Holographic monopole catalysis of Baryon number

Deog Ki Hong

Pusan National University

Oct. 27, 2017 INT, Seattle

Based on JHEP08(2008)018 with K.M. Lee, C. Park, H.U. Yee +work under progress

Introduction Introduction

holographic QCD holgraphic QCD

holographic monopole catalysis of baryon decay holographic monopole catalysis of baryon decay

Conclusion and Outlook Conclusion and Outlook

Introduction

Anomaly and fermion number violation

 The fermion numbers are often not conserved due to ABJ anomaly, when the background fields are topologically nontrivial. ('t Hooft 1976)

$$\partial_{\mu}j_{5}^{\mu}=-rac{g^{2}}{16\pi^{2}}\mathrm{tr}\left(F_{\mu
u}\widetilde{F}^{\mu
u}
ight)$$

Introduction

Anomaly and fermion number violation

• In the EW gauge theory B + L is not conserved :

$$\Delta B = \Delta L = 2N_f \Delta N_{\rm CS}$$

with $N_{\rm CS} = \int {\rm d}^3 x \Omega_{\rm CS}(A)$. The amplitude is highly suppressed, ${\rm Amp} \sim e^{-8\pi^2/g^2}$.

- The rate is however enhanced at temperature higher than the EW phase transition temperature due to sphalerons. (Kuzmin+Rubakov+Shaposhnikov; Arnold+McLerran)
- EW baryogenesis via leptogenesis?

Introduction

Anomaly and fermion number violation

• In the EW gauge theory B + L is not conserved :

$$\Delta B = \Delta L = 2N_f \Delta N_{\rm CS}$$

with $N_{\rm CS} = \int {\rm d}^3 x \Omega_{\rm CS}(A)$. The amplitude is highly suppressed, ${\rm Amp} \sim e^{-8\pi^2/g^2}$.

- The rate is however enhanced at temperature higher than the EW phase transition temperature due to sphalerons. (Kuzmin+Rubakov+Shaposhnikov; Arnold+McLerran)
- EW baryogenesis via leptogenesis?

Introduction

Anomaly and fermion number violation

• In the EW gauge theory B + L is not conserved :

$$\Delta B = \Delta L = 2N_f \Delta N_{\rm CS}$$

with $N_{\rm CS} = \int {\rm d}^3 x \Omega_{\rm CS}(A)$. The amplitude is highly suppressed, ${\rm Amp} \sim e^{-8\pi^2/g^2}$.

- The rate is however enhanced at temperature higher than the EW phase transition temperature due to sphalerons. (Kuzmin+Rubakov+Shaposhnikov; Arnold+McLerran)
- EW baryogenesis via leptogenesis?

Introduction

chiral magnetic effects

 In medium the currents are spontaneously generated due to ABJ anomaly under the external magnetic fields (Fukushima+Kharzeev+Warringa '08; DKH '11):

$$J_V^{\alpha} = \delta^{\alpha i} \frac{q^2 B^i}{2\pi^2} \mu_A + \delta^{\alpha 0} q n$$
$$J_A^{\alpha} = \delta^{\alpha i} \frac{q^2 B^i}{2\pi^2} \mu + \delta^{\alpha 0} q n_A$$

<ロト < 部ト < 目ト < 目ト 目 のQで 5/20

Introduction

Monopole Catalysis of Baryon decay: Callan-Rubakov

 In V-A theory the baryon number is not conserved in the presence of magnetic monopoles. (Callan-Rubakov)

 $\operatorname{Monopole} + \rho \longrightarrow \operatorname{Monopole} + e^+$

- The rate is given by the QCD scale, so not suppressed.
- Non-suppression is easy to see in the skyrmion picture. (Callan-Witten)

Introduction

Monopole Catalysis of Baryon decay: Callan-Rubakov

 In V-A theory the baryon number is not conserved in the presence of magnetic monopoles. (Callan-Rubakov)

 $\text{Monopole} + p \longrightarrow \text{Monopole} + e^+$

- The rate is given by the QCD scale, so not suppressed.
- Non-suppression is easy to see in the skyrmion picture. (Callan-Witten)

Introduction

Monopole Catalysis of Baryon decay: Callan-Rubakov

 In V-A theory the baryon number is not conserved in the presence of magnetic monopoles. (Callan-Rubakov)

$$\text{Monopole} + p \longrightarrow \text{Monopole} + e^+$$

- The rate is given by the QCD scale, so not suppressed.
- Non-suppression is easy to see in the skyrmion picture. (Callan-Witten)

Introduction

Monopole Catalysis of Skyrmion decay: Callan-Witten

 In the Skyrme picture baryons are topological solitons, admitted by the chiral Lagrangian of pions,

 $U(x): \mathbb{R}^{(3,1)} \mapsto \mathcal{M} = \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R / \mathrm{SU}(2)_V.$

The baryon number current is identified as

$$B^{\mu} = \frac{1}{24\pi^2} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(U^{-1} \partial_{\nu} U U^{-1} \partial_{\alpha} U U^{-1} \partial_{\beta} U \right)$$

Introduction

Monopole Catalysis of Skyrmion decay: Callan-Witten

 In the Skyrme picture baryons are topological solitons, admitted by the chiral Lagrangian of pions,

$$U(x): \mathbb{R}^{(3,1)} \mapsto \mathcal{M} = \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R / \mathrm{SU}(2)_V.$$

The baryon number current is identified as

$$B^{\mu} = \frac{1}{24\pi^2} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(U^{-1} \partial_{\nu} U U^{-1} \partial_{\alpha} U U^{-1} \partial_{\beta} U \right)$$

Introduction

Monopole Catalysis of Skyrmion decay: Callan-Witten

Since the electromagnetic interaction acts on U by

$$U
ightarrow e^{iQ} U e^{-iQ} ~,~~ Q = \left(egin{array}{cc} rac{2}{3} & 0 \ 0 & -rac{1}{3} \end{array}
ight)$$

the gauge-invariant baryon current becomes

$$B^{\mu} = \frac{1}{24\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(U^{-1} \partial_{\nu} U U^{-1} \partial_{\alpha} U U^{-1} \partial_{\beta} U \right) \\ - \frac{1}{24\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \partial_{\nu} \left[3A_{\alpha}^{EM} \operatorname{Tr} \left(Q (U^{-1} \partial_{\beta} U + \partial_{\beta} U U^{-1}) \right) \right]$$

Introduction

Monopole Catalysis of Skyrmion decay: Callan-Witten

 Magnetic monopole unwinds the Skyrmion because of the angular momentum barrier and only the neutral pions pass through the core

$$U(t) = \exp\left[rac{2i}{f_{\pi}}\pi^0(t)\sigma^3
ight]$$

• Outside the core there are radial flux into the magnetic monopole, whose potential $A^{EM} = -\frac{i}{2}(1 - \cos\theta)d\phi$,

$$\frac{dB}{dt} = \int \mathrm{d}\vec{S} \cdot \vec{B} = \frac{1}{\pi f_{\pi}} (\partial_t \pi^0)$$

holgraphic QCD

- Holographic QCD is an attempt to describe QCD in terms of hadrons, the relevant degrees of freedom at low energy.
- In the large color and large 't Hooft coupling limit QCD is described by a 5D flavor gauge theory, hQCD.
- It gives a unified picture for all anomaly-related baryon number violation and furthermore it predicts a new process for the baryon number violation. (HLPY '08)
- We consider the Witten-Sakai-Sugimoto model, based on Type IIA string theory with D4 – D8 – D8 branes. But, it works for any hQCD models.

holgraphic QCD

- Holographic QCD is an attempt to describe QCD in terms of hadrons, the relevant degrees of freedom at low energy.
- In the large color and large 't Hooft coupling limit QCD is described by a 5D flavor gauge theory, hQCD.
- It gives a unified picture for all anomaly-related baryon number violation and furthermore it predicts a new process for the baryon number violation. (HLPY '08)
- We consider the Witten-Sakai-Sugimoto model, based on Type IIA string theory with D4 – D8 – D8 branes. But, it works for any hQCD models.

holgraphic QCD

- Holographic QCD is an attempt to describe QCD in terms of hadrons, the relevant degrees of freedom at low energy.
- In the large color and large 't Hooft coupling limit QCD is described by a 5D flavor gauge theory, hQCD.
- It gives a unified picture for all anomaly-related baryon number violation and furthermore it predicts a new process for the baryon number violation. (HLPY '08)
- We consider the Witten-Sakai-Sugimoto model, based on Type IIA string theory with D4 – D8 – D8 branes. But, it works for any hQCD models.

holgraphic QCD

- Holographic QCD is an attempt to describe QCD in terms of hadrons, the relevant degrees of freedom at low energy.
- In the large color and large 't Hooft coupling limit QCD is described by a 5D flavor gauge theory, hQCD.
- It gives a unified picture for all anomaly-related baryon number violation and furthermore it predicts a new process for the baryon number violation. (HLPY '08)
- We consider the Witten-Sakai-Sugimoto model, based on Type IIA string theory with D4 – D8 – D8 branes. But, it works for any hQCD models.

holgraphic QCD

Witten-Sakai-Sugimoto model

N_c stack of *D*4 branes over *R*³ × *S*¹ describes pure *SU*(*N_c*) YM. (Witten '98)

$$ds^{2} = \left(\frac{U}{R}\right)^{3/2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(U) d\tau^{2}) + \left(\frac{R}{U}\right)^{3/2} \left(\frac{dU^{2}}{f(U)} + U^{2} d\Omega_{4}^{2}\right)$$

with $R^{3} = \pi g_{s} N_{c} l_{s}^{3}$ and $f(U) = 1 - U_{KK}^{3} / U^{3}$

11/20

holgraphic QCD

Witten-Sakai-Sugimoto model

Adding flavors was done by Sakai-Sugimoto (2004).

 Spontaneous chiral symmetry breaking is geometrically realized:

 $SU(N_F)_L \times SU(N_F)_R \mapsto SU(N_F)_V$.

holgraphic QCD

Introduction and Review

• Effective action on D8 is a $U(N_F)$ gauge theory,

$$\begin{split} S_{D8} &= -\mu_8 \int \mathrm{d}^9 x \, e^{-\phi} \sqrt{-\det\left(g_{MN} + 2\pi\alpha' F_{MN}\right)} \\ &+ \mu_8 \int \sum C_{\rho+1} \wedge \operatorname{Tr} e^{2\pi\alpha' F} \,, \end{split}$$

The gauge fields contain pions and whole tower of vector mesons:

$$A_{\mu}(x,z) = \alpha_{\mu}(x)\psi_{0}(z) + \beta_{\mu}(x) + \sum_{n\geq 1} B_{\mu}^{(n)}\psi_{n}(z),$$

where with $\xi = \exp(i\pi(x)/f_{\pi})$

$$\alpha_{\mu} = \left\{ \xi^{\dagger}, \partial_{\mu} \xi \right\}, \quad \beta_{\mu} = \left[\xi^{\dagger}, \partial_{\mu} \xi \right].$$

13/20

holgraphic QCD

Baryons in holographic QCD

In 5D YM there is a topologically conserved current, d*J = 0 = DF,

$$J^{M} = \frac{1}{24\pi^{2}} \epsilon^{MNLPQ} \operatorname{tr} F_{NL} F_{PQ} \,.$$

One can define the baryon current

$$B^{\mu} = \frac{1}{8\pi^2} \int \mathrm{d}z \epsilon^{\mu\nu\rho\sigma} \mathrm{tr} F_{\nu\rho} F_{\sigma z} \,.$$

▶ In the gauge $A_z = 0$ one may write with $U = \exp(2i\pi/f_\pi)$

$$A_{\mu}(x,z) = U^{-1}\partial_{\mu}U\psi_{0}(z) + \sum_{n\geq 1}B_{\mu}^{(n)}\psi_{n}(z).$$

Then, the baryon current becomes the Skyrme current

$$B^{\mu} = \frac{1}{24\pi^{2}} \epsilon^{\mu\nu\rho\sigma} \mathrm{tr} U^{-1} \partial_{\nu} U U^{-1} \partial_{\rho} U U^{-1} \partial_{\sigma} U$$

14/20

holographic monopole catalysis of baryon decay

holographic monopole catalysis

The instanton number is also not conserved in the presence of monopole (cf. Skyrme number violation of Callan-Witten '84):

 $DF \neq 0 \longrightarrow d^* j_B \neq 0$.

▶ In SS model the external $U(1)_{em}$ background gives a BC,

 $A(+\infty) = A(-\infty) = QA^{EM}, \quad Q = \text{diag}(2/3, -1/3).$

holographic monopole catalysis of baryon decay

holographic monopole catalysis

The instanton number is also not conserved in the presence of monopole (cf. Skyrme number violation of Callan-Witten '84):

 $DF \neq 0 \longrightarrow d^* j_B \neq 0$.

• In SS model the external $U(1)_{\rm em}$ background gives a BC,

 $A(+\infty) = A(-\infty) = QA^{EM}, \quad Q = \operatorname{diag}(2/3, -1/3).$

Baryon number violation

In hQCD the baryon number current is given as

$$B^{\mu} = \int_{-\infty}^{+\infty} dz \, j^{\mu}_{B} = \frac{1}{8\pi^{2}} \int_{-\infty}^{+\infty} dz \, \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(F \wedge F\right)_{\nu\alpha\beta z}$$

- With the right b.c. it gives the correct (gauged) baryon number current.
- ▶ In a general background A_L and A_R with $\xi_{\pm}^{-1} = P \exp(-\int_0^{\pm \infty} A_z)$ and $\xi_{\pm}^{-1}\xi_{-} = U$ we write

 $A_{\mu}(x,z) = A_{L\mu}^{\xi_+}(x)\psi_+(z) + A_{R\mu}^{\xi_-}(x)\psi_-(z) + (\text{excited modes}),$

where

$$A_{L\mu}^{\xi_+} = \xi_+ A_{L\mu} \xi_+^{-1} + \xi_+ \partial_\mu \xi_+^{-1}, A_{R\mu}^{\xi_-} = \xi_- A_{R\mu} \xi_-^{-1} + \xi_- \partial_\mu \xi_-^{-1}.$$

holographic monopole catalysis of baryon decay

Baryon number violation

Then the baryon current becomes

$$\begin{split} B^{\mu} &= \frac{1}{24\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(U^{-1} \partial_{\nu} U U^{-1} \partial_{\alpha} U U^{-1} \partial_{\beta} U \right) \\ &- \frac{1}{8\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \partial_{\nu} \left(U^{-1} A_{L\alpha} \partial_{\beta} U + A_{R\alpha} U^{-1} \partial_{\beta} U - U^{-1} A_{L\alpha} U A_{R\beta} \right) \\ &- \frac{1}{8\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(\partial_{\nu} A_{L\alpha} A_{L\beta} + \frac{2}{3} A_{L\nu} A_{L\alpha} A_{L\beta} - (L \leftrightarrow R) \right) \,. \end{split}$$

We find a unified formula for the baryon number violation

$$\partial_{\mu}B^{\mu} = \frac{1}{32\pi^2} \left(\mathrm{Tr}F_L \tilde{F}_L - \mathrm{Tr}F_R \tilde{F}_R \right) + \frac{i\delta^{(3)}(\vec{x})}{2\pi} \int_{-\infty}^{+\infty} dz \, \mathrm{Tr}\left(QF_{tz}\right),$$

holographic monopole catalysis of baryon decay

Baryon number violation

- The first term is the famous baryon number violation in chiral gauge theories, found by 't Hooft.
- ► The second term gives

$$\partial_{\mu}B^{\mu} = -\frac{i\delta^{(3)}(\vec{x})}{2\pi} \operatorname{Tr}(QA_{t})\Big|_{-\infty}^{+\infty}$$
$$= -\frac{i\delta^{(3)}(\vec{x})}{2\pi} \left[\operatorname{Tr}(QU^{-1}\partial_{t}U) + \operatorname{Tr}(QU^{-1}A_{Lt}U) - \operatorname{Tr}(QA_{Rt})\right]$$

For the monopole catalysis of instanton-baryon decay, $U = \exp(2i\pi/f_{\pi})$, we have from the first one

$$\frac{dB}{dt} = \frac{1}{\pi f_{\pi}} (\partial_t \pi^0) \,.$$

holographic monopole catalysis of baryon decay

Baryon number violation

- The first term is the famous baryon number violation in chiral gauge theories, found by 't Hooft.
- The second term gives

$$\partial_{\mu}B^{\mu} = -\frac{i\delta^{(3)}(\vec{x})}{2\pi} \operatorname{Tr}(QA_{t})\Big|_{-\infty}^{+\infty}$$
$$= -\frac{i\delta^{(3)}(\vec{x})}{2\pi} \left[\operatorname{Tr}(QU^{-1}\partial_{t}U) + \operatorname{Tr}(QU^{-1}A_{Lt}U) - \operatorname{Tr}(QA_{Rt})\right]$$

For the monopole catalysis of instanton-baryon decay, $U = \exp(2i\pi/f_{\pi})$, we have from the first one

$$\frac{dB}{dt} = \frac{1}{\pi f_{\pi}} (\partial_t \pi^0) \,.$$

holographic monopole catalysis of baryon decay

Baryon number violation

- The first term is the famous baryon number violation in chiral gauge theories, found by 't Hooft.
- The second term gives

$$\partial_{\mu}B^{\mu} = -\frac{i\delta^{(3)}(\vec{x})}{2\pi} \operatorname{Tr}(QA_{t})\Big|_{-\infty}^{+\infty}$$
$$= -\frac{i\delta^{(3)}(\vec{x})}{2\pi} \left[\operatorname{Tr}(QU^{-1}\partial_{t}U) + \operatorname{Tr}(QU^{-1}A_{Lt}U) - \operatorname{Tr}(QA_{Rt})\right]$$

For the monopole catalysis of instanton-baryon decay, $U = \exp(2i\pi/f_{\pi})$, we have from the first one

$$\frac{dB}{dt} = \frac{1}{\pi f_{\pi}} (\partial_t \pi^0) \,.$$

holographic monopole catalysis of baryon decay

Baryon number violation

We found also that the nonzero axial chemical potential induces baryon number violation in the presence of magnetic monopole:

- In the early universe before the QCD confinement we do have fluctuations of topological charges.
- ► The average of the topological charges is zero but its root-mean-square is non-zero or µ₅ ≠ 0, which might give enough baryon asymmetry, assuming there is a magnetic monopole in our universe. (Work under progress.)

holographic monopole catalysis of baryon decay

Baryon number violation

We found also that the nonzero axial chemical potential induces baryon number violation in the presence of magnetic monopole:

- In the early universe before the QCD confinement we do have fluctuations of topological charges.
- The average of the topological charges is zero but its root-mean-square is non-zero or µ₅ ≠ 0, which might give enough baryon asymmetry, assuming there is a magnetic monopole in our universe. (Work under progress.)

holographic monopole catalysis of baryon decay

Baryon number violation

We found also that the nonzero axial chemical potential induces baryon number violation in the presence of magnetic monopole:

$$\frac{dB}{dt} = \frac{\mu_5}{6\pi}$$

- In the early universe before the QCD confinement we do have fluctuations of topological charges.
- ► The average of the topological charges is zero but its root-mean-square is non-zero or µ₅ ≠ 0, which might give enough baryon asymmetry, assuming there is a magnetic monopole in our universe. (Work under progress.)

Conclusion and Outlook

Conclusion and Outlook

• The baryons are realized as instanton solitons in hQCD.

- The baryon number violation due to anomaly is reproduced in holographic QCD.
- The monopole catalysis of baryon decay is easily seen in hQCD, as the violation of the Bianchi identity.
- The holographic QCD provides a unified picture of all known baryon number violation due to anomaly.
- It also gives a new mechanism to violate the baryon number, which might explain the baryon asymmetry of our universe. (Work under progress)

Conclusion and Outlook

- The baryons are realized as instanton solitons in hQCD.
- The baryon number violation due to anomaly is reproduced in holographic QCD.
- The monopole catalysis of baryon decay is easily seen in hQCD, as the violation of the Bianchi identity.
- The holographic QCD provides a unified picture of all known baryon number violation due to anomaly.
- It also gives a new mechanism to violate the baryon number, which might explain the baryon asymmetry of our universe. (Work under progress)

Conclusion and Outlook

- The baryons are realized as instanton solitons in hQCD.
- The baryon number violation due to anomaly is reproduced in holographic QCD.
- The monopole catalysis of baryon decay is easily seen in hQCD, as the violation of the Bianchi identity.
- The holographic QCD provides a unified picture of all known baryon number violation due to anomaly.
- It also gives a new mechanism to violate the baryon number, which might explain the baryon asymmetry of our universe. (Work under progress)

Conclusion and Outlook

- The baryons are realized as instanton solitons in hQCD.
- The baryon number violation due to anomaly is reproduced in holographic QCD.
- The monopole catalysis of baryon decay is easily seen in hQCD, as the violation of the Bianchi identity.
- The holographic QCD provides a unified picture of all known baryon number violation due to anomaly.
- It also gives a new mechanism to violate the baryon number, which might explain the baryon asymmetry of our universe. (Work under progress)

Conclusion and Outlook

- The baryons are realized as instanton solitons in hQCD.
- The baryon number violation due to anomaly is reproduced in holographic QCD.
- The monopole catalysis of baryon decay is easily seen in hQCD, as the violation of the Bianchi identity.
- The holographic QCD provides a unified picture of all known baryon number violation due to anomaly.
- It also gives a new mechanism to violate the baryon number, which might explain the baryon asymmetry of our universe. (Work under progress)