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Neutron reflection from fluorinated 
nanodiamonds for N-Nbar
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Introduction to nano-diamond reflectors 
(broader than particle physics)

Complementarity of 
neutron and synchrotron 
radiation. 

Neutron radiation: 
particularly light elements 
and magnetic structures; 
the object of research in 
particle physics – in this 
sense, complementary to 
high-energy particle 
accelerators; mostly 
sensitive to nuclei in 
atoms.

Synchrotron radiation: 
mostly sensitive to 
electrons in atoms.

VCNs CNs
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Slow neutrons are traditionally subdivided into several groups as
a function of their energy/velocity:
- Cold neutrons (CNs): a typical velocity 1000 m/s; you have a

lot of CNs from all typical neutron sources (nuclear reactors
and spallation neutron sources), if they are equipped, for
instance, with a cold liquid-deuterium or liquid-hydrogen
source;

- Ultracold neutrons (UCNs): a typical velocity 5 m/s; in spite
of all worldwide efforts, extremely low densities available for
experiments, however a unique property of total reflection
from material and magnetic walls thus storage of UCNs in
traps;

- Very cold neutrons (VCNs): a typical velocity 100 m/s; limited
fluxes and no efficient reflectors … until recently

Introduction to nano-diamond reflectors
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Worldwide trend to increase the range of useful neutrons towards
smaller energies (larger wavelengths), driven in particular by large-
scale-structure diffractometers, reflectometers, time-of-flight
and spin-echo techniques, by particle physics.

The progress is limited by low fluxes of slow neutrons (the
wavelength larger than 0.5 nm, or the energy smaller than 3 meV).

The drop of flux is due to a fundamental reason: independently of
the choice of materials for neutron reflectors, they are composed
of atoms, thus a finite interatomic distance, thus diffraction and
thus simply mean neutron-nuclei optical potential.

The solution of this problem: “Mimicking” conventional reflectors
with nanoparticles.

Introduction to nano-diamond reflectors
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Introduction to nano-diamond reflectors

Neutron-atom: the neutron-electron interaction is usually a minor correction
compared to the neutron-nuclei interaction; Neutron-nucleus: as the wavelength
of a slow neutron is larger than the size of a nucleus, we always deal with
isotropic s-scattering and can characterize it with a single parameter: a
scattering length; Neutron-matter: as the wavelength of a slow neutron is also
larger than a typical inter-atomic distance, we deal with coherent scattering of
neutrons at many nuclei simultaneously; Optical potential: as a result, any medium
can be represented as a uniform effective optical potential; Potential strength: a
typical value of the optical neutron-nuclei potential is ~10−7 eV (could be thought
of as a typical nuclear potential of ~10 MeV diluted over volume).

d
n

Two contradicting tendencies: 1) Cross-section increases rapidly as a
function of the nanoparticle size; 2) Angular divergence and cross-section
drop down rapidly, if the size is large. 1) The optimum neutron

wavelength is approximately equal
to the nanoparticle size;
2) The cross-section is then
measured in square nanometers;
3) The best material is diamond.
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Introduction to nano-diamond reflectors

The (elastic) reflection of VCNs from powder of diamond nanoparticles, the
storage of VCNs in closed volumes with nano-powder walls, and quasi-specular
reflection of cold neutrons (CNs) from diamond nano-powder have been proven.
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The danger of hydrogen impurities

An important limitation for further improving the reflectivity consisted of
the presence of hydrogen in the amorphous shells of diamond nanoparticles.

C

abs = 3.5 mb

bC = 6.65 fm

H

abs = 333 mb

bH = -3.74 fm

F

abs = 9.6 mb

bF = 5.65 fm

H

scin .. = 108(3) b

We have explored three methods to remove hydrogen:
- Thermal treatment;
- Isotopic substitution;
- Chemical treatment.

1% of mass but !!
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Fluorination of nanodiamonds

An important limitation for further improving the reflectivity consisted of
the presence of hydrogen in the amorphous shells of diamond nanoparticles

As-prepared (detonation
technology)

After thermal treatment

After fluorination

C7.4 ± 0.15H

C12.4 ± 0.2H

C430 ± 30H

n(p,d)γ,
Eγ=2.223 MeV

σ=108(3) bn

Energy dependence of neutron
inelastic scattering showed that C-H
bond is responsible for neutron losses
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Fluorination of nanodiamonds

X-ray diffraction
patterns of raw and
fluorinated nano-
diamond powder:
- Diamond sp3 cores

remain unaffected;
- Destruction of sp2

carbon shells.

Destruction of sp2

carbon will lead to
significantly higher
efficiency of neutron
scattering!
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Fluorination of nanodiamonds

A) Raman spectra
(inelastic scattering of
monochromatic light) of
raw and fluorinated nano-
diamond;
B) FTIR (Fourier-
transform infrared
spectroscopy) spectra of
raw and fluorinated nano-
diamond.

