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Neutron oscillations in gas

— /
n—mn and n<—n

 There are similarities and differences

 What is effect of residual gas pressure?

 What should be the level of vacuum?

e n = n: both components are in the same gas

* n > n': components can be in different gas

* Mirror gas pressure (if any) can not be controlled
* In mag. field W, = —us; Up= U, but B =# B’
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Neutron in a medium (gas)

Hamiltonian of a neutron in an environment

(h=c=1)
- T p . o
H=m—l2 | 2m+,u(a -B)+V0pt+

+ scattering on residual gas

Vopt - average nuclear potential of media seen by the neutron
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Vacuum gas composition

https://www.pfeiffer-vacuum.com/en/know-how/introduction-to-vacuum-technology/influences-in-real-vacuum-systems/residual-gas-composition/

When working in ultra-high vacuum, it can be important to know the composition of the residual gas before starting
vacuum processes or in order to monitor and control processes. The percentages of water (m/e = 18) and its fragment
OH (m/e = 17) will be large in the case of vacuum chambers that are not clean or well baked. Leaks can be identified
by the peaks of nitrogen (m/e = 28) and oxygen (m/e = 32) in the ratio N,/O, of approx. 4 to 1.

Hydrogen (m/e = 2), water (m/e = 17 and 18), carbon monoxide (m/e = 28) and carbon dioxide (m/e= 44) will be found
in well-baked chambers. No hydrocarbons will be found when using turbomolecular pumps. They are very effectively
kept out of the chamber due to the high molecular masses and the resulting high compression ratios. A typical
residual gas spectrum for a clean vessel evacuated by a turbomolecular pump is shown in Figure below.
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Index of Refraction of the Media.

When neutron with momentum k enters a medium
its momentum is modified as k' = nk. The n is index

of refraction of the media.

Vopt ~1— lvopt

k' \/2m(E —Vopt) .
N 0 2 E

k 2mE \ E

n =

Modification of the phase induces a modification
of the wave velocity is descried by the real part of
the index of refraction, while the modification of
the amplitude is described by its imaginary part.




V
Vopt(krer) = —2h? —=(fo (kye)) =V — iW

number density of the gas;

Where Vg4

m, - reduced mass;
fo(krer) - scattering amplitude at angle O
k=p/h - wave number of neutron

Vopt is part of Hamiltonian



Y995 (£ (k =V —iW
m (fO( rel)>— — 1

*

Vopt (Pret) = —21h?

Vgas
ReV,y, = 2mh*b m =V
where b = —Refy—o — coherent scattering length
For s-wave elastic scattering: fg_o = —b(1 — ik, ;D)

k .
More generally: Imfg_g = —o optical theorem
6=0 — ,~Otot OP

h,as(Oror.V )M
gas\UYtot n
ImVy,; = Zy =W




Neutron wavelength and

] -]

intermolecular distances

Ja

Question: is A > d a necessary condition for defining
the refraction index of the media?
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| | 5 Tp—— - — L Ty (-
About Fermi potential

or refractive index for the neutron in the media

[ |

—

Wavenumber k is a vector: k (kx,ky,kz) ‘lg‘ —k=—; \=—

that is determining a wavepacket of particle along beam axis z.
For neutron moving along z the £ and ky are ~ 0.
That means that in transversal direction wavepackets are not localized

and neutron sees other atoms. Thus, the average Fermi potential is defined.



Description of matter effects of oscillating system

e L.D. Landau and E. M. Lifshitz, Quantum Mechanics, Course Theoretical Physics v. 3
e R.P. Feynman, Statistical Mechanics, A Set Of Lectures (Advanced Books Classics)
e https://en.wikipedia.org/wiki/Density_matrix

o= (3 o= )

Mixed state: (:,) a((l)) +b ((1)) ; la|? + |b|? =1

D = (aa ab ) = (,011 P12) — density matrix

ba* bb* P21 P22

J T5 A A sADy
2P = —i|H - p| = —iHp + ipH?
Liouville—=von Neumann equation

for density matrix evolution
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For Hermitian, unitary Hamiltonians the Liouville—von
Neumann equation is equivalent to Schrédinger equation.
The concept of density matrix p was introduced to describe
the behavior of the system with coordinates  averaged over

external coordinates ¢ of the environment:

In Landau v. 3:
_ . ] 4 T
=¥ (q,x)f ¥(g x)dqdx Jomaining
plx,x') = f Y(q, x)¥" (q,x")dq @
\_ J

including decaying systems interacting with the environment via absorption.

In our case the environment is some gas in the neutron flight path (“vacuum”
and “system with coordinates x” is oscillating n —» n’



Let’s consider simple Hamiltonian with E # E’:

7= (E E) E, , = E+E’ + (E—ZE’)Z 1 e2

! ) 2
E E Average energy
level of system E|, o~ — —
),

If all parameters are real (if H is Hermitian) the oscillating system can be equivalently
solved either with time dependent Schrodinger equation or with density matrix.

Real part of the energy (potential energy) similar for both components doesn’t change
oscillation dynamics: E, = (E + E")/2. Define difference as 2V = |E — E’|.

2

€E” . cin2 : — 2 2
—7 * Sin“wt; w—\/V + €

P (t) =

The increase of frequency here suppresses the appearance probability.
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P

n—mn [

Quasi-free potential
condition

l

10

Probability in units of 10*{-18}
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Quasi-free potential condition doesn’t depend on € in the wide range
of the latter. However, it depends on the flight time t in experiment.



Hamiltonian for the oscillating neutron (no polarization)

H

moving through the gas (no mag. field)

E+V—iW —j :
B : /ZZE+V’—1'W’—/(§

we should expect for frequency:

Proper Real potential diff.
oscillation increases frequency
2 — 2 2 2 ;
w* =€ =&+ V> +2i&V
Frequency of Absorption
the system damping
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For even more general case of the complex potential,
decay, and including magnetic field and spin:

(—il +V —iW + uB
0

(B
aco;-,(f)

\ —Esin(g)

P11 P12
P21 P22
P31 P32
P41 P42

>
[

0 £ COS g
—ig +V —iW — uB ¢ sin %

P13
P23

P33
P43

ssin(%) —i3 + V! —iW' + /B’
Ecos(g) 0

P14

P24 A
t=0)=
D p(t =0)

P44

o O O

—€ Sin(

o @

) )

- 8
3 cos(g)

0

—i + V' —iW — /B

o o= O

oo oo

oo o O

System of 16 coupled diff. eqs can be handled by Mathematica
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4x4 System of ODEs

pPll(=y =vve) +is;»13c0s(g}— ispl-lsin(ﬁ)—isp,’il ws[fi) +igpdl siu(g)

-
-

F?“\ PI2(=y —vva = 2i B + i.c:pnsm(f} +iepldcos(£) - mp;:cns(f) +i.¢:;x42sm{§)
'?12 p13(-y - ——l = i..' Vo' -iBu+ipl + LERLD _ “”R°':'“""')+ is—pllcos{f)+ ieplzsm(f)— iepsscos{f]+ :‘s,msin[f)
;13 pld(-y - _" - l, Vo -iBu—iul + “"“;""‘" - ""R";""'*')— :spusm(f]nsplzcostf)- :‘.ep34cos(f]+ rsm451n(f)
.14 P21~y —vvo) +iep2icos(E) — iepal cos|E) - ie p2asin(£) - ie p315in(£)
2;; p22(=y —vveo +2i By +is;123;ill(g}+it:;r‘.’:!c.os{?)—ie:pﬁ’.’;m(gl—it:;riZ;os(f]
P p23(-y - = 1‘ Vo' +iBu+iph + “’”:"“-"‘ - “"“":""' "')+.‘ap:|cos{’;’)+ iapzzsin(f)- iep.%ssm{f)- izp-43-:os[§)
P24 oo~y - 2= - i;-' Vo' +iBu—ipB + “”:""" - :'”R“:""'”')— iepzlsm(f_]ﬂ'apz:cos(f)— iep_‘-lsul.{'f)— .‘e,Mcus(f)
Pz - P31 [~y - 2 - l‘ Vo' +iBu—ipl - “"“:""" + :”'“":"'"")- .’s,nucos{f)- i&:p.‘-!lsin(%)+ .'e,-_xaem(f]- fspusm(f)
Do e 1‘ Vo' -iBu-iul - “‘"‘:“‘-" + :”"":"“' )- .‘smzcus[f)- i61122$h1(§)+ is;v33si|1[-f)+ i&:pSqus(f)
Pzz P33 (=y =v' v o) — e pl3cos| &) - ie p23sin( £) + ie p3) cos| ) + i g p32sin( £)
Paa p3M(-y -V Vo -2iul) - ia:plal-cos(f) . ie:pz-i.sin(f}— it:p3l-sin(§ ) + ie:p32-oos(§)
,‘?41 pa1(-y - —" - 1; Vo' +iBu+ipB - ”":R"" + :“Rﬂ:’)r'r')+ispllsm(f]—- ispllcos(f)+ :‘ep43cos(f]— :’e:pq—tsm[f)
"?4’2 pa2(-y - e l‘ Vo' -iBusipl - “‘"‘:"“-" + “”R":'"”')+ .‘s,-lzsm(‘;’]_ is;-lzcos(§)+ .'s,d.tsm{f)+ .'s,m.:os(f)
243/ ;»43(—)’—v’r’(r'+2ip8'l+is;r1351u‘§,—ic;-ﬂ}cos[‘:e}+is;ﬂlc05{§)+icp42:‘eiu(§}

44

P (-y=-v' V') + ispl-tsin({—’} - is;»l-lcos(ii) -iepdl sin( g] - isp42cos(g)
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Thi description by Liouville—von Neumann equation is still not complete
atﬁ = —i|H - p| = —iHp + ipHT - Liouville-von Neumann equation

Direct interaction with environment via incoherent elastic collisions
is not included. This will lead to decoherence.

“Most general evolution of probabilities satisfies an equation
of a class known as Lindblad equations.”

The New York Review of Books

The Trouble with Quantum Mechanics

Steven Weinberg JANUARY 19, 2017 ISSUE

http://www.nybooks.com/articles/2017/01/19/trouble-with-quantum-mechanics/
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Jation

https://en.wikipedia.org/wiki/Lindblad equation

The Lindblad master equation for an N-dimensional system's reduced density matrix p can be written:

2
N 1 1

. _ 1 i _ L 5t f )
P h [H.{)] + Z th?Z- (anLm 2 (meLn + Lm.an)

n.m=1

This equation includes in general the loss of coherence of oscillating system to environment.

Loss of coherence is the reset of the oscillation phase between two components.

At this moment oscillating system collapses (with some probability) into one of its
pure states and continue motion with this boundary conditions. It is “measurement”
of the system by the environment; system remains in the oscillating state with reset
boundary conditions.
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Example of decoherence of two-level system in old classical paper

PIHYSICAL REVIEW VOLUME 123, NUMBER 4 AUGUST 15, 1961

Conversion of Muonium into Antimuonium*

G. FEINBERGT
Columbia University, New York, New YVork

AND

S. WEINBERG
University of California, Berkeley, California
(Received April 4, 1961)

A detailed analysis is made of the possible conversion of muonium into antimuonium in varicus environ-
ments. An assumed fefie weak interaction of the usual form and strength gives a probability of 2.5 105
in vacuum, even in the presence of reasonable external electric fields. In a solid the probability is less by
at least 10, and probably 20, orders of magnitude. In an inert gas the probability is roughly to be divided
by the numbers of collisions during a muon lifetime, and hence is quite small unless the pressure at room
temperature is less than about 107 atm. Lowering the temperature does not help. A possible experiment

is suggested.

%@ Measurement of the system (the effect):

% - decay with emission of Michel's e~;
) or inelastic collision with molecules
s leading again to the decay of the u™

%
¥ "

2

19
Here the evolution equation for p has resulted into simple form of Lindblad equation



Muonium Iin vacuum

... and the probability that the muon decays as u~ rather

than u* is

w0 _ |6l2
P(M)= MM (1)) |2= , (6
. -[}M o 2(Ja[*+a%+)) o

where A=3X 107" ev is the muon decay rate.
In the absence of external fields,

P(M)~(|5]2/22?)=2.5X 105 (7)
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IV. MUONIUM IN GASES

In treating the M — M process in a gas we shall
assume that the muonium system 1s scattered inco-
herently by the gas molecules, except of course for the
coherent forward scattering responsible for the index
of refraction. However, we do not want to assume that
in general the muonium simply moves classically from
molecule to molecule. In this situation it seems essential
to use a statistical matrix treatment.

Suppose that we refer to the sequence of elastic
scatterings up to time ¢ as a “‘history” H, with proba-
bility P(H). [ The sum of the P(H) is the probability

21



(1)

that a decay or inelastic collision has not yet occurred,
and hence vanishes as ¢ — .| Each history gives rise
to a 2-dimensional state vector «#(H) with components
u1= (M |¥) and u,= (M | ¥), normalized in the sense that

og]|2= | 202 |2+ | 202 |2=1. (12)
The statistical matrix p(¢) is defined as
o(0)= S P(HYu(H Y (EL). (13)

At time ¢'={+df, the history H’ might consist of either:

(1) A history H followed by elastic scattering through
an angle 6, giving |

u(H')=F@)u(d)/||F @)uH), (14)
P(H")= || F(6)u(H) 2P (H)nuds, (15)
where F(#) is the matrix
f@ 0
F(8)= 6
2=y ) (16)

and # is the number density of gas molecules, v is the
muonium velocity (assumed fixed), and f and f are
the M and M elastic scattering amplitudes.
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(ii) A history H followed by no decay or collisions,
( 2 ) except for the unavoidable coherent forward scattering.

This gives
w(H')= (1+Ad)u(H)/| 1+ Ad)u(H)|, (17)
P(H)=1—u(H)'Bu(H)dt, (18)
where
(21rinv OV if; A 6 )
P f( )"‘"’l 7 ”2“' ‘_’LE
0% 27191 (0)—iT A
e I —iB,— —
\. P i ) 2)
we+A 0
B=[ _ ]. (20)
0 we+N

Here Eo and E, are the M and M energies between
collisions, 2=m,v, and w. and &, are the total (elastic
plus inelastic) M and M collision rates. It follows from
the optical theorem that A+ A47=—B, so that

P = 1+ Addyu(H)| 1)
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Now at time ¢’ the statistical matrix is

p(t)=2m PH )u(H Yu(H')
= PH][ mdth(ﬁ)u(H)u(H)TFT(Q)dQ

+(1+Adz)u(ﬂ)u(ﬂ)’r(1+Ad5)’r}

(1)
— hodt f F(0)p(t)F1(0)d2 (2)

+(1+4d)p (1) (1+A4d)1,  (22)



and hence, finally,

dp/di=Ap+pdl+no f FO)FO)d2. | (23)

We have derived here four coupled linear differential
equations for the four components of p(¢). It might be
necessary to go through the straightforward but tedious
task of solving them if (as in an experiment with gated

counters) it were necessary to know the time depend-
ence of p(¢). We shall only solve for P(M).

It looks like the Lindblad “super-operator” term is coming here from the incoherent

elastic scattering of the oscillating system on the molecules of environment.
25



... and produces a decoherence effect on oscillation.

At all reasonable temperatures 1n a dilute inert gas,
wr will probably be small compared to A. It is known
experimentally® that a good fraction of the muonium
formed in argon at room temperature and 50 atm
lasts long enough for the u* to decay. (The same is
probably not true for M.) Hence w~\, so that

P(M)mtawzmn

where N =Aq/\ is (for large V) the mean of the number
of collisions suffered during a muon lifetime for M and
M. It makes no difference whether the M collisions are
elastic or inelastic, providing that an M breakup is
detectable through u~ decay or absorption. We may
estimate NV roughly (for N>1) as

Ne~anuR2/A~w (kR) Rn/m )\
~n(kR)/(3X10" cm™2), (39)

so at room temperature we need n<K3X 105 cm™3 to
avoid quenching of the M — M process. (In the

Probability

of oscillation
in vacuum.
Noted by
Kerbikov:

w = A might
be not the
caseforn - n
in gas.
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Scattering Integral in Feinberg & Weinberg evolution equation
dp/di=Ap+pAl+no f FOpFH0)de.  (23)

F(O) = (flge) fz?H))

Source of decoherence

v
| f1 |2P11 fif2 P12 )

fif2021 1f2 |2,022
/1

Will be zero if
one of f’s is zero

]F(H)pFT(H)dQ = 47‘[(
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Loss of COHERENCE is due to scattering integral

/

dp/di=Ap+pAt+nv § F(0)pF1(6)dq. (23)

Absorption and decay '
make here negative
contribution

In the vacuum the probability p,,

7 (6) f@) 0 coherently grows as ~t? [sin?(wt)].
( )"'" 0 f(ﬁ) Every incoherent elastic collision resets
the oscillating system’s phase to zero, but

the system continues its motion in the
environment contributing (with + sign) to
the evolution of p until it is being
“measured” at some later time.
Weinberg’s recommendation is to

make number of collisions < 1.

That is the reason why current muonium
oscillation search experiments are being

ncoherently reset performed in vacuum or with zero
—_— 1 1 -t pressure. 28
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Loss of coherence in n — n transformation?

* In ESS n-nbar experiment with L=200-m vacuum vessel and residual pressure is <102
atm or<10~3 Pa,vacuum gas H,, with total cross section 82 barns for thermal neutrons
(overestimate), the probability of elastic collision for the neutron component with gas
molecules is voL < 107° per flight. Elastic x-section for 7 component is not well known
but its x-section is not larger than for np.

* |fincoherent elastic scattering will occur to oscillating nn system in the beam, the
nn system will be scattered isotropically in s-wave and will be mostly removed from the
beam. So it will not contribute to the evolution of p matrix through scattering integral,
since the system after scattering can not be measured.

Conclusion: for ninn oscillation in gas with residual pressure
< 107> mbar the evolution equation has the form :

0 . _
Eﬁ = —iHp + ipH' + 0(0)

without scattering integral introducing decoherence.



Parameters used in calculation

Variable Value

Neutron Lifetime (PDG) | 880.3 s

n — n Oscillation Time 2.4 x 10° s

gas diatomic hydrogen

mass 2 amu

neutron-gas reduced mass % X 939.57 MeV

gas temperature 293 K

mean gas velocity from Maxwell-Boltzmann distribution
relative velocity Uy, — vy

length of tube 200 m

bi, 2 X —3.74 x 107" cm

O Hycoh 7.03 x 10724 cm?

O Hyincol 2 % 80.26 X 1072 cm? ni,
Taps (at 2200 m/s) 2 X 33.26 x 1072° cm?

by, 2% 0.94 x 107" cm

T fycoh 4.44 x 1072° cm? A,
Otflgincoh 07

Tann (at 0 m/s)

2 %X 44 x 10727 ¢m?




Neutron velocity spectrum for ESS beam
arriving to n-nbar target

Intensity (N/(s-m/s))
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Neutron TOF spectrum for ESS beam
In n-nbar layout

Intensity (N/(s-s))
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Requirement for nn residual gas pressure (assuming hydrogen) in ESS 200 m flight path

1 LA | lIlIIil] I ll||ll|| I IIIIIII| I III[||I| I L I UL

Residual vacuum pressure
better than 10~3 Pa

% should be sufficient for ESS
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