Baryon Number Violation in Leptoquark and Diquark Models

Bartosz Fornal

University of California, San Diego

Workshop on Neutron-Antineutron Oscillations University of Washington October 23, 2017 In collaboration with: **Nima Assad, Benjamin Grinstein**

Baryon number violation

Reasons to believe that baryon number is not a fundamental symmetry of Nature

- matter-antimatter asymmetry of the Universe
- > nonperturbative B violation in the Standard Model
- grand unification proton decay

Proton decay vs. model building

 $\Delta B = 1$ process

$$\mathcal{O}_6 \sim \frac{q \, q \, q \, l}{\Lambda^2}$$

> excluded up to the GUT scale $\Lambda \sim 10^{16}$ GeV

Two ways out :

Impose baryon number conservation
 Consider only those models which

have no tree-level proton decay

Scalar leptoquark and diquark models

operator	$SU(3) \times SU(2) \times U(1)$ rep. of X	В	L
XQQ, Xud	$\left(ar{6},1,-1/3 ight),\left(3,1,-1/3 ight)$	-2/3	0
XQQ	$\left(ar{6},3,-1/3 ight),\left(3,3,-1/3 ight)$	-2/3	0
Xdd	$(3,1,2/3), (\overline{6},1,2/3)$	-2/3	0
Xuu	$\left(ar{6},1,-4/3 ight),\left(3,1,-4/3 ight)$	-2/3	0
ΧQĪ	(3, 1, -1/3), (3, 3, -1/3)	1/3	1
Xūē	(3, 1, -1/3)	1/3	1
Xdē	(3, 1, -4/3)	1/3	1
$X\bar{Q}e, XL\bar{u}$	(3,2,7/6)	1/3	-1
XĪd	$\left(ar{3},2,-1/6 ight)$	-1/3	1

Arnold, BF, Wise, "Simplified models with baryon number violation but no proton decay", Phys. Rev. D 88, 035009 (2013), arXiv:1304.6119 [hep-ph]

Tree-level proton decay

Vector leptoquark and diquark models

Operator	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	p decay	
$\overline{Q}^c_L \gamma^\mu u_R V_\mu$	3	2	-5/6	tree-level	
	6	2	-5/6		
$\overline{Q}^c_L \gamma^\mu d_R V_\mu$	3	2	1/6	tree-level	
	6	2	1/6	—	
$\overline{Q}_L \gamma^\mu L_L V_\mu$	3	1,3	2/3	dim 5	
$\overline{Q}^c_L \gamma^\mu e_R V^*_\mu$	3	2	-5/6	tree-level	
$\overline{L}_{L}^{c}\gamma^{\mu}u_{R}V_{\mu}^{*}$	3	2	1/6	tree-level	
$\overline{L}^c_L \gamma^\mu d_R V^*_\mu$	3	2	-5/6	tree-level	
$\overline{u}_R \gamma^\mu e_R V_\mu$	3	1	5/3	dim 7	
$\overline{d}_R \gamma^\mu e_R V_\mu$	3	1	2/3	dim 5	

Assad, BF, Grinstein, "Baryon number and lepton universality violation in leptoquark and diquark models", arXiv:1708.06350 [hep-ph]

Viable leptoquark and diquark models

Field	$\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$ reps.
Scalar leptoquark	$(3,2)_{\frac{7}{6}}'$
Scalar diquark	$(3,1)_{\frac{2}{3}}, (6,1)_{-\frac{2}{3}}, (6,1)_{\frac{1}{3}}, (6,1)_{\frac{4}{3}}, (6,3)_{\frac{1}{3}}$
Vector leptoquark	$(3,1)'_{\frac{2}{3}}, (3,1)_{\frac{5}{3}}, (3,3)'_{\frac{2}{3}}$
Vector diquark	$(6,2)_{-\frac{1}{6}}, (6,2)_{\frac{5}{6}}$

Assad, BF, Grinstein, "Baryon number and lepton universality violation in leptoquark and diquark models", arXiv:1708.06350 [hep-ph]

Dimension five proton decay

$$\frac{1}{\Lambda} \, (\overline{Q}_L^c H^\dagger) \gamma^\mu d_R V_\mu$$

$$\tau_p \approx \left(2.5 \times 10^{32} \text{ years}\right) \left(\frac{M}{10^4 \text{ TeV}}\right)^4 \left(\frac{\Lambda}{M_{\text{Pl}}}\right)^2$$

Dimension five proton decay

$$\frac{1}{\Lambda} \, (\overline{Q}_L^c H^\dagger) \gamma^\mu d_R V_\mu$$

$$\tau_p \approx \left(2.5 \times 10^{32} \text{ years}\right) \left(\frac{M}{10^4 \text{ TeV}}\right)^4 \left(\frac{\Lambda}{M_{\text{Pl}}}\right)^2$$

U(1)_{B-L} would forbid those operators

Vector leptoquark model

Field	$SU(3)_c \times SU(2)_L \times U(1)_Y$ reps.
Scalar leptoquark	$(3,2)_{\frac{7}{6}}'$
Scalar diquark	$(3,1)_{\frac{2}{3}}, (6,1)_{-\frac{2}{3}}, (6,1)_{\frac{1}{3}}, (6,1)_{\frac{4}{3}}, (6,3)_{\frac{1}{3}}$
Vector leptoquark	$(3,1)'_{\frac{2}{3}}$ $(3,1)_{\frac{5}{3}}, (3,3)'_{\frac{2}{3}}$
Vector diquark	$(6,2)_{-\frac{1}{6}}, (6,2)_{\frac{5}{6}}$

Lepton universality violation

$$V = (3, 1)_{\frac{2}{3}}$$

One of three leptoquark models providing an explanation for the B decay anomalies

$$R_{K^{(*)}} = \frac{\Gamma(B \to K^{(*)} \mu \mu)}{\Gamma(B \to K^{(*)} e e)}$$

$$R_{D^{(*)}} = \frac{\Gamma(B \to D^{(*)} \tau \nu)}{\Gamma(B \to D^{(*)} l \nu)}$$

Pati-Salam unification

$$V = (3, 1)_{\frac{2}{3}}$$

Origin: gauge boson of the Pati-Salam group

$$\mathrm{SU}(4) \times \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R$$

Dimension five proton decay operators forbidden

$$(4,2,1) = (3,2)_{\frac{1}{6}} \oplus (1,2)_{-\frac{1}{2}}$$
$$(\bar{4},1,2) = (\bar{3},1)_{\frac{1}{3}} \oplus (\bar{3},1)_{-\frac{2}{3}} \oplus (1,1)_1 \oplus (1,1)_0$$

Lepton universality violation

$$V = (3,1)_{\frac{2}{3}}$$

M = 16 TeV consistent with B decay anomalies Assad, BF, Grinstein, arXiv:1708.06350 [hep-ph]

- Flavor matrices have to be tuned to avoid meson decay constraints
- Additional vector-like matter permits natural flavor parameters

Calibbi, Crivellin, Li, arXiv:1709.00692 [hep-ph]

Baryon number violation

 $\Delta B = 1$ processes:

$$\mathcal{O}_6 \sim \frac{q \, q \, q \, l}{\Lambda^2}$$

probe physics up to the GUT scale ~ 10¹⁶ GeV

 $\Delta B = 2$ processes:

$$\mathcal{O}_9 \sim rac{q \, q \, q \, q \, q \, q}{\Lambda^5}$$

➢ probe a lower energy scale ~ hundreds of TeV (not necessarily!) $A^5 ≥ (500 \text{ TeV})^5$

ΔB = 2 processes

Violating baryon number by two units:

- > sign of new physics!
- > closely related to physics behind neutrino masses if B - L is a fundamental symmetry
- probe physics in the TeV GUT region
- hope for baryogenesis

Models with $|\Delta B|=2$

1 SO(10) GUT scale seesaw with TeV scalars

[Babu, Mohapatra (2012)]

2 TeV scale seesaw with quark-lepton unification

[Mohapatra, Marshak (1980), Babu, Dev, Mohapatra (2009); Babu, Dev, Fortes, Mohapatra (2013)]

③ TeV scale extra dimensions

[Dvali, Gabadadze (2002); Nussinov, Shrock (2002); Winslow, Ng (2010)]

4 Supersymmetric and superstring models

[Zwirner (1983), Mohapatra, Valle (1986); Goity, Sher (1995)]

1 SM or MSSM with additional multiplets

[Ajaib, Gogoladze, Mimura, Shafi (2009); Gu, Sarkar (2011); Arnold, BF, Wise (2013), Herrmann (2014)]

Vector diquark model

Field	$\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$ reps.
Scalar leptoquark	$(3,2)_{\frac{7}{6}}'$
Scalar diquark	$(3,1)_{\frac{2}{3}}, (6,1)_{-\frac{2}{3}}, (6,1)_{\frac{1}{3}}, (6,1)_{\frac{4}{3}}, (6,3)_{\frac{1}{3}}$
Vector leptoquark	$(3,1)'_{\frac{2}{3}}, (3,1)_{\frac{5}{3}}, (3,3)'_{\frac{2}{3}}$
Vector diquark	$(6,2)_{-\frac{1}{6}}$ $(6,2)_{\frac{5}{6}}$

Vector diquark model

> Only one new vector representation

$$V_{\mu} = \begin{pmatrix} V_u \\ V_d \end{pmatrix}_{\mu}^{\alpha\beta} = (6,2)_{-\frac{1}{6}}$$

> Lagrangian

$$\mathcal{L}_{V} = -\frac{1}{4} (D_{[\mu} V_{\nu]})^{\dagger} D^{[\mu} V^{\nu]} + M^{2} V_{\mu}^{\dagger} V^{\mu}$$
$$- \left[\lambda_{ij} (\overline{Q}_{L}^{c})_{\alpha}^{i} \gamma^{\mu} (d_{R})_{\beta}^{j} (V^{\dagger})_{\mu}^{\alpha\beta} + \text{h.c.} \right]$$

LHC phenomenology

$$\mathcal{L}_{V} = -\frac{1}{4} (D_{[\mu} V_{\nu]})^{\dagger} D^{[\mu} V^{\nu]} + M^{2} V_{\mu}^{\dagger} V^{\mu} - \left[\lambda_{ij} \left(\overline{Q}_{L}^{c} \right)_{\alpha}^{i} \gamma^{\mu} (d_{R})_{\beta}^{j} (V^{\dagger})_{\mu}^{\alpha\beta} + \text{h.c.} \right]$$

Dijet and four-jet searches:

$$M_{\lambda \approx 1} \gtrsim 8 \text{ TeV}$$

$$M_{\lambda \ll 1} \gtrsim 2.5 \text{ TeV}$$

$$\mathcal{O}_2 = \frac{c_2}{\Lambda} \left[\partial_\mu (V^\mu)^{\alpha \alpha'} \epsilon V_\nu^{\beta \beta'} \right] \left[(V^\nu)^{\delta \delta'} \epsilon H \right] \epsilon_{\alpha \beta \delta} \epsilon_{\alpha' \beta' \delta'}$$

$$\mathcal{O}_1 = \frac{c_1}{\Lambda} \, V^{\alpha \alpha'}_{\mu} \epsilon \, V^{\beta \beta'}_{\nu} (\bar{u}^c_R)^{\delta} \sigma^{\mu \nu} d^{\delta'}_R \, \epsilon_{\alpha \beta \delta} \, \epsilon_{\alpha' \beta' \delta'}$$

Effective Hamiltonian

$$\begin{aligned} \mathcal{H}_{\text{eff}} &\approx -\frac{\lambda_{11}^2}{M^4 \Lambda} (\overline{d}_L^c)^{\alpha} \gamma_{\mu} d_R^{\alpha'} (\overline{u}_L^c)^{\beta} \gamma_{\nu} d_R^{\beta'} (\overline{u}_L^c)^{\delta} \sigma^{\mu\nu} d_R^{\delta'} \\ &\times \left(\epsilon_{\alpha\beta\delta} \, \epsilon_{\alpha'\beta'\delta'} + \epsilon_{\alpha'\beta\delta} \, \epsilon_{\alpha\beta'\delta'} + \epsilon_{\alpha\beta'\delta} \, \epsilon_{\alpha'\beta\delta'} + \epsilon_{\alpha\beta\delta'} \, \epsilon_{\alpha'\beta\delta'} + \epsilon_{\alpha\beta\delta'} \, \epsilon_{\alpha'\beta'} \right) \\ &+ \text{h.c.} \end{aligned}$$

> Transition matrix element

$$\left|\langle \bar{n}|\mathcal{H}_{\text{eff}}|n\rangle\right| \approx \frac{10^{-4} \left|\lambda_{11}^2\right|}{M^4 \Lambda} \text{ GeV}^6$$

Experimental limit on the diquark mass

$$M\gtrsim 2.5\;{\rm TeV}\left(\frac{10^8\;{\rm TeV}}{\Lambda}\right)^{1/4}$$

 \succ Current and future sensitivity assuming $\Lambda \approx M$

$$M \gtrsim 90 \text{ TeV} \longrightarrow M \approx 175 \text{ TeV}$$

Conclusions

- Only several leptoquark and diquark models are free from tree-level proton decay
- Dimension five proton decay is a problem for low-scale leptoquark models and requires a larger symmetry at higher energies

Neutron-antineutron oscillations can be mediated by a single vector diquark

Thank you!

-

10.00

TITI

Ser. Co

10 11 12 12 1

Lind Lind

KALL KAL

star hier to

Ann I

NAMES .

8 8 8

ALL PROPERTY.

THE IS NOT

Laft 11

111

1.6

ini, ini, ini

11111

1111

H.

18 1310