Disappearance of sp2

carbon, C-H and O-H.

sp2
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Fluorination of nanodiamonds

13C (a), 1H (b) and 19F (c) MAS NMR spectra of raw and fluorinated nano-diamonds
- The departure of –OH groups and their replacement by –F groups;
- Minor residual H content upon fluorination;
- C-F bonds with sp3 carbons, very low amount of C-F bonds with sp2 carbons.
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Chemical cleaning from isotopes posing the 
neutron activation danger 

Fluorination does not affect most disturbing radioactive
chemical elements(isotopes).

As revealed by neutron activation analysis of raw and
fluorinated nano-diamond samples, most disturbing isotopes are
64Cu, 24Na, 51Cr. A chemical treatment reduces their amount by
factors of 12, 6 and 2, respectively.

Wet chemical treatment in concentrated hydrochloric acid at
the temperature of 140 oC for 18 hours (+ washing,
centrifugation, air annealing at the temperature of 600 oC for 5
hours.

The amount of 38Cl increases by an order of magnitude due to
the chemical treatment, however, due to a relatively short
lifetime of this radioactive isotope, it is not particularly
disturbing (but contributes to absorption!).
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Fluorination procedure

0.5 kg fluorinated nano-diamonds were produced in 2-cycle fluorination of thin (2
mm) layers of raw nano-diamond powder with 99.9 % clean F2 gas at the pressure
of 0.6 bar, at the temperature of 450 oC for 12 hours.
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The impact of removal of hydrogen from 
diamond nanoparticles

20 A
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Quasi-specular reflection
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Quasi-specular reflection

The intensity of neutron scattering (within the angular acceptance of the D17
position-sensitive detector in the vertical direction) as a function of neutron
wavelength and scattering angle, for the incidence angle of 1deg.

On the left – non-fluorinated nanodiamond; on the right – fluorinated nanodiamond
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Quasi-specular reflection

The total probability of neutron scattering (within the angular acceptance of the
D17 position-sensitive detector) as a function of the neutron wavelength, for the
incidence angles of 1deg., 2deg., 3deg.

Red color – fluorinated
nanodiamond;
Black color – non-
fluorinated nanodiamond
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Quasi-specular reflection

The probability of neutron scattering as a function of the neutron wavelength,
for the incidence angle of 1deg.
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Quasi-specular reflection

Mean angle of reflection as a
function of the neutron
wavelength, for incident angles
1deg., 2deg., 3deg.

Half-width of the angle of
reflection as a function of
the neutron wavelength, for
incident angles 1deg., 2deg.,
3deg.
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Quasi-specular reflection

The intensity of neutron scattering (within the angular acceptance of the D17
position-sensitive detector) as a function of neutron wavelength and scattering
angle, for the incidence angle of 1deg.

On the left – 5 nm nanodiamond; on the right – 30 nm nanodiamond
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Quasi-specular reflection

The total probability of neutron scattering (within the angular acceptance of the
D17 position-sensitive detector) as a function of the neutron wavelength, for the
incidence angles of 1deg., 2deg., 3deg.

Red color – 30 nm nanodiamond;
Black color – 5 nm nanodiamond
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Quasi-specular reflection

The probability of neutron scattering as a function of the neutron wavelength,
for the incidence angle of 1deg.
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Intermediate conclusions. Prospects. Applications.

- Powder of diamond nanoparticles provided the first efficient reflectors
for VCNs and efficient quasi-specular reflection of CNs;

- Such powders can provide a major gain in fluxes and densities of slow
neutrons in various configurations;

- Losses of neutrons in raw diamond nano-powders are dominated by
hydrogen impurities; the amount of hydrogen has been largely reduced by
fluorination;

- Samples of diamond nanoparticles with “close-to-ideal” parameters have
been produced and successfully studied. We explore a possibility of
larger-scale production in order to provide their real applications in
neutron science/technology.

- More powerful sources of slow neutrons (CNs, VCNs, UCNs) !   
- A new generation of general-purpose neutron sources !?

- More efficient nuclear reactors of the future ?
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UCNs versus VCNs

To remind advantages of VCNs:

- Longer observation times (compared to CNs and TNs) that is interesting
for particle physics (nñ oscillations, neutron beta-decay etc);

- Larger absorption and fission cross-sections (compared to CNs and TNs)
that is interesting for nuclear and particle physics;

- Relaxed geometrical constrains and higher sensitivity (compared to CNs
and TNs) that is interesting for neutron reflectometers;

- Broader dynamical range for large-structure diffractometers, time-of-
flight spectrometers and reflectometers (compared to CNs and TNs);

- Much higher sensitivity for spin-echo techniques (compared to CNs and
TNs);

- Higher fluxes than UCNs etc…
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UCNs versus VCNs

However, huge disadvantages:

- Relatively low fluxes compared to CNs and TNs (as no efficient VCN
reflectors have been available…), and

- Short observation times compared to UCNs (also … as no efficient
reflectors have been available).

Our method: Keep advantages and reduce disadvantages !

High fluxes and storage in closed traps

The list of possible applications is long
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Directional extraction of VCNs

The gain factor is about 20-30 
(preliminary, in progress)
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