Previous and future nn' searches at ILL and PSI

INT workshop on nnbar oscillations

K.Kirch, ETH Zurich – PSI Villigen, Switzerland

Klaus Kirch Seattle Oct 24, 2017

nEDM@PSI

Our collaboration (50 people, 15 institutions, 7 countries) just finished nEDM and starts assembling the n2EDM experiment aiming at an improvement in sensitivity by an order of magnitude.

nEDM@PSI

Later this afternoon: talk by Guillaume Pignol about the nEDM experiment.

Topic of this talk, nn' is part of the PhD thesis of Prajwal Mohan Murthy (doctoral student at PSI-ETHZ):

Klaus Kirch Seattle Oct 24, 2017

This talk

- **Previous nn' measurements**
- **The Berezhiani-Nesti signal**
- **PSI UCN source and nEDM experiment**
- **nn**' search experiment Aug-Oct 2017
- **E.** Sensitivity and preliminary sanity checks **Dutlook**

Mirror neutron experiments

- **E** Search for neutron disappearance $n\rightarrow n'$ as a function of B-field (in order to tune over degenerate states allowing resonant transitions, maximal losses at B~B')
- **If disappearance found,**
	- \blacksquare n \rightarrow n' signal frequency could point to the origin of B' (not bound to Earth \rightarrow sidereal modulation, bound to Earth \rightarrow static \rightarrow experiments at various locations)
	- Regeneration experiments would prove n 'dark state' oscillations \rightarrow next talk

Mirror neutron experiments

- $n_{\uparrow} n_{\downarrow}$ $n_{\uparrow} + n_{\downarrow}$ = − $t_{\scriptscriptstyle S}$ t_f η^3 Cos β $\omega^2 \tau_{nn'}^2 (1 - \eta^2)^2$
	- **Conceptually** very simple:

- Search for neutron disappearance $n\rightarrow n'$ as a function of B-field (in order to tune over degenerate states allowing resonant transitions, maximal losses at B~B')
- **If disappearance found,**
	- \blacksquare n \rightarrow n' signal frequency could point to the origin of B' (not bound to Earth \rightarrow sidereal modulation, bound to Earth \rightarrow static \rightarrow experiments at various locations)
	- Regeneration experiments would prove n 'dark state' oscillations \rightarrow next talk

Beam vs. storage experiments

Bean:
Ratio:
$$
N = 1 - \frac{t_f^2}{\tau_{nn'}^2}
$$
 Limit: $\tau_{nn'} > \sqrt{\frac{t_f^2}{1 - N + 1.65\Delta N}}$

N=1, t^f ² ~ 0.05² s 2 (VCN), ΔN ~ 10-7 → τ**nn' > 100 s** \blacksquare # of counts needed $\sim 10^{13}$

Storage:

Ratio:
$$
N = 1 - \frac{t_f t_s}{\tau_{nn'}^2} = 1 - \frac{t_f^2}{\tau_{nn'}^2} \frac{t_s}{t_f}
$$
 Limit: $\tau_{nn'} > \sqrt{\frac{t_s t_f}{1 - N + 1.65 \Delta N}}$

- N=1, t f t^s ~ 0.1 * 150 s² , ΔN ~ 10-3 → τ**nn' > 100 s**
- \blacksquare # of counts needed $\sim 10^6$

Mirror neutron experiments $B'=0$ $B' \neq 0$ **UCN disappearance experiments**

- G. Ban et al., PRL **99**, 161603 (2007): $\tau_{nn'}$ >103s (95 % C.L.), B'=0 [PSI-ILL]
- A. P. Serebrov et al., PLB **663**, 181 (2008): $\tau_{\rm nn'}$ >414s (90 % C.L.), B'=0 [PNPI-ILL]
- A. P. Serebrov et al., NIMA **611** ,137(2009): τ_{nn} >403s (90 % C.L.), B'=0 [PNPI-ILL] comb.: $\tau_{nn'}$ >448s (90 % C.L.), B'=0 [PNPI-ILL]
- I. Altarev et al., PRD **80**, 032003 (2009): $\tau_{nn'}$ >12s (95% C.L.)@B'<13μT [PSI-ILL]
- A. P. Serebrov et al., NIMA **611** ,137(2009): $\tau_{nn'}$ >200s (90 % C.L.), B'<1.2μT [PNPI-ILL]
- nEDM@PSI (2017) this talk

CN beam regeneration experiments

- U. Schmidt, Proceedings of 2007 BLNV Workshop: $τ_{nn'} > 2.7$ s (90 % C.L.), B'=0 [FRM-II]
- L. Broussard next talk, see also Berezhiani et al., PRD96(2017)035039 $B' \neq 0$ [ORNL(HFIR)]

Letter

Magnetic anomaly in UCN trapping: signal for neutron oscillations to parallel world?

Zurab Berezhiani^{1,2,a}, Fabrizio Nesti¹

Fig. 2 Global fit in the B' - τ , τ_B plane. The positive result (anomaly) corresponds to the gray-shaded areas, which show the parameter space allowed at 90 % CL (*darker*) and 99 % CL (*lighter*) by the global fit of non-zero \overline{D}_B , (6), with magnetic field marginalized over the uncertain range $B = 0.15{\text -}0.25$ G (the zoomed inset displays the best fit points assuming a constant field $B = 0.15, 0.20, 0.25$, left to right).

99 % CL by the measurements of E_B from Refs. [48, 51]; the region of τ (τ_β) below the *wavy solid (dotted) curves* are disfavored by the measurements of Refs. [47, 49, 50] (not included in the fit). Interestingly, the data of Ref. [49] for E_B and A_B also imply a best fit value $B' = 0.11$ G, with $\tau = 14$ s and $\tau_{\beta} = 20$ s, respectively. The *blue*shaded area peaked at $B' = 0.5$ G is excluded by measurements in the For comparison, available constraints from earlier measurements are Earth magnetic field, illustrated for B' and B_{Earth} parallel (*lighter blue*) also shown: the *yellow-shaded area* in the background is excluded at and

Letter

allowed at 90 % CL (darker) and 99 % CL (ughter) by the global fit of non-zero \overline{D}_B , (6), with magnetic field marginalized over the uncertain range $B = 0.15{\text -}0.25$ G (the zoomed inset displays the best fit points assuming a constant field $B = 0.15, 0.20, 0.25$, left to right).

measurements of Refs. [47, 49, 50] (not included in the fit). Interestingly, the data of Ref. [49] for E_B and A_B also imply a best fit value $B' = 0.11$ G, with $\tau = 14$ s and $\tau_{\beta} = 20$ s, respectively. The *blue*shaded area peaked at $B' = 0.5$ G is excluded by measurements in the For comparison, available constraints from earlier measurements are Earth magnetic field, illustrated for B' and B_{Earth} parallel (*lighter blue*) also shown: the *yellow-shaded area* in the background is excluded at and

Our previous result (PRD80, 2009)

FIG. 2 (color online). Contour plot of the minimal χ^2 at the point (B', $\tau_{nn'}$). The solid line denotes the 95% C.L. contour line for an exclusion of $\tau_{nn'}$. We evaluated a lower limit on $\tau_{nn'}$ at the minimum of this contour for B' between 0 and 12.5 μ T.

Our previous result (PRD80, 2009)

FIG. 2 (color online). Contour plot of the minimal χ^2 at the point (B', $\tau_{nn'}$). The solid line denotes the 95% C.L. contour line for an exclusion of $\tau_{nn'}$. We evaluated a lower limit on $\tau_{nn'}$ at the minimum of this contour for B' between 0 and 12.5 μ T.

Our previous result (PRD80, 2009)

FIG. 2 (color online). Contour plot of the minimal χ^2 at the point (B', $\tau_{nn'}$). The solid line denotes the 95% C.L. contour line for an exclusion of $\tau_{nn'}$. We evaluated a lower limit on $\tau_{nn'}$ at the minimum of this contour for B' between 0 and 12.5 μ T.

Ultracold Neutron Source & Facility

The PSI UCN source

The nEDM spectrometer

UK toc

The nEDM spectrometer

UK toc

UNI
FR

Searching for the neutron EDM

ш

nn' support measurements

- Use unpolarized UCN $\frac{22}{30s}$ 30s
- Optimize filling and counting time
	- **F** found 30s filling and used 75s counting
- **Optimize storage time**
	- **N** Worked at 180s and 380s with cycle lengths between proton pulses to UCN source of 300s and 500s, respectively
	- Determine effective storage time (longer by roughly 2x11s due to possible nn' oscillations during filling and emptying)
- Measure storage time curve to fix MC parameters for extraction of $\langle t_f \rangle_{t_s}$ and $\sqrt{\langle t_f^2 \rangle_{t_s}}$
- Verify the performance of the UCN monitoring
- Verify magnetic field values (here $0, 10, 20\mu T$)

UCN counting

$$
\blacksquare\Box\Box\blacksquare
$$

nn' data collection

We took data Aug-Oct 2017.

- There was a break in between 10 and 20µT cycles for a different physics measurement
- The data was collected such that the potential signal could be confirmed (or rejected) with just 10µT data and on addition of 20µT data also at 150μ T ... 1.5mT could exclude τ below 1.5 ... 0.15s
- In addition to the main cluster of nn' runs, there were data taken for also $\mathfrak{t}_{\mathrm{s}}$ scans, mainly to extract $\mathfrak{t}_{\mathfrak{f}}(\mathfrak{t}_{\mathrm{s}})$

$$
\blacksquare\Box\Box\blacksquare\blacksquare
$$

$$
\blacksquare\Box\Box\blacksquare
$$

nEDM is presently being taken apart

nEDM is presently being taken apart

We'll be back with n2EDM shortly

PAUL SCHERRER INSTITUT

Zuoz Summer School 12-18 August 2018

Particle Flavour Fever

https://www.psi.ch/particle-zuoz-school

Adrian Signer, Michael Spira, Anita van Loon-Govaerts, zuoz2018@psi.ch

Dmitry Budker (Mainz) Exotics searches in atoms and molecules Augusto Ceccucci (CERN) Exotics searches at low energy Sacha Davidson (Lyon) **Exotics and flavour** Tobias Golling (Geneva) Exotics searches in ATLAS and CMS Francis Halzen (Wisconsin) IceCube: building a new window on the Universe from Antarctica Matthias Neubert (Mainz) Flavour physics in the SM and beyond Barbara Storaci (Zurich) Status of B anomalies David Straub (TU Munich) Interpreting B anomalies Frederic Teubert (CERN) Future opportunities in flavour physics

sc nat

Swiss Academy of Sciences Akademie der Naturwissenschaften Accademia di scienze naturali Académie des sciences naturelles

Optimizing t's

Sensitivity per cycle $\sim \sqrt{t_s\sqrt{N}}$, but also N decreases exponentially and for longer cycle times less cycles can be performed.

Optimizing t_{emptying}

We'd want t_{emptying} to be the longest time possible to amply measure all the neutrons remaining.

 $t_{emptying}$ =75s. They can be accommodated with t_s={180, 380}s, into cycles t_t={300,500}s long.

Cycle Plan

 $t_s=180$ s to replicate old experiment, $t_s=380$ s for maximum sensitivity

$$
\blacksquare\Box\Box\blacksquare\blacksquare
$$

What is the Magnetic Field Inside?

Once we ramp to ±20µT (max) and down to 0µT, do we any residual field? This residual field must be <420nT. Using Hg co-magnetometer…:

$$
\blacksquare\Box\Box\blacksquare
$$

What is the Magnetic Field Inside?

We used Hg-199 to measure the magnetic field in-situ.

What is the Magnetic Field Inside?

We used Hg-199 to measure the magnetic field in-situ.

Effective mass scale from nn'

A. Knecht, PhD thesis, 2009, UZH

Figure A.5.: The figure shows the effective mass scale $\mathcal M$ corresponding to a given limit

on the oscillation time $\tau_{nn'}$ as given in Eq. (A.48).

R. N. MOHAPATRA, S. NASRI AND S. NUSSINOVA, Some implications of neutron mirror neutron oscillation, Phys. Lett. B 627, 124 (2005).

Z. BEREZHIANI AND L. BENTO, Neutron-Mirror-Neutron Oscillations: How Fast Might They Be?, Phys. Rev. Lett. 96, 081801 (2006).

nn' limits probe effective mass scale 10…100TeV

Mass of exchange boson can be much lower

$$
\blacksquare\Box\Box\blacksquare
$$

PSI ring cyclotron

- at time of construction a new concept: separated sector ring cyclotron [H.Willax et al.]
- 8 magnets (280t, 1.6-2.1T), 4 accelerating resonators $(50MHz)$, 1 Flattop (150MHz), \varnothing 15m
- \cdot losses at extraction \leq 200W
- reducing losses by increasing RF voltage was main upgrade path

[losses ∞ (turn number)³, W.Joho]

- 590MeV protons at 80%c
- 2.4mA x 590MeV=1.4MW

PSI ring cyclotron

The intensity frontier at PSI: π , μ , UCN

Precision experiments with **the lightest unstable particles** of their kind

Swiss national laboratory with strong international collaborations