nanoparticles", Nucl. Instr. Meth. A 595 (2008) 631; E.V. Lychagin, A.Yu. Muzychka, V.V. N., G. Pignol, K.V. Protasov, and A.V. Strelkov, "Storage of very cold neutrons in a trap with nano-structured walls", Phys. Lett. B 679 (2009) 186; V.N. Nesvizhevsky, R. Cubitt, E.V. Lychagin, A.Yu. Muzychka, G.V. Nekhaev, G. Pignol, K.V. Protasov, A.V. Strelkov, "Application of diamond nanoparticles in low-energy neutron physics", Mater. 3 (2010) 1768; R. Cubitt, E.V. Lychagin, A.Yu. Muzychka, G.V. Nekhaev, V.V. N., G. Pignol, K.V. Protasov, and A.V. Strelkov, "Quasi-specular reflection of cold neutrons from nano-dispersed media at above-critical angles", Nucl. Instr. Meth. A 622 (2010) 182; A.R. Krylov, E.V. Lychagin, A.Yu. Muzychka, V.V. N., G.V. Nekhaev, A.V. Strelkov, and A.S. Ivanov, "Study of bound hydrogen in powders of diamond nanoparticles", Crystal. Rep. 56 (2011) 1186; V.V. N., "Reflectors for VCN and applications of VCN", Rev. Mexic. Pisic. 57 (2011) 1; V.V. Nesvizhevsky, U. Koester, M. Dubois, N. Batisse, L. Frezet, A. Bosak, L. Gines, O. Williams, "Fluorinated nanodiamonds as unique neutron reflector", submitted. INSTITUT MAX VON LAUE - PAUL LANGEVIN 23.10.17 V.V. Nesvizhevsky