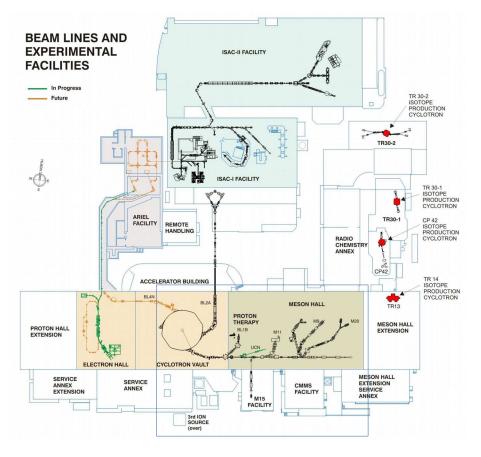
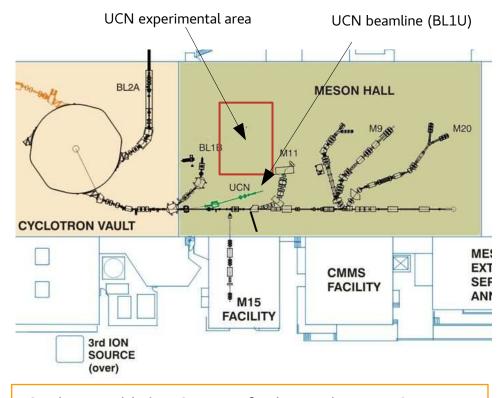


Canada's national laboratory for particle and nuclear physics and accelerator-based science


Progress of the UCN facility and nEDM experiment at TRIUMF

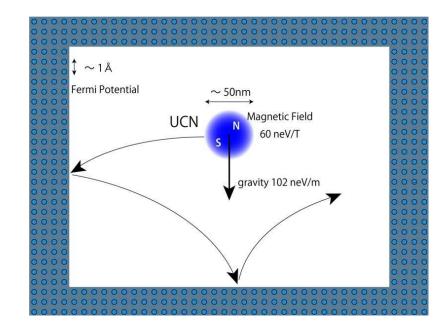

Florian Kuchler Postdoc UCN

Oct 25th 2017

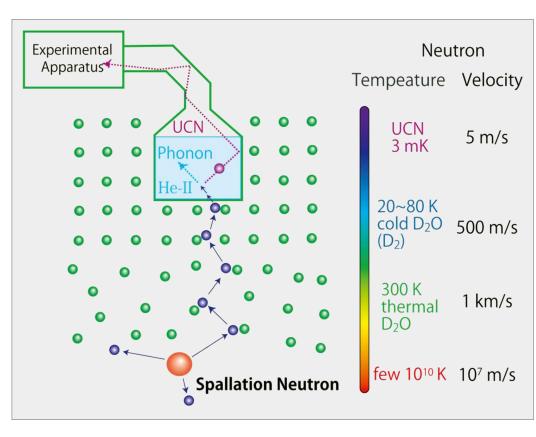
<u>Goal:</u> Establish UCN user facility with two UCN ports and attract international scientific community.

Energy	~ 100 neV
Velocity	~ 5 m/s
Wavelength	~ 50 nm

Interactions:


Gravity
Magnetic field
Weak interaction
Strong interaction

100 neV/m 60 neV/T β -decay n \rightarrow p + e, T_{1/2} ~ 880s Fermi potential 335 neV (⁵⁸Ni) (atom distance : ~ 1 Å)

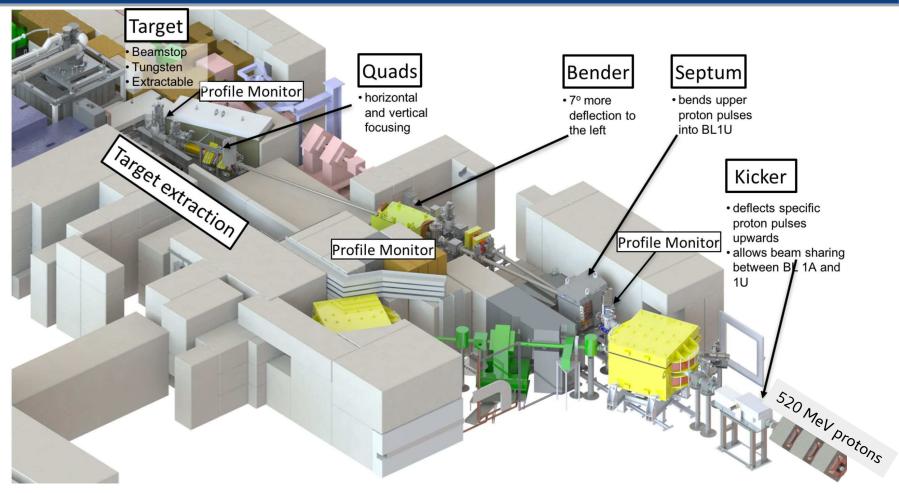

UCN 'feel' average nuclear potential

UCN can be confined in material bottle

 \rightarrow long observation times on order of T_{1/2}

Combination of spallation neutron source and superfluid helium converter

- → D₂O, ice D₂O, LD₂ moderator (300K, 20K)
- ✤ phonon down-scattering in He-II

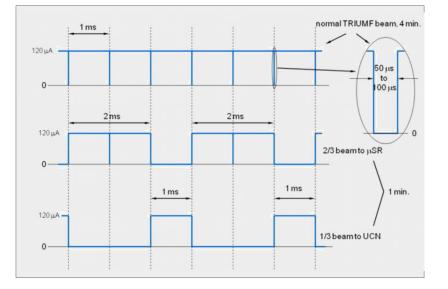

Features of the source:

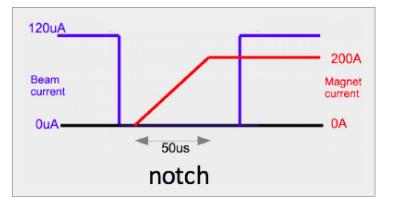
- Small distance between spallation target and UCN production volume
 - → heat-load

Storage time τ_s	He-II temperature
600 s	0.8 K
36 s	1.2 K

F. Kuchler, INT, Seattle, 2017

UCN beamline: Kicker




TRIUMF beam structure:

120 μA pulse for 1 ms no beam for 50-100 μs

Kicker ramps up during beam notch (200 A/50 $\mu s)$

- → kicks every 3rd pulse to BL1U (UCN)
- → average of 40 μ A for UCN
- currently limited to $1 \,\mu$ A (every 120^{th} pulse)

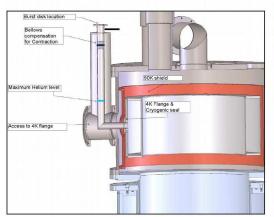
Timing of target irradiations:

- Balance of UCN density accumulation and heat load
- Planning target irradiation time of \sim 60 s

8

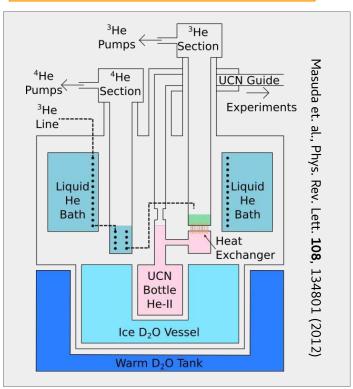
- First beam on target Nov 2016
- New UCN beamline commissioned
- Kicker commissioned
- Operator training and handover

				MU	LTIWI	RE C	HAMBER S	CANS	LI	VE DA	ATA			F	age	1M ?
Beam	line	1/2	с 🔷	2A	♦ 4		Monitor	grou	P 🔷	A	🔶 B		> A &	в		
B1	verse p U :HARP		y So	ale	Auto -		Charging	g tim	e 40	mSe			groun racti		ave DFF	ON
Peaks	s:	7								8						
			ţ					e de la calega		and a second						
2	4 6 8	10 12		18 20	22 24	26 28	30 32	2 Y	4 6 8	10 12	14 16	18 20	22 24	26 28	30 3	2
X 1	WIRE 8	2	5 10	3	10	4	14	ľ 1	WIRE 5	2	7	3	9	4	1	1
5	15	6	26	7	90	8	49	5	12	6	20	7	33	8	52	
9	19	10	15	11	11	12	11	9	51	10	35	11	19	12	1	
13	8	14	9	15	7	16	6	13	10	14	10	15	8	16		7
17		18		19		20		17		18		19		20		
21		22		23		24		21		22		23		24		
25		26		27		28		25		26		27		28		
29		30		31		32		29		30		31		32		
												101 2	2 201	6 1	14.11	0.12

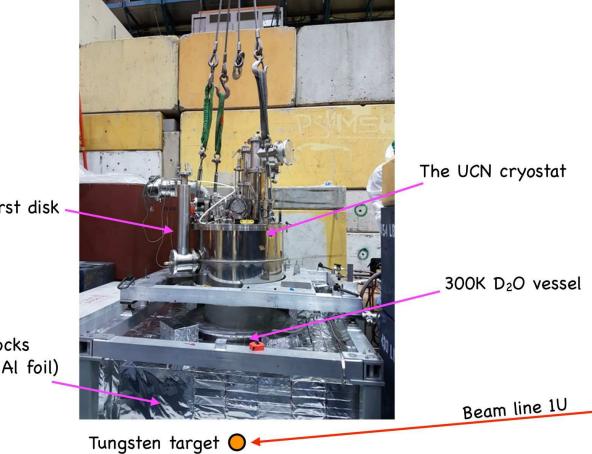

9

Vertical UCN source developed at RCNP

Cooling stages:


- 60L liquid helium bath
- 1 K pot
- ³He pot and heat exchanger

Final $T^{He-II} = 0.8 \text{ K}$ UCN lifetime: 81 sec UCN density: 9 UCN/cm³

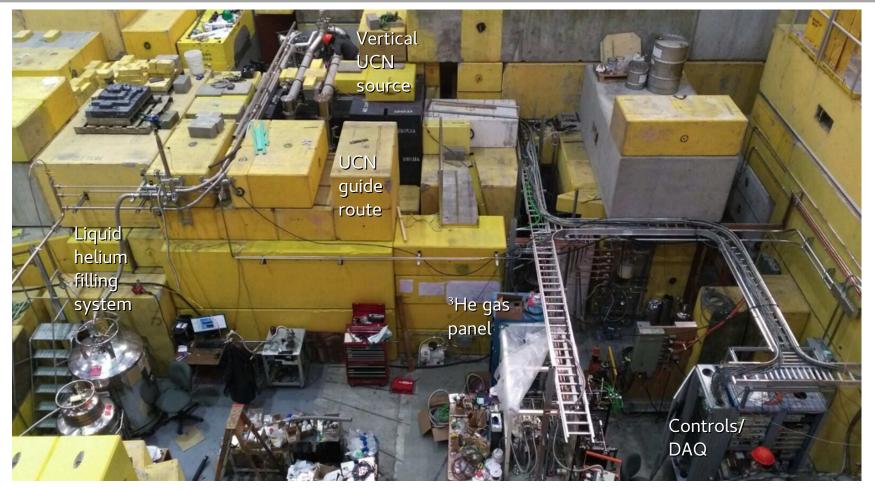


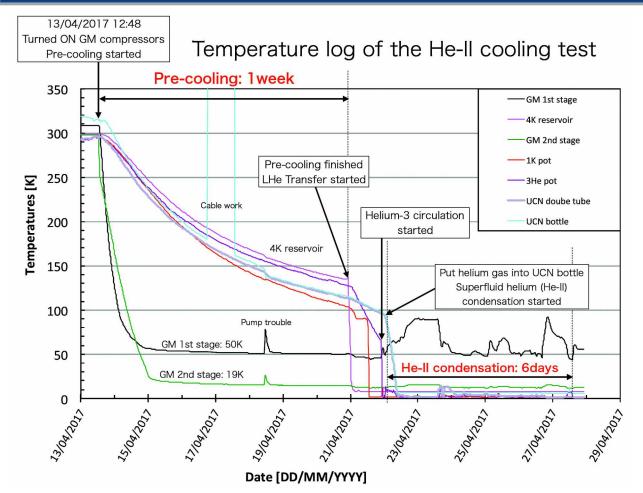
2016 Oct	Move to TRIUMF
2016 Nov-Jan	Savety modifications
2017 Jan-Apr	Installation

Chimney & Burst disk 🛶

Graphit blocks (covered with Al foil)

Vertical UCN source installation timelapse



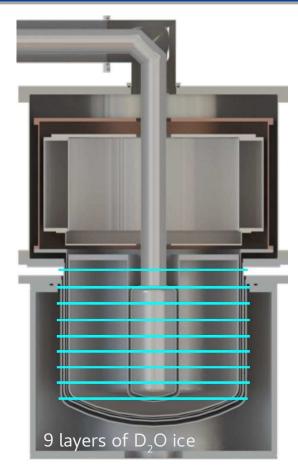


- Full cooling test in April 2017
- Final temperature 0.92 K
- 8 L of liquid He-II condensated

Shortage of liquid helium delayed condensation:

- TRIUMF helium liquefier plant now upgraded by liquid nitrogen
- Liquid helium supply of 50 L/hr

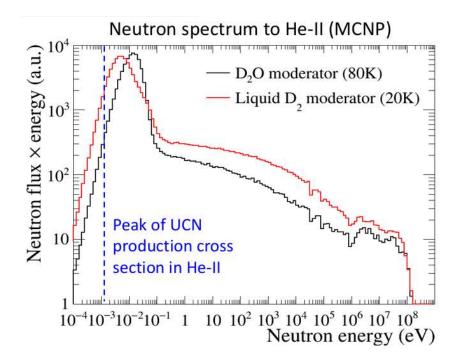
2016 Oct	Move to TRIUMF		
2016 Nov-Jan	Savety modifications		
2017 Jan-Apr	Installation		
2017 Apr-May	Cooling test (T ^{He-II} = 0.9 K)		
2017 Aug	³ He line blockage		
2017 Nov	UCN production		

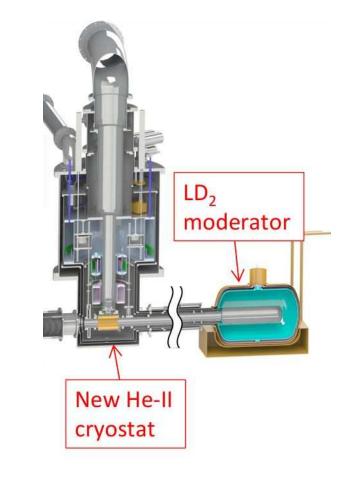

Just restarted cooling process:

- D₂O moderator filling/cooling (1-2 weeks)
- liquid helium filling (1 day)
- ³He circulation (1 day)
- condensation of isopure helium (3 days)
- -> possible first UCN production: Nov 11th

Expectation: 10⁵ UCN for 60s irradiation, several UCN/cm³

→ Factor 100 with newly developed phase-II source (2-3 years)

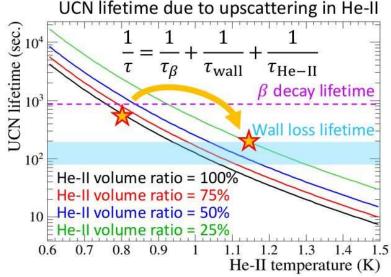


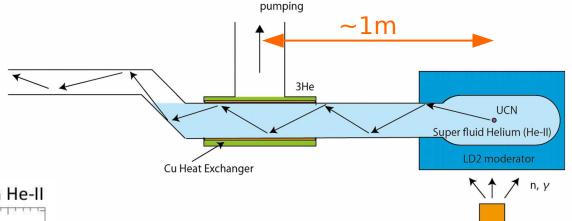


New UCN source development

Liquid $\mathsf{D}_{\scriptscriptstyle 2}$ moderator will increase the cold neutron flux to He-II

- Safety issue: liquid D₂ volume order of 20 L max
- Optimizing the geometry by MC simulation
- 5–9 times larger cold neutron flux achievable vs. ice D₂O

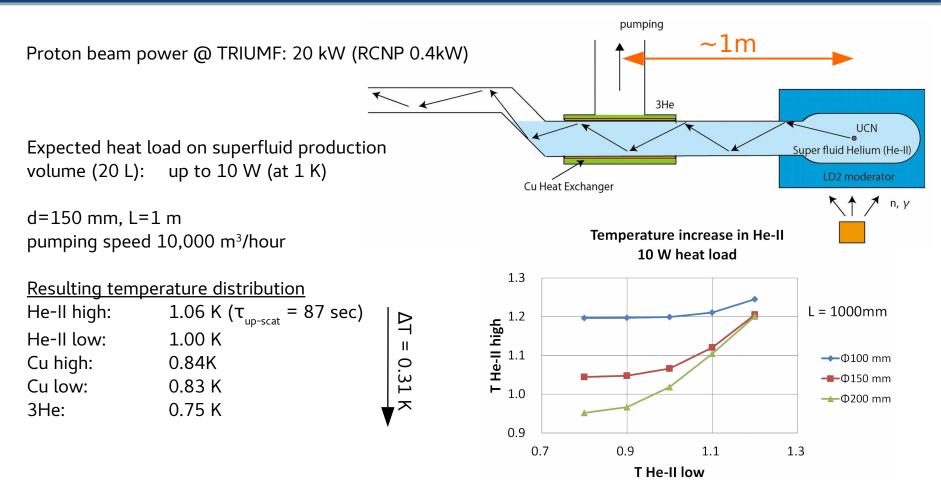



16

Confine He-II by gravity

- Heat transfer in superfluid helium only sufficient for 1m distance
- Relaxed the target temperature of He-II to 1.0-1.2K

F. Kuchler, INT, Seattle, 2017

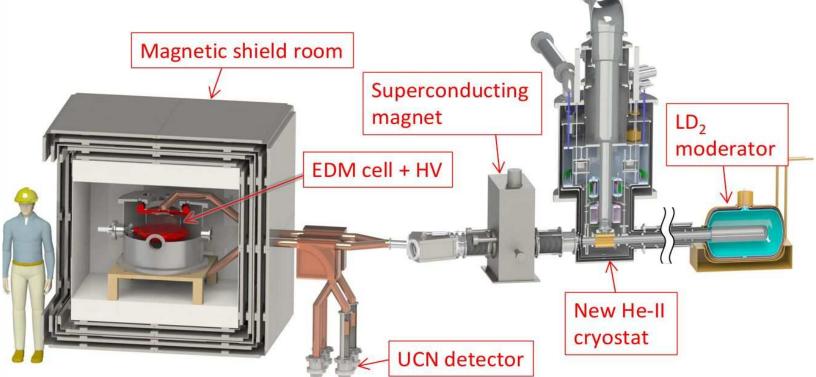

Cooling method options

- Heat exchange with 3 He (primary)
- Direct pumping of He-II (alternative)

Reduce He-II/vacuum volume ratio to ~25%

F. Kuchler, INT, Seattle, 2017

17



F. Kuchler, INT, Seattle, 2017

18

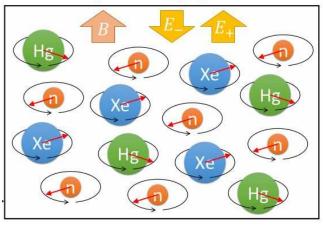
- Upgrade the UCN source and install EDM apparatus (aiming to be ready in 2020)
- Proton current 40 µA

• Sensitivity goal: 10⁻²⁷ ecm (100 days)

19

$\sigma_d = \frac{\hbar}{2\alpha ET\sqrt{N}}$

- α : Visibility (spin polarization)
- E: Electric field
- T: Spin presession time
- N: Number of UCN


Features/goals:

- UCN densitiy inside EDM cell >100 cm⁻³
- Dual-comagnetometer inside EDM cell (¹⁹⁹Hg/¹²⁹Xe)
- EDM experiment inside magnetically shielded room
- Simultanous spin detection

Sensitivity reach (based on simulation)

$$\begin{split} N_0 &= 2 \times 10^7 \text{ UCN } & \tau_{cell} = 100 \text{ sec.} \\ \alpha_0 &= 0.95 & T_1 = 2000 \text{ sec.} \\ E &= 12 \text{ kV/cm} & T_2 = 1000 \text{ sec.} \\ & & & & \\ T &= 100 \text{ sec.} \\ & & & \\ & & & \\ \sigma_{stat} &= 5 \times 10^{-26} \text{ e-cm per cycle} \\ \sigma_{stat} &= 10^{-27} \text{ e-cm in 100 days} \end{split}$$

Comagnetometry by atoms

- Installation of vertical UCN source cryostat in 2017
- UCN beamline (and kicker) ready!
- First UCN production at TRIUMF hopefully in 2017
- Design of new UCN source ongoing (>10⁷ UCN/s)
- Meanwhile also neutron EDM design/R&D
- Received CAD 15.7 million infrastructure funds (CFI)
- Future UCN user facility

PEOPLE ATHLETICS INDIGENOUS ALUMNI COMMUNITY

Ultra-cold neutron research heats up at UWinnipeg with \$15.7 million

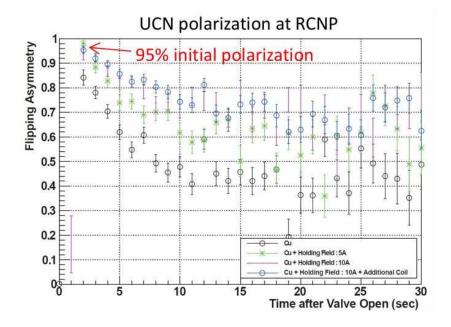
Posted on: 10/12/17 | Author: Communications | Categories: All Posts, Feature Story, Research

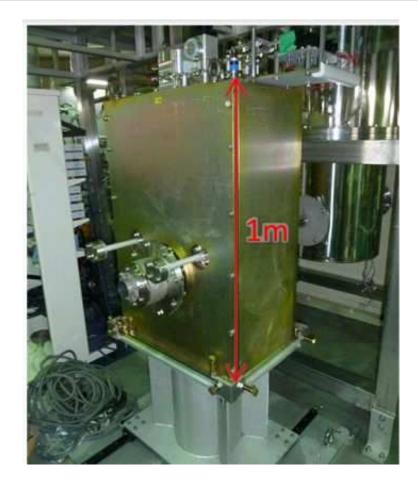
KEK U Nagoya	T. Adachi, S. Jeong, S. Kawasaki, Y. Makida, K. Mishima, T. Okamura, Y. Watanabe M. Kitaguchi, H. Shimizu
RCNP Osaka	K. Hatanaka, I. Tanihata, R. Matsumiya (also TRIUMF), E. Pierre (also TRIUMF)
UBC	E. Altiere, D. Jones, K. Madison, E. Miller, T. Momose, T. Hayamizu
U Wininipeg	Ch. Bidinosti, B. Jamieson, R. Mammei (also TRIUMF), J. Martin
U Manitoba	T. Andalib, J. Birchall, M. Gericke, M. Lang, J. Mammei, S. Page, L. Rebenitsch,
	S. Hansen-Romu, S. Ahmed
TRIUMF	Ch. Davis, B. Franke, K. Katsika, T. Kikawa, A. Konaka (also Uvic and Osaka U.),
	F. Kuchler, L. Lee, R. Picker (also SFU), W. Ramsey, W. Van Oers (aslo U. Manitoba),
	T. Lindner (also UW)
UNBC	E. Korkmaz
SFU	J.Sonier

Canada's national laboratory for particle and nuclear physics and accelerator-based science

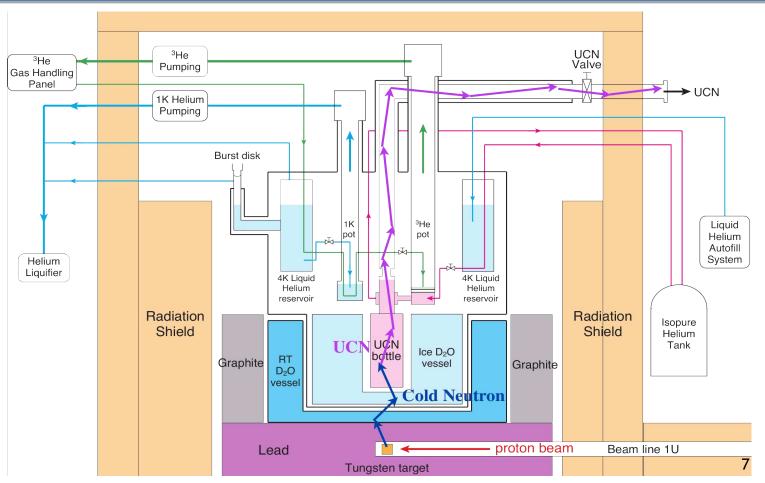
TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

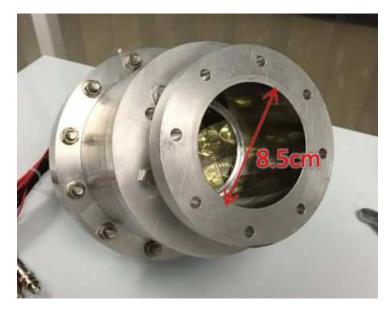

Follow us at TRIUMFLab


f 🖸 🏏

E Kuchler, INT, Seattle, 2017


Superconducting polarizer was developed at RCNP and shipped to TRIUMF

- Produce 3.75T magnetic field at the center.
- 95% UCN polarization was achieved at RCNP



F. Kuchler, INT, Seattle, 2017

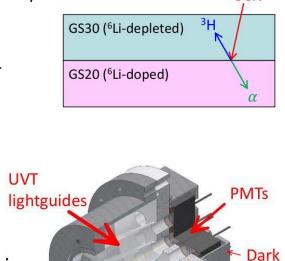
High rate counting (>1.3MHz) and UVT efficiency stability (0.05% / hour) lightguides are required

- Detection via neutron capture in 6 Li: 6 Li + n \rightarrow 3 H(2.73MeV) + α (2.05MeV)
- Detector was well characterized by beam test at PSI UCN beamline
- Increase the UCN statistics by measuring both spin state simultaneously
- Increase visibility due to less depolarization while storing above analyzer foil

Layout of simultaneous spin analysis

Spin flippers

Spin analyzers


UCN

detectors

Lithium

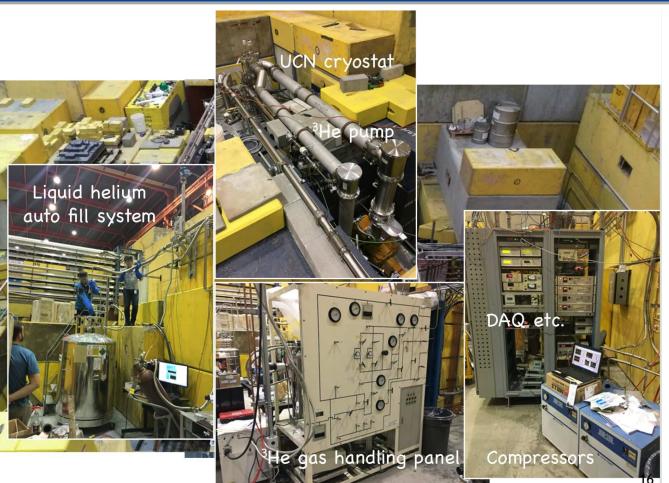
glass stacks

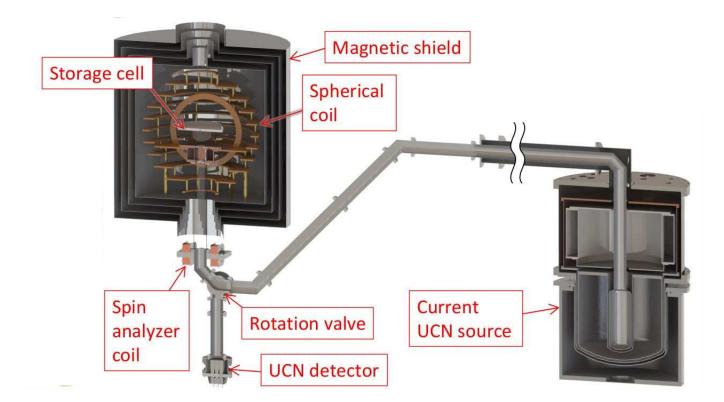
UCN

3cm

UCN

box


- UCN target: tantalum-clad tungsten.
- Installed during Winter 2016.
- Water cooling; 14kW of heat to remove (at final power)
 - Need to deal with activated water. Finishing commissioning water package now.
- Have system for remotely removing UCN target



EDM equipment shipped from Japan (magnetic shields, UCN handling,...)

UCN produced at proton beam current of 1 µA (license, heat input)

Requirements to achieve 10⁻²⁷e·cm sensitivity

System	Requirement	Value			
Neutron moderator, UCN source	High UCN production rate	$>2.3\times10^7$ UCN/sec.			
UCN guide	High transportation eff.	>4%			
Polarizer	High polarization	>95%			
	High electric field	>12kV/cm			
EDM cell and high	Low leakage current	<10pA			
voltage	Long UCN storage life time	>100sec.			
	Large radius	>0.1m			
Magnetic field system	Field stability	1-8 pT stability over EDM cycle			
Magnetic neid system	Field homogeneity	<0.1nT/m			
Comagnetometer	Precise B ₀ measurement	10fT per EDM cycle			
UCN detector	High counting rate	>1.3MHz			
	Efficiency stability	<0.05% over hour			