CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

Davíd McKeen and AEN, arXív:1512.05359 Akshay Ghalsasí, Davíd McKeen, AEN., arXív:1508.05392 (Thursday: Kyle Aítken, Davíd McKeen, AEN, Thomas Neder, arXív:1708.01259) (See also Seyda Ipek, Davíd McKeen, AEN., arXív:1407.8193 Seyda Ipek, John March-Russell, arXív:1604.00009)

Neutron-Antineutron Oscillations: Appearance, Disappearance, and Baryogenesis October 24, 2017

CPV beyond the Standard

Model

- Needed to produce early universe asymmetry of 10-8 between quarks and anti-quarks? (baryogenesis)
 - Effects of CKM phase in early universe highly suppressed by small mixing angles and mass differences.
 - non standard CPV

or

• non standard enhancement of standard CPV

Baryon Violation

- SM: Anomalous effect in weak interactions ("Sphalerons") rapid violation of B, L at T> ~ 100 GeV (weak transition), negligible B violation at low T (tunneling)
- Sphalerons conserve B-L
- Baryogenesis:
 - produce net B-L at high T (e.g. leptogenesis)
 - electroweak baryogenesis (no BSM B or L violation needed)
 - post sphaleron baryogenesis (requires B violation at low energy which does not allow proton decay)

Why post sphaleron

baryogenesis is compelling

- Consistent with wide range of cosmology/inflation models.
- No high temperature required (solves a lot of cosmological issues, e.g. gravitino over production)
- Electroweak baryogenesis requires 1st order weak transition, CPV in Higgs sector—very constrained by electric dipole moment of electron, mass of Higgs.

Consequence of post sphaleron baryogenesis $\overline{M^5} q q q q q q$

- lowest dimension B violation operator which does not lead to proton decay is dim 9,
- $n \bar{n}$ oscillations
- dinucleon decay:

R parity

- many models of new physics for the electroweak hierarchy introduce a Z_2 symmetry $(-1)^{(L+3B+2S)}$ under which new particles are odd, called R parity (most widely known in SUSY)
 - all SM particles have even R parity
 - SUSY superpartners have odd R parity
 - Any new fermion which is does not carry baryon or lepton number is R-odd, as is any boson with odd B or L charge
- prevents tree level contributions to precision electroweak corrections, CP and flavor violation from new R odd particles.
- Bonus: lightest Parity Odd Particle (LPOP) is stable—potentially dark matter

what is $U(1)_{R?}$

- U(1) Symmetry in Supersymmetric theories which does not commute with SUSY
- Different particles in a supermultiplet have different charges
- $U(1)_R$: left handed gaugino has charge +1, sfermions in left chiral supermultiplets have charge -1
 - All fermion superpartner masses must be Dirac
 - requires new chiral supermultiplets to allow Dirac gaugino masses
 - requires 2 more Higgs doublet chiral supermultiplet (or lepton number violation/identification of lepton number and U(1)_R

Baryon number violation

without proton decay

- Proton must decay into odd # fermions.
- Sufficient conditions for stability:
 - lepton number conservation mod 2
 - no new fermions lighter than m_p-m_e

Violating Baryon number and R

symmetry in SUSY

- Dim 4: Superpotential coupling u_i^cd_i^cd_k^c
- Dim 3: squark scalar trilinear
- violate baryon number both are R parity odd and $\Delta B=1$
- Dim 4: Conserves $U(1)_B+U(1)_R$
 - Squark=antidiquark, gauginos carry baryon number
 - Dim 3, Majorana gaugino masses: Conserves Z₂ subgroup of $U(1)_{B}+U(1)_{R}$
 - Z_2 subgroup of U(1)_B+U(1)_R forbids proton decay (as long as lightest neutralino heavier than m_p - m_e , allows Majorana v mass

Dark Matter: 938 Mev Neutral

Majorana Fermion?

- Proton stability: $m_p-m_e < M_N$
- $M_N < m_{p+}m_e \rightarrow N$ stable
- Experimental search for $n \rightarrow N + \gamma$?

Particle Oscillations

- quantum interference due to coherent superposition of particles with slightly different masses
 - production conserves some *approximate* symmetry
- Observed in neutrinos (lepton flavor oscillations), neutral K,D,B mesons (particle-anti-particle oscillations)
 - masses must be near degenerate-
 - wave packet propagation must be similar enough so spatial separation does not occur over an oscillation time
 - oscillation time must not be too fast or too slow or oscillations not observable

CPV in oscillations of

unstable states

• Only requires 2 oscillating states

O(1)!

