BNV and LNV in MSSM

Mu-Chun Chen, University of California, Irvine

Based on Collaborations with

Maximilian Fallbacher, Michael Ratz, Christian Staudt, Volodymyr Takhistov, Andreas Trautner, Patrick Vaudrevange

INT Workshop on Neutron-Antineutron Oscillations: Appearance, Disappearance and Baryogenesis, Seattle, Oct 23-27, 2017

Baryon Number in the SM

- Standard Model Lagrangian:
 - accidental symmetries
 - B: no p-decay, no n-nbar oscillation
 - L, L_e, L_µ, L_τ: no nu-oscillation, no cLFV $SU(2)_L^{(2)}$
- Baryon Number violated at quantum $Ie_{VB} : + L$
 - non-perturbative effects associated with $SU(2)_{L}$
 - $\Delta B = \Delta L = 3$
 - $\Delta(B-L) = 0$

Q₃

 Q_1

L= -= + + AV

Expectation for Baryon Number Violation

- B and L cannot be exact global symmetries
 - all global symmetries violated by quantum gravity
- B or L symmetries are not exact gauge symmetries
 - unless gauge coupling g < 10⁻²⁶ e

B and L conservation not sacred, violated by new particles and fields

Lee and Yang (1955)

Big Hint of Baryon Number Violation

CMB anisotropy

- Big Bang Nucleosynthesis
 - primordial deuterium abundance
 - \iff agree with WMAP
 - ⁴He & ⁷Li
 ⇔ discrepancies

• WMAP + Deuterium Abundance

Cosmological matter-antimatter asymmetry

$$\frac{n_B}{n_\gamma} \equiv \eta_B = (6.1 \pm 0.3) \times 10^{-10}$$

Three Sakharov Conditions

Early Universe

html

Page 2 of 3

- Baryon number can be generated dynamically, if
 - violation of baryon number
 - violation of Charge-Conjugation (C) and Charge Parity (CP)
 - departure from thermal equilibrium

Baryon Number beyond the SM

Weinberg (1979)

SM as low energy effective theory:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\mathcal{O}_{5D}}{M} + \frac{\mathcal{O}_{6D}}{M^2} + \dots \longrightarrow \begin{array}{c} \mathbf{new physics} \\ \mathbf{effects} \end{array}$$

• EFT with quarks, leptons, and gauge fields

Baryon Number beyond the SM

Weinberg (1979)

SM as low energy effective theory:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\mathcal{O}_{5D}}{M} + \frac{\mathcal{O}_{6D}}{M^2} + \dots \longrightarrow \begin{array}{c} \mathbf{new physics} \\ \mathbf{effects} \end{array}$$

• EFT with quarks, leptons, gauge fields and the Higgs:

Unique window into high scale physics

DINV ANU LINV ANGAUY AL ICHUMMANZANIC ICVCI

Gauge invariant superpotential terms up to order 4

$$\mathcal{W} = \mu H_d H_u + \kappa_i L_i H_u$$

+ $Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j$
+ $\lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$
+ $\kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell$

Constraints from neutrino masses

Gauge invariant superpotential terms up to order 4

$$\mathcal{W} = \mu H_d H_u + \kappa_i L_i H_u$$

$$+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j$$

$$+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$$

$$+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell$$

- Problematic terms
 - \bigcirc $\mu/B\mu$ problem(s)

Why does μ know about the electroweak scale?

Gauge invariant superpotential terms up to order 4

$$\begin{aligned} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell \end{aligned}$$
Problematic terms
$$\kappa_{1121}^{(1)} \stackrel{!}{\lesssim} \frac{10^{-8}}{M_P}$$

Output dimension four and five proton decay operators

B

$$\mathcal{W} = \mu H_d H_u + \kappa_i L_i H_u$$

$$+ Y_e^{ij} L_i H_d \overline{E_j} + Y_d^{ij} Q_i H_d \overline{D_j} + Y_u^{ij} Q_i H_u \overline{U_j}$$

$$+ \lambda_{ijk} L_i L_j \overline{E_k} + \lambda_{ijk} L_i Q_j \overline{D_k} + \lambda_{ijk}^{\prime\prime} \overline{U_i} \overline{D_j} \overline{D_k}$$

$$+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \lambda_{ik\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U_i} \overline{U_j} \overline{D_k} \overline{E_\ell}$$

