Precision Neutron Lifetime Measurement using UCN in a Magneto-Gravitational Trap

Chen-Yu Liu Indiana University

UCNT

October 26, 2017 INT nnbar, nn' workshop

1

Seattle Seatch

UCNtau Collaboration

R. W. Pattie Jr.¹, N. B. Callahan², C. Cude-Woods^{1,3}, E. R. Adamek², M. A. Blatnik⁴, L. Broussard⁵, S. M. Clayton¹, S. A. Currie¹, E. B. Dees³, X. Ding⁶, E. M. Engel⁷, D. E. Fellers¹, W. Fox², P. Geltenbort¹², K. P. Hickerson⁴, M. A. Hoffbauer¹, A. T. Holley⁸, A. Komives⁹, C.-Y. Liu², S. W. T. MacDonald¹, M. Makela¹, C. L. Morris¹, J. D. Ortiz¹, J. Ramsey¹, D. J. Salvat¹⁰, A. Saunders¹, S. J. Seestrom^{1†}, E. I. Sharapov¹¹, S. K. Sjue¹, Z. Tang¹, J. Vanderwerp², B. Vogelaar⁶, P. L. Walstrom¹, Z. Wang¹, W. Wei¹, H. L. Weaver¹, J. W. Wexler³, T. L. Womack¹, A. R. Young³, and B. A. Zeck^{1,3}

Affiliations:

1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA

² Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47408, USA

³ Triangle Universities Nuclear Laboratory and North Carolina State University, Raleigh, NC 27695, USA

4 Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

5 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

6 Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

- ⁷ West Point Military Academy, West Point, NY 10996, USA
- ⁸ Department of Physics*,* Tennessee Technological University, Cookeville, TN 38505, USA
- ⁹ Department of Physics and Astronomy, DePauw University, Greencastle, IN 46135-0037, USA
- 10 Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
- ¹¹ Joint Institute for Nuclear Research, Dubna, Moscow region, Russia, 141980
- ¹² Institut Laue-Langevin Grenoble, France, CS 20156

R. W. Pattie, et al, "Measurement of the neutron lifetime using an asymmetric magneto-gravatational trap and in situ detection", submitted to Science; **https://arxiv.org/abs/1707.01817**

2

Student Postdoc

Spokesperson

Spokesperson emeritus

Measuring the lifetime with UCN is challenging!

- Beam measurements require absolute determination of the neutron beam fluence, decay volume, and absolute proton detector efficiency.
	- Have involved multiple systematic corrections of order 5 sec
- Bottle measurements must correct for UCN losses other than the neutron beta decay.
	- These corrections are often of the same order as the quoted uncertainty
- Our goal is to design a bottle that has negligible intrinsic losses using the magnetic interaction

Dubbers & Schmidt, *Rev. Mod. Phy.* **83** (1111) 2011

PHYSICAL REVIEW C 78, 035505 (2008)

Neutron lifetime measurements using gravitationally trapped ultracold neutrons

A. P. Serebrov, ^{1,*} V. E. Varlamov, ¹ A. G. Kharitonov, ¹ A. K. Fomin, ¹ Yu. N. Pokotilovski, ² P. Geltenbort, ³ I. A. Krasnoschekova, ¹ M. S. Lasakov, ¹ R. R. Taldaev, ¹ A. V. Vassiljev, ¹ and O. M. Zherebtsov¹

 $\tau_{\rm st}^{-1}(E) = \tau_n^{-1} + \eta(T) \cdot \gamma(E)$

UCN "*Pokotilovsky*"source operating at the Los Alamos Neutron Science Center (LANSCE)

A. Saunders, et al. RSI 84, 013304 (2013)

UCN "*Pokotilovsky*"source operating at the Los Alamos Neutron Science Center (LANSCE)

Source upgrade:

- Better moderator cooling
- NiP guides
- **Optimized** geometry

UCN density measured by Vanadium activation: **184 UCN/cc**.