- Observed in neutral kaon anti-kaon and neutral B mesonanti-B meson oscillations
- Large effect possible when oscillation and decay rates
 comparable
 0.4 F

CPV from Oscillations +

Decays

- Requires $m_{12}\neq 0$, $\Gamma_{12}\neq 0$, $\arg(m_{12}\Gamma_{12}^*)\neq 0$
- *largest effect:* $\Delta \Gamma \sim \Delta m \sim \Gamma$, $\arg(m_{12}\Gamma_{12}^*) \sim O(1)$
- generically $\Delta \Gamma < \Delta m$, Γ
 - *Kaons*: $\Delta \Gamma \sim \Delta m \sim \Gamma$, $\arg(m_{12}\Gamma_{12}^*) << 1$,
 - $B^0: \Delta\Gamma << \Delta m \sim \Gamma$, $\arg(m_{12}\Gamma_{12}^*) \sim O(1)$
 - $D^0: \Delta \Gamma \sim \Delta m < \Gamma$, $\arg(m_{12}\Gamma_{12}^*) < <1$,
 - $B_s: \Delta\Gamma << \Gamma < \Delta m$, $\arg(m_{12}\Gamma_{12}^*) << 1$

Baryogenesis from oscillating unstable states in SUSY?

- Susy with baryon violating RPV has been an attractive low energy baryogenesis model for some time
- Usual mechanism is CPV in baryon number violating decays
- Can CPV in oscillations be used for baryogenesis?
- Thursday morning: Dave McKeen talk on CPV from oscillating neutral heavy flavor baryons

pseudo-Dirac fermions in

SUSY?

- "Mesino-anti-Mesino Oscillations", S. Thomas, U. Sarid, 1999
- In theories with gravitino LPOP (lightest supersymmetric particle) the NLSP (Next to lightest Supersymmetric particle has a long lifetime.
- What if NLSP is a squark? Hadronizes before decay as a *mesino* (squark-anti-quark bound state). Carries flavor quantum numbers which are violated by weak and susy interactions.
- neutral mesino can oscillate into anti-particle, is pseudo-Dirac.
 - same sign top, same sign di-lepton signatures.

History

- long lived NLSP stop mesino
- long lived signatures
- same sign dilepton events
- "Mesino Oscillation in MVF SUSY, Berger, Csaki, Grossman, Heidenreich, 2013
 - sbottom LSP mesino oscillations with RPV
 - same sign dilepton signatures

Model for Baryogenesis: arXiv:1508.05392

- "RPV SUSY-lite"
- New particles:
 - Neutral Majorana fermions χ_i , i=1,2,...,
 - charge -1/3 colored scalar ϕ , mass >~650 GeV
 - low energy effective theory:

Dinucleon decay constraints on combinations of $\alpha_{11}, \alpha_{21}, y_{1k}, y_{2k}$

Generation of CPV in Mesino

oscillations

- M₁₂:
- Γ₁₂

maximizing CPV

- optimally N_1 is slightly lighter (~500 MeV) than mesino
- strange mesino decays: both $\Phi, \bar{\Phi} \rightarrow N_1 + \eta$,

 $\Phi \rightarrow$ baryon+ mesons, $\overline{\Phi} \rightarrow$ anti-baryon+ mesons

- require total $\Gamma < \Lambda_{QCD}$ (hadronization rate)
- For optimal parameters, sizable CPV possible
 - #baryons-#antibaryons per initial $\Phi + \overline{\Phi} \sim 10^{-4} 10^{-5}$

Cosmology

- Mesino mass > 650 GeV
- Mesino is hadron whose existence requires T< 100 MeV
- Mesinos in early universe would be way out of thermal equilibrium
- Introduce heavy, weakly coupled N₃ with long lifetime which freezes out, decays into quark+ antisquark or antiquark+ squark when temperature <~100 MeV
- squarks immediately hadronize into mesinos, oscillate and decay, producing net baryon number.

Boltzman equations

21

$$\begin{aligned} \frac{d\rho_{\rm rad}}{dt} &= -4H\rho_{\rm rad} + \Gamma_{N_3}m_{N_3}n_{N_3}, \\ \frac{d\rho_{N_3}}{dt} &= -3H\rho_{N_3} - \Gamma_{N_3}m_{N_3}n_{N_3}, \end{aligned}$$

$$\frac{dn_B}{dt} = -3Hn_B + \frac{1}{2}A\,\Gamma_{N_3}\epsilon_B n_{N_3}.$$

- A=fraction of squarks which hadronize as oscillating mesinos
- ε_B=average net # baryons per mesino

Summary

- Baryogenesis is strong motivation for n n
 oscillations, dinucleon decay
- Z₂ symmetry allows baryon violation, Majorana v with stable proton
- For fine tuned mass range, same Z₂ symmetry can also stabilize dark matter
- search for dark matter in neutron decays
- Baryogenesis model from oscillating mesinos
- stay tuned for Dave McKeen's talk on oscillating heavy flavor Baryons