

N-N Oscillation: An Overview

INT NNbar workshop, Seattle October, 2017

What is N-N oscillation?

Neutrons in vacuum and low magnetic field spontaneously converting to anti-neutrons. \mathcal{D}

(Baryogenesis→ Kuzmin'70; SU(5)→ Glashow'79; neutrino mass→ Mohapatra and Marshak'80)

• Key parameter describing this is: $\frac{\delta m_{n\bar{n}}}{\delta m_{n\bar{n}}}$ which denotes the mixing strength between n and \bar{n}

 $\delta m_n \bar{n} = 0$ in the standard model.

Hence, a sensitive probe of physics beyond SM!

Early History

 Kuzmin'70: motivated by Sakharov's suggestion of baryogenesis. Paper in Russian.

Cp violation and baryon asymmetry of the universe (In Russian) V.A. Kuzmin (Lebedev Inst.). 1970. 3 pp. Published in Pisma Zh.Eksp.Teor.Fiz. 12 (1970) 335-337

Glashow'79: SU(5) with {15}-dim. Multiplet.

The Future of Elementary Particle Physics S.L. Glashow (Harvard U.). Aug 1979. 40 pp. Published in NATO Sci.Ser.B 61 (1980) 687

NN-bar from neutrino mass

RNM, Marshak'80: From neutrino Majorana mass to neutron oscillation

Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations Rabindra N. Mohapatra, R.E. Marshak (Virginia Tech.). Jan 1980. 10 pp. Published in Phys.Rev.Lett. 44 (1980) 1316-1319, Erratum: Phys.Rev.Lett. 44 (1980) 1643 VPI-HEP-80/1

■ Left-right (1974-75) → SeesaW(1979)

 \rightarrow Electric charge formula in LR₍₁₉₇₉₎

→NN-bar(1980)

Left-Right model: • Gauge group: $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

• Fermions $\begin{pmatrix} u_L \\ d_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} u_R \\ d_R \end{pmatrix} \begin{pmatrix} v_L \\ e_L \end{pmatrix} \stackrel{P}{\Leftrightarrow} \begin{pmatrix} v_R \\ e_R \end{pmatrix}$

$$L = \frac{g}{2} [\vec{J}_{L}^{\ \mu} \cdot \vec{W}_{\mu L} + \vec{J}_{R}^{\ \mu} \cdot \vec{W}_{\mu R}]$$

Parity a spontaneously $M_{W_R} \gg M_{W_L}$ broken symmetry: (Pati, Salam'74; Mohapatra, Pati'74; '74; Senjanovic, Mohapatra'75)

Parity breaking as origin of Majorana Neutrino mass

Electric charge formula in LR (contrast this with SM)

$$Q = I_{3L} + I_{3R} + \frac{B - L}{2}$$

Above EW scale,

$$\Delta Q = \Delta I_{3L} = 0 \rightarrow \Delta I_{3R} = -\frac{1}{2}\Delta L$$

1

Parity breaking → Majorana nu (RNM, Marshak'80)
 Small neutrino mass is why Weak Int. V-A

From Majorana neutrinos to neutron oscillation

If there is no change in lepton number i.e. $\Delta L=0~$, the eletcric charge equation implies that $\Delta B=2\Delta I_{3R}=2$

- $\Delta B = 2$ is n-n-bar oscillation
- Obvious framework is left-right with quark lepton unification based on SU(2)_L x SU(2)_R xSU(4)_c

Observable $n - \overline{n}$ for TeV M_{Δ}

(Mohapatra, Marshak'80)

How big can $\delta m_{n\bar{n}}$ be?

 Since it can lead nuclei to decay, from what we know about nuclear instability, we conclude that it must be less than

$$\delta m_{n\bar{n}} \leq \sqrt{\Gamma_{nucl}m_n} \leq 10^{-23} \text{eV}$$

• $G_{\Delta B=2} = \frac{\lambda f^3 v_{BL}}{M_{\Delta}^6}$ in this range for $M_{\Delta} \sim \text{TeV}$

Probes TeV scale new physics of B and Lviolation- different from GUTs

(i) Oscillation inside a nucleus leading to B-violating nuclear decays

(ii) Oscillation of a free neutron beam from a reactor or spallation source

Nuclear search for NNbar

Important to figure out the nuclear effects:

(Chetyrkin, Kazarnovsky; Kuzmin, Shaposnikov'81; Dover, Gal, Richards; Alberico et al.; Kopeliovich et al; Richards talk;Expt. Super-K; Soudan, SNO)

 $\delta m_{n\bar{n}} \leq \sqrt{\Gamma_{nucl}} m_n \leq 10^{-23} \mathrm{eV}$

Free neutron Oscillation

Two state quantum mechanics:

$$\frac{d}{dt} \left(\begin{array}{c} n\\ \bar{n} \end{array} \right) = \mathcal{H} \left(\begin{array}{c} n\\ \bar{n} \end{array} \right); \ \mathcal{H} = \left(\begin{array}{c} M_1 & \delta m\\ \delta m & M_2 \end{array} \right)$$

 $P_{n-\bar{n}} = \frac{4\delta m^2}{\Delta M^2 + 4\delta m^2} \sin^2\left(\sqrt{\Delta M^2 + 4\delta m^2}\right) t_{/2}$

• ΔM due to Earth B-field 10⁻¹¹ eV >> $\delta m_{n\bar{n}}$

So, can this expt ever be done?

Earth Magnetic field and free N-N Osc.

place. Unfortunately, the effect is very difficult to observe.

The small $\Delta B = 2$ mass splitting is generally masked by the magnetic

mass splitting between N and \bar{N} , which amounts to 10^{-11} eV/gauss.

S. L. Glashow'79

in the presence of matter or external magnetic fields, the detection of such oscillations, at the present time, seems improbable. Kuo,Love'80

the earth is not shielded, $\Delta Mt >> 1$ and Eq. (13) applies. On the other

hand, if the earth's magnetic field is "degaussed" by a factor of 10^3 or

more, Eq. (14) applies and the experiment becomes quite favorable. The

Marshak, RNM' Phys. Lett B (80); Cowsik, Nussinov'80 To search for neutron oscillation, degauss the Earth magnetic field to Nano-Tesla level! $\Delta M \approx 0$

Damping due to residual atoms/molecules in pipe

- Effect of residual atmosphere on NNbar rate;
- Use Feinberg-Weinberg-Lindblad equation
- (Talks by Kamyshkov, Kerbikov)

Experimental search for free neutron oscillation

- Horizontal set up+ degaussing \rightarrow ILL
- New proposal for ESS; (Frost, Young, Milstead talks)

Experimental search and results from ILL group

Define free oscillation time $\tau_{n\bar{n}} = \frac{\kappa}{\delta m_{n\bar{n}}}$

• When $\Delta M \approx 0$ probability of transition:

$$P_{n \to \overline{n}} \approx \left(\frac{t}{\tau_{n\overline{n}}}\right)^2$$

- Figure of merit: # of \overline{n} = flux of $n P_{n\overline{n}}$ (running time)
- Current direct search limit ILL $\tau > 8.6 \times 10^7$ sec (Baldo-ceolin, Dubbers, Fidecaro et al'94)

→ $\delta m_{n\bar{n}} < 7 \times 10^{-33} \text{ GeV}$ constrains new physics !!

Precursor to a proposal arXiv:1410:1100; Phys.Rep.

Neutron-Antineutron Oscillations: Theoretical Status and Experimental Prospects

D. G. Phillips II^{n,w}, W. M. Snow^{d,*}, K. Babu^q, S. Banerjee^t, D. V. Baxter^d, Z. Berezhiani^{h,x}, M. Bergevin^y, S. Bhattacharya^t, G. Brooijmans^b, L. Castellanos^{ae}, M-C. Chen^z, C. E. Coppola^{af}, R. Cowsik^{ah}, J. A. Crabtree^p, P. Das^{ag}, E. B. Dees^{n,w}, A. Dolgov^{f,o,aa}, P. D. Ferguson^p, M. Frost^{af}, T. Gabriel^{af}, A. Gal^s, F. Gallmeier^p, K. Ganezer^a, E. Golubeva^e, G. Greene^{af}, B. Hartfiel^a, A. Hawari^m, L. Heilbronn^{ae}, <u>C. Johnson^d</u>, Y. Kamyshkov^{af}, B. Kerbikov^{f,j}, M. Kitaguchi^k, B. Z. Kopeliovich^{ad}, V. B. Kopeliovich^e, V. A. Kuzmin^e, C-Y. Liu^d, P. McGaugheyⁱ, M. Mockoⁱ, R. Mohapatra^{ab}, N. Mokhov^c, G. Muhrerⁱ, H. P. Mumm^l, L. Okun^f, R. W. Pattie Jr.^{n,w}, C. Quigg^c, E. Ramberg^c, A. Ray^{ag}, A. Roy^g, A. Ruggles^{ae}, U. Sarkar^r, A. Saundersⁱ, A. P. Serebrov^u, H. M. Shimizu^k, R. Shrock^v, A. K. Sikdar^{ag}, S. Sjueⁱ, S. Striganov^c, L. W. Townsend^{ae}, R. Tschirhart^c, A. Vainshtein^{ac}, R. Van Kooten^d, Z. Wangⁱ, A. R. Young^{n,w}

2019 0 đ a be comp 0

ESS

Richard Hall-Wilton December 2013

What scale of new physics does Nnbar probe ?

Operator responsible for Nnbar without susy:

$$O_{\Delta B=2} = \frac{1}{M_{eff}^5} u^c d^c d^c u^c d^c d^c \quad \text{Note M5 suppression}$$

$$\delta m_{n\bar{n}} = G_{\Delta B=2} < n |O_{\Delta B=2}|\bar{n} > \sim G_{\Delta B=2}\Lambda^6$$

 Quarks to neutrons(Rao, Shrock'82; Buchoff et al. Lattice; Wagman et al. Bijnens,Kofoed)

$$\tau_{n-\bar{n}} = \hbar / \delta m_{n-\bar{n}} \sim M^5 / \Lambda^6 \rightarrow_{\tau_n \bar{n}} \sim 10^8 s. \,\mathsf{M} \sim 10 \,\mathrm{TeVs}$$

Observation of NNbar will open a totally new landscape of physics at TeV scale + new view of parity !

New particles near TeV and scale reach of NNbar

• If there are "diquark" scalars $\Delta_{u^c u^c}$ near TeV, new operators appear: $\Delta_{u^c u^c} d^c d^c d^c$; mass reach goes up to 10⁹ GeV. M^3

- Happens in some susy models (Dutta, Mimura, RNM'06; PRL)
- If instead $\Delta_{u^c d^c}$ is near a TeV, scale goes up to 10¹⁵ GeV. $\mathcal{O} = \frac{1}{M} d^c d^c \Delta_{u^c d^c} \Delta_{u^c d^c}$

From NN to heavy baryon oscillation

Extend the SM by adding adding RH neutrinos N +color triplet (3, 1, 2/3)

$$\mathcal{L}_{I} = rac{\lambda_{ai}\lambda'_{jk}}{M_{\chi}^{2}}N_{a}u_{R,i}d_{R,j}d_{R,k} + \mathrm{H.c.}$$

(Babu, RNM, Nasri'08; Dev, RNM'15; Davoudiasl, Zhang'15)

- $\Lambda \overline{\Lambda}, B_{H} \overline{B}_{H}$ oscillation; pp \rightarrow KK decay
- Recent discussion in connection with baryogenesis: (Aitkin, Mckeen, Nelson'17)

Large Extra dimensions, GUTs and observable NN

Flavor geography and B-violation due to TeV scale for new physics

(Nussinov, Shrock; Winslow, Ng; Dvali, Gobadadze;..)

Grand unified theories for neutrino mass

(Babu, RNM'12; Awasthi, Parida, Sahu'14)

TeV scale B-violating theories: (Arnold, Fornal, Wise; Gu and Sarkar)

NN and BSM Physics

(Fig. Courtesy of Yuri Kamyshkov)

(Babu, Shrock's talk)

NNbar as a probe of other BSM physics

Probing new CP violation:

(Berezhiani, Vainshtein; Fujukawa, Turneau; Gardner, Yan; Nelson, Mckeen)

Lorentz violation (Babu, RNM'14)

Nature long range B-L force: (Babu, RNM'16; Adazzi, Berezhiani, Kamyshkov'16)

p-decay+nn-bar → Neutrino Majorana(Babu,RNM'14)

Impact of NNbar on baryogenesis scenarios

- If neutron oscillation is observed → strength of ∆B = 2 operator is ~ 10⁻²⁸ – 10⁻³¹ GeV⁻⁵;
 → this process is in equilibrium till T~ few
 TeVs.
- Any higher scale generated baryons (e.g. leptogenesis) get erased.
- New ways to generate baryons must be sought.

(Talks by Babu, Chen, Dev, Nelson, Zhang)

POST-SPHALERON BARYOGENESIS

- (Babu, RNM, Nasri'07; Babu's talk)
- Assume real scalar or pseudoscalar field with higher dim effective coupling to SM fermions:

e.g.
$$\mathcal{L}_I = \frac{\lambda}{M^6} S u^c d^c d^c u^c d^c d^c + h.c.$$

$$S \to 6q, 6\bar{q}$$

• Has $\Delta B = \pm 2$: new CPV $n_B - n_{\bar{B}} \neq 0$

BASIC SCENARIO OUTLINE

- Assume M = 10 TeV and $M_s = 2$ TeV;
- T $_*$ >> M $_{\rm S}$ but T $_*$ < M, $\Gamma_S \leq H$
- \rightarrow S stops decaying and keeps "floating". $\Gamma_S = H \ at \ T = T_d$
- At T<< M_S, again
 $T_d \leq T^*_{sphleron} \sim 100 \ GeV$ This decay produces baryon asymmetry:

GENERIC IMPLICATIONS:

- Both scenarios are intimately connected to N-N-bar oscillation.
- The UV complete theory for PSB, having S→6q or N→ 3q require new colored scalars with TeV mass which can be searched for at LHC. Current collider limits ~TeV. Synergy between Energy-Intensity frontier.
- Also they lead to new FCNC effects- small deviations from SM can provide useful hints.

Mirror Universe dark and NN' Osc.: in brief

Exact mirror sym. duplicate of SM

Important point: No new coupling parameters

Asymmetric inflation to avoid BBN (Berezhiani, Dolgov, Mohapatra'96)

Dark baryons and N-N' oscillation

- Symmetric vs asymmetric mirror models
- Complete spectral degeneracy in sym. models
 There is a dark N' with same mass as N.
- They could oscillate: (Bento, Berezhiani'25; Berezhiani's talk)

$$\mathcal{O}_9^{\min} \sim rac{1}{\mathcal{M}^5} (udd) (u'd'd')$$

- Current limits: $\tau_{nn'} \ge 448$ sec.
- Planned expts: (Kamyshkov, Bouchard, Kirch talks)

Some questions

For nn' oscillation to be observed $\frac{\Delta m}{m} \leq 10^{-24} \text{GeV}$ but $T' \sim T/2 \rightarrow$ P-breaking at high scale which will induce different Yukawas from RGE which can lead to $\frac{\Delta m}{m}$ much larger making nn' unobservable (exceptional cases: RNM, Nussinov'17) If nn' is to be observable, issues with n' as DM - the DM must be H', He'- does it satisfy the bullet cluster bound for $\sigma_{H'H'} < 10^{-24} \text{cm}^2$ (expected value $\sim 10^{-16} {
m cm}^2$) (RNM, Nussinov'17)

Some questions: contd

■ Observable NN' → T_{reheat} < 300 GeV to be consistent with BBN limits on N_{eff} .

No such limit for NN-bar case.

Low inflation reheat

Thank you for your attention !