$$need to be strongly suppressed$$

Farrar, Fayet (1978); Dimopoulos, Raby, Wilczek (1981)

$$\mathcal{W} = \mu H_d H_u + \kappa_i L_i H_u$$

$$+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j$$

$$+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \lambda_{ijk}^{\prime\prime} \overline{U}_i \overline{D}_j \overline{D}_k$$

$$+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell$$

$$forbidden by matter parity$$

Ibanez, Ross (1992)

$$\begin{aligned} \mathscr{W} &= \mu H_d H_u + \kappa_i L_i H_u \\ &+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j \\ &+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k \\ &+ \kappa_{ij}^{(0)} H_u L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell \end{aligned}$$
forbidden by baryon triality

Babu, Gogoladze, Wang (2002); Dreiner, Luhn, Thormeier (2006)

$$\mathcal{W} = \mu H_d H_u + \kappa_i L_i H_u$$

$$+ Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j$$

$$+ \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \lambda_{ijk}^{\prime\prime} \overline{U}_i \overline{D}_j \overline{D}_k$$

$$+ \kappa_{ij}^{(0)} H_u L_j + \kappa_{ijk}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell$$

$$forbidden by proton hexality$$

Proton hexality = matter parity + baryon triality

Proton hexality P_6 = matter parity $\mathbb{Z}_2^{\mathcal{M}} \times$ baryon triality B_3

- Appealing features
 - Iorbids dimension four and five proton decay operators
 - \odot allows Yukawa couplings & Weinberg operator $\kappa_{ii}^{(0)} H_u L_i H_u L_j$
 - unique anomaly-free symmetry with the above features
- However:
 - in ot consistent with unification for matter (i.e. inconsistent with universal discrete charges for all matter fields)

- 🙃 not consistent with (grand) unification for matter
- \bigcirc does not address μ problem

$$\mathcal{W} = \mu H_d H_u + \kappa_i L_i H_u + Y_e^{ij} L_i H_d \overline{E}_j + Y_d^{ij} Q_i H_d \overline{D}_j + Y_u^{ij} Q_i H_u \overline{U}_j + \lambda_{ij} L_i L_j \overline{E}_k + \lambda_{ijk}' L_i Q_j \overline{D}_k + \lambda_{ijk}'' \overline{U}_i \overline{D}_j \overline{D}_k + \kappa_{ij}^{(0)} H_k L_i H_u L_j + \kappa_{ijk\ell}^{(1)} Q_i Q_j Q_k L_\ell + \kappa_{ijk\ell}^{(2)} \overline{U}_i \overline{U}_j \overline{D}_k \overline{E}_\ell + \dots$$

needs to be suppressed as well...

Dirac Neutrino Mass and the μ Term

• Anomaly-free, discrete R-symmetries in MSSM:

M.-C. C., Ratz, Staudt, Vaudrevange (2012)

▶ absence of perturbative mu term ⇒ constraints on R charges of Hu, Hd
 SUSY breaking → mu term ~ TeV automatically arise

 $\mu \sim \langle \mathscr{W} \rangle / M_{\rm P}^2 \sim m_{3/2}$

▶ absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons
 SUSY breaking → realistic Dirac neutrino mass <u>automatically</u> arise

$$Y_{\nu} \sim \frac{m_{3/2}}{M_{\rm P}} \sim \frac{\mu}{M_{\rm P}}$$

 solutions automatically forbid dim-4 proton decay, automatically suppress dim-5 proton decay in superpotential

Dirac Neutrino Mass and the µ Term

- Search Abelian discrete R symmetries, \mathbb{Z}_M^R that satisfy
 - anomaly freedom (a la Green-Schwarz)
 - forbidding mu term perturbatively
 - consistent with SU(5)
 - allowing usual Yukawa couplings
 - Weinberg operators forbidden perturbatively
 - an example: \mathbb{Z}_8^R symmetry
 - after SUSY breaking: $\mathscr{W}_{\text{eff}} \sim m_{3/2} H_u H_d + \frac{m_{3/2}}{M_P} L H_u \bar{\nu} + \frac{m_{3/2}}{M_P^2} Q Q Q L$
 - $\Delta L = 2$ operators forbidden \Rightarrow no neutrinoless double beta decay
 - \rightarrow **AL** = 4 operators allowed \Rightarrow new LNV processes M.-C. C., Ratz, Staudt, Vaudrevange (2012)
- A simultaneous solution possible with discrete generation dependent R symmetries (Abelian or non-Abelian!) M.-C.C., M. Ratz, A. Trautner (2013)