A. Saunders, et al. RSI 84, 013304 (2013)

LANL UCN source yield

UCNτ: Magneto-Gravitational Trap

- **Magnetic trapping**: Halbach array of permanent magnets along trap floor repels spin polarized neutrons.
- **Minimize UCN spin-depolarization loss**: EM Coils arranged on the toroidal axis generates holding **B** field throughout the trap (perpendicular to the Halbach array field).

Walstrom et al, NIMA, 599, 82 (2009)

Main Features of the UCNτ Experiment

- 1. An intrinsically low loss rate and long trap lifetime
	- \rightarrow confinement w/ magnetic fields & gravity; no material interaction.
- 2. Rapid evolution and mixing of the phase space
	- \rightarrow fast removal of quasi-bound neutrons; The neutron population quickly reach a stochastic distribution.
- 3. Phase-space insensitive detection scheme.

 \rightarrow Negligible bias on neutron detection efficiency even if the neutron distribution could evolve between the short and long storage times.

4. A large neutron statistics for sub-1 sec precision (1 s statistical uncertainty every few days)

 \rightarrow enable data-driven study of systematic effects: needs a large volume, high UCN density, and high neutron detection efficiency. $\frac{1}{9}$

Details of the Halbach Array

UCNτ Magneto-gravitational trap D. Salvat, PRC 89, 052501 (2014)

Loading UCN into the trap

12

UCNτ Magneto-gravitational trap at Los Alamos Natl. Lab

A new way to count the trapped neutrons:

In-situ UCN detection: detection time ~ 8 s

Z. Wang *et al.*, NIMA **798**, 30 (2015).

Pairs of short-long storage times

1

Multi-step UCN detectionData from 2015-2016 BEFORE larger cleaner

Spectral Cleaning vs Phase-space Evolution

Note that the draining time is height dependent.

Analysis of *non-blinded* tune-up data

P1 subtraction

Morris, et al., RSI **88**, 053508 (2017)

B - Two step counting C - Two step counting with dagger cleaning

We tried three options of UCN spectral cleaners:

A number of *blinded* data sets were taken in 2015/2016 to study UCN cleaning

Blinded lifetimes for different conditions vary somewhat more than statistics (analysis of green shaded run-sets)

$$
x^2 / \text{DOF} = 2.4
$$

We believe this is due to normalization/timing problems. Uncertainties for this data have been scaled by $\sqrt{x^2/_{df}}$

Two *in-situ* HE-UCN monitoring detectors

Data from 2016-2017

Searching for Uncleaned UCN

- No cleaning correction needed
- The UCN rate is too high!
	- Deadtime correction 1%
- New "current mode" counting method
- Used a different blinding factor from 2015/2016 data

Global fit into a single exponential function

Systematic uncertainties for the "current mode" counting

Limit established by long holding time excess

Heating Insufficient Cleaning

Limit established by short holding time excess

Using analysis by Steyerl et al. 2016

29

Background variations (important for currentmode analysis)

Figure 4: Coincidence Background Rate as a function of time.

Figure 3: Position Dependence of singles background. Data comes from 4 sets - either dedicated background runs or production runs in either 2016 or 2017. One fit is from the cleanest dataset (2016 dedicated background), and the other is from all data points except ones with height $>$ 380 mm. The thin, black dashed lines represent the extreme of the fit.

Bias from statistical models

The standard "weighted average" assumes a Gaussian distributed event population and can result in a significant statistical bias.

Number of trapped neutrons are Poisson distributed.

Neutron decays follow binomial distribution, which gives a uncertainty much smaller than sqrt(N).

*The most probable is smaller than the mean for Poisson and binomial distributions.

New results

We have developed a new method for measuring the neutron lifetime

- We have demonstrated an *in situ* active neutron detector that allows for many systematic tests---enables the measurement to correct for insufficient cleaning and phase-space evolution.
- We have made a measurement of τ_n for the first time with **no extrapolation**: 877.7 ± 0.7 (stat) $+0.3/-0.1$ (sys) s.
- All systematic uncertainties have been quantified by measurements, with size of corrections smaller than the statistical uncertainties.
- During 2017/2018 running, with x5 lower background and optimized data-taking, we hope to achieve a statistical uncertainty of \pm 0.35 s (stat) \pm 0.15 s (sys) with 20 weekends of data.

Moving forward

With ~7 weeks of running (since mid-August 2017):

34

The 10 s n lifetime discrepancy

The 10 s discrepancy between beam (which measures τ_B) and bottled neutron (which measures τ_n) lifetimes needs a mechanism that gives τ_{BSM} = 80,000 s.

- **nnbar oscillation**
	- Experimental handle: suppressed by an external B field.
	- Current limit of (quasi-free) nnbar oscillation rate is already too small to explain the 10 s discrepancy.
	- Oscillation could be assisted with RF spin flip; B=0.5G, fRF= 15kHz.
	- We will push the lifetime uncertainty to 0.1 s in both material (B=0) & magnetic (B≠0) bottles. But the technique only help to constrain the $\tau_{BSM} = \tau_{nnbar}$ to 1e+7 s.

• **nn' oscillation**

- $-$ Experimental handle: enhanced by matching the B & B' fields.
- The bottle experiments are done in 0.5 G (material bottles) and 60 G- 800 G (UCNtau, Ezhov). They yield the same lifetime: 878 ± 1 s, and both indicates a neutron disappearance rate > beta-decay rate.
- In the nn' oscillation scenario, this indicates a very broad resonance.
- The preferred model of a long nnbar oscillation time (3e+8 s) and a short nn' oscillation time (~100 s) could source this large neutron disappearance rate.

• **UCN upscattered by dark matters**

- $-$ The energy threshold for UCN nuclear recoil is \sim neV! (other DM detector thresholds \sim 2keV)
- $-$ similar to UCN upscattering by residual gases.

Loss due to residual gas

Loss due to residual gas

Total cross sections for ultracold neutrons scattered from gases

S. J. Seestrom et al. Phys. Rev. C 95, 015501 - Published 30 January 2017

UCN upscattering by dark matters

- UCN is a sensitive dark matter probe: σ^{UCN} _{up}= $\frac{v_f}{v_i}$ $\frac{v_f}{v_i}$ $\sigma_{elastic}$ =50,000 $\sigma_{elastic}$
	- $-$ The energy threshold for UCN nuclear recoil is \sim neV!
- Consider the scenario of UCN upscattered by MM dark matters:
	- Similar to residual gas upscattering, τ_{up} =800,000 s for 10⁻⁶ torr of H₂ atoms (which leads to a 1 s lifetime correction).
	- With DM velocity of 250 km/s, the σ_{up} of UCN upscattering by the DM is

$$
\frac{1}{\tau_{up}(DM)} = n' \sigma'_{up} = n' \varepsilon \frac{v' f}{v_f} \sigma_{up} = n' \varepsilon \frac{250 \, km/s}{2.2 \, km/s} \sigma_{up} \approx 100 \varepsilon \frac{n'}{n} \frac{1}{\tau_{up}(H_2)}
$$
\nsuggest that

$$
100\varepsilon \frac{n'}{n} \approx \frac{\tau_{up}(H2)}{\tau_{up}(DM)} = 10 \implies \varepsilon n' \approx 0.1 \ n = 0.1 \times 10^{-9} \text{ atm}
$$

 $\Omega_{DM} = 5 \Omega_b$, assuming DM is MM and local density of \sim 1atm, then ε =1e-10!

ε = Coupling between OM & MM

39

Is this a viable solution?

It is certainly more compelling than nn' oscillation, because it does not require transition in resonance (by tuning the B field or matching the mass spectrum).

Responses

- What are the experimental observables? – the daily modulation of the neutron lifetime.
- Another possibility is that neutrons decay into a mirror neutrons (which are lighter)

