Plan to search for nnbar at WWR-M reactor

A. Fomin

A. Serebrov, O. Zherebtsov, M. Chaikovskii, A. Murashkin, E. Leonova, O. Fedorova, V. Ivochkin, V. Lyamkin, D. Prudnikov, A. Chechkin

PNPI, Gatchina, Russia

INT Workshop INT-17-69W Neutron-Antineutron Oscillations: Appearance, Disappearance, and Baryogenesis October 23 - 27, 2017

NNbar via UCN

N·t² – discovery potential

Storage trap: height 2.5 m, $v_{boundary}$ = 6.8 m/s, diffusion 90 %, abs. in walls 3·10⁻⁵

Progress of UCN sources

Principle of a source

UCNs are generated in helium from cold neutrons of 9 Å wavelength (12 K energy). It is correspond with phonon energy: cold neutron produces phonon, practically stops and becomes an ultracold one. UCN can "live" in superfluid helium for tens or hundreds of seconds until a phonon be captured.

Cold neutrons (9 Å) penetrate through the wall of a trap, but ultracold neutrons (500 Å) are reflected, that is why UCN can be accumulated up to the density defined by the time of storage in the trap filled with superfluid helium.

MCNP neutron flux calculation results and heat generation in thermal column of WWR-M reactor at 15 MW

Project of UCN source at reactor WWR-M (PNPI, Gatchina)

UCN source inside the thermal column of the WWR-M reactor

7

MC model of the source

(1) source chamber; (2) neutron guide; (3) UCN trap; (4) membrane in front of the inlet to the UCN trap;(5) pipe for filling the chamber; (6) pipeline for evacuation of the chamber (UCN gravitational shutter)

UCN density

Production of the source 10⁸ UCN/s.

What is the probability for UCÑ to be reflected?

We can consider two cases:

2. $\tilde{\mathbf{R}} = \tilde{\mathbf{R}} (\eta = 0.2) \approx 0.8$

(optimistic case)

 $U_0 - iW$ for n _____ $\tilde{U}_0 - i\tilde{W}$ for \tilde{n} - - -

Reflection coefficient for UCÑ

12

UCN number in the trap for different storage trap radius

UCN density for different storage trap radius

Storage trap: height 2.5 m, $v_{boundary}$ = 6.8 m/s, diffusion 90 %, abs. in walls 3.10⁻⁵

UCN time of flight for different storage trap radius

Storage trap: height 2.5 m, $v_{boundary}$ = 6.8 m/s, diffusion 90 %, abs. in walls 3.10⁻⁵

$N \cdot t^2$ for different storage trap radius

Storage trap: height 2.5 m, $v_{boundary}$ = 6.8 m/s, diffusion 90 %, abs. in walls 3.10⁻⁵

Oscillation period

$$\tau_{n\tilde{n}} = \sqrt{\frac{(N \cdot t^2) \cdot T \cdot \varepsilon}{\tilde{N}}}$$

 $T \sim 3$ years

 $\varepsilon = 0.9$

 $\tilde{N} = 0$ (≤ 2.3 at 90% CL)

 $\tau_{n\tilde{n}} \ge (1 \div 2) \cdot 10^9$ s (90% CL)

UCN facilities at reactor WWR-M

$N \cdot t^2$ for different storage trap height

Time of flight distribution

Big gravitational trap for neutron lifetime measurement

GEANT4 simulation

GEANT4 simulation

Design of the setup

Design of the setup

Magnetic shielding

```
Residual magnetic field: B < 1 nT is needed
External magnetic field of Earth: B \sim 10^4 nT
Required shielding factor: S \sim 10^4
```

It is planned to use μ -metal from the manufacturer Vakuumschmelze (Gamburg) with a thickness of 1.5 mm Magnetic properties of this metal after thermal processing: $\mu_{in} = 50000$ (initial magnetic permeability); $\mu_{max} = 250000$ (maximum magnetic permeability); $B_{sat} = 0.8 T$ (saturation induction).

Axial magnetic shielding

Numerical calculation of the static axial shielding factor

Static shielding factor for μ-metal after demagnetization procedure. The soft "Radia" (ESRF Grenoble) was used for numerical calculation.

Analytical calculation of the static and dynamic axial shielding factor

 $S_A = 1 + 4 \left(\frac{[\ln(2p)-1]}{p^2} \right) S_T$ - expression for computing a single-layer screen. $S_T = \frac{\mu d}{D}$ - transverse shielding factor a single-layer screen. $p = \frac{L}{D} > 1$ - the ratio of the length/diameter of the screen. $\mu_{in} = 50000$ - for calculation dynamic shielding factor; $\mu_{eff} = 2 \times 10^6$ - for calculation static shielding factor (after demagnetization μ -metal).

 $S^{A} = 1 + S_{1}^{A} + S_{2}^{A} + S_{1}^{A}S_{2}^{A}(1 - {L_{1}}/{L_{2}})$ – expression for computing a two-layer screen S_{i}^{A} – shielding factor for *i* shell; $2 < {L/_{D}} < 10$ – the ratio of the length/diameter of the screen

the results are presented in the table

PNPI (project)									
1 shell shield			2 shell shield ($\Delta \mathbf{R} = \Delta \mathbf{L} = 100 \ \mathbf{mm}$)						
dynamic	static	Active compensation rate	dynamic	static	Active compensation rate				
~16	~600	~300	~45	~14200	~100				

Analytical calculation of the static and dynamic transverse shielding factor

 $S^{T} = 1 + S_{1}^{T} + S_{2}^{T} + S_{1}^{T}S_{2}^{T} \left(1 - \frac{R_{1}^{2}}{R_{2}^{2}}\right) - expression for computing a two-layer screen.$ $S_{i}^{T} = (\mu_{i}d_{i})/D_{i} - transverse shielding factor for i layer.$

To ensure good shielding (B < 1 nT), active compensation the external field is required.

 $Active \ compensation \ rate = \frac{External \ field}{Residual \ field}$

the results are presented in the table

PNPI (project)									
1 shell shield			2 shell shield ($\Delta \mathbf{R} = \Delta \mathbf{L} = 100 \text{ mm}$)						
dynamic	static	Active compensation rate	dynamic	static	Active compensation rate				
~30	~1100	~150	~150	~150000	~20				

The final configuration of our magnetic shield

thickness of $\mu\text{-metal}\,$ - 1.5 mm

Magnetic shielding of multi-chamber EDM spectrometer

Magnetic shielding

Magnetic shielding

Magnetic shielding assembly

Magnetic shielding assembly

Vacuum chamber

UCN trap

Veto system

Progress of UCN source at reactor WWR-M

Project leader: A. Serebrov

Cryogenic complex at WWR-M reactor

Hall of the cryogenic equipment

Vacuum equipment

Cryostat

Helium liquefier and refrigerator

Compressors

Receivers, cryogenic building 40

The full-scale technological model of UCN source with superfluid helium is mounted

Recent experiment on full-scale model

Vacuum module manufacture

UCN source design / manufacture

Will be ready till December 2018

UCN source design / manufacture

WWR-M reactor thermal column

Thermal column measurements

3D scan was done from 7 points without contacting radioactive thermal column

Design of the setup

Size matters

ILL

ESS

WWR-M

Conclusion

- Designed storage trap for NNbar oscillation experiment at reactor WWR-M: horizontal cylinder with diameter 2 m, length 4 m.
- 2. Increase of the experiment sensitivity is about $10 \div 40$ times to ILL level.
- **3**. Oscillation period for 3 years:

 $\tau_{n\tilde{n}} \ge (0.7 \div 1.4) \cdot 10^9$ s (90% CL)

The work is supported by the Russian Foundation for Basic Research, grant no.16-02-00778-a.