M.-C. C., Ratz, Staudt, Vaudrevange (2012)

classes of models found

- Classifications of \mathbb{Z}_{M}^{R} symmetries compatible with MSSM models with RPV operators (BNV, LNV) Dreiner, Hannusek, Luhn (2012)
 - allowing BNV, LNV at dim-3, 4, 5; mu term
 - allowing GS anomaly cancellation
 - compatibility with GUT
 - only for $q_{\theta} = 1$ with all R charges being integers

• Classifications of \mathbb{Z}_{M}^{R} symmetries compatible with MSSM models with RPV operators (BNV, LNV) Dreiner, Hannusek, Luhn (2012)

- allowing BNV, LNV at dim-3, 4, 5; mu term
- allowing GS anomaly cancellation
- compatibility with GUT
- only for $q_{\theta} = 1$ with all R charges being integers
- Complete Classifications

M.-C. C, Ratz, Takhistov (2014)

- with $q_{\theta} > 1$ with all R charges being integers
- allowing for non-universal GS cancellation of discrete anomalies

Anomaly Cancellation

• For a $U(1)_R$ symmetry:

$$A_{3} = \frac{1}{2} \sum_{f} \left[2q_{Q}^{f} + q_{\overline{U}}^{f} + q_{\overline{D}}^{f} - 4q_{\theta} \right] + 3q_{\theta}$$

$$= \frac{3}{2} \left[2q_{Q} + q_{\overline{U}} + q_{\overline{D}} \right] - 3q_{\theta} , \qquad (2.20a)$$

$$A_{2} = \frac{1}{2} \left[q_{H_{u}} + q_{H_{d}} - 2q_{\theta} + \sum_{f} \left(3q_{Q}^{f} + q_{L}^{f} - 4q_{\theta} \right) \right] + 2q_{\theta}$$

$$= \frac{1}{2} \left[q_{H_{u}} + q_{H_{d}} + 3 \left(3q_{Q} + q_{L} \right) \right] - 5q_{\theta} , \qquad (2.20b)$$

$$A_{1} = \frac{1}{2} \left[q_{H_{u}} + q_{H_{d}} - 2q_{\theta} + \frac{1}{3} \sum_{i} \left(q_{Q}^{f} + 8q_{\overline{U}}^{f} + 2q_{\overline{D}}^{f} + 3q_{L}^{f} + 6q_{\overline{E}}^{f} - 20q_{\theta} \right) \right] Y_{L}^{2}$$

$$= \frac{3}{10} \left[q_{H_{u}} + q_{H_{d}} + q_{Q} + 8q_{\overline{U}} + 2q_{\overline{D}} + 3q_{L} + 6q_{\overline{E}} - 22q_{\theta} \right] . \qquad (2.20c)$$

Cancelled by GS axion with coupling to field strengths

Renormalizable Superpotential

$$\mathcal{W}_{\text{ren}} = \mu H_u H_d + Y_{fg}^u Q_f \overline{U}_g H_u + Y_{fg}^d Q_f \overline{D}_g H_d + Y_{fg}^e L_f \overline{E}_g H_d + \kappa^f L_f H_u + \lambda^{fgh} L_f L_g \overline{E}_h + \lambda'^{fgh} L_f Q_g \overline{D}_h + \lambda''^{fgh} \overline{U}_f \overline{D}_g \overline{D}_h$$

Non-renormalizable BNV and LNV operators

$$\begin{aligned} \mathcal{O}_{1} &= \left[Q \, Q \, Q \, L \right]_{F} , & \mathcal{O}_{2} &= \left[\overline{U} \, \overline{U} \, \overline{D} \, \overline{E} \right]_{F} , \\ \mathcal{O}_{3} &= \left[Q \, Q \, Q \, H_{d} \right]_{F} , & \mathcal{O}_{4} &= \left[Q \, \overline{U} \, \overline{E} \, H_{d} \right]_{F} , \\ \mathcal{O}_{5} &= \left[L \, H_{u} \, L \, H_{u} \right]_{F} , & \mathcal{O}_{6} &= \left[L \, H_{u} \, H_{d} \, H_{u} \right]_{F} \\ \mathcal{O}_{7} &= \left[\overline{U} \, \overline{D}^{\dagger} \, \overline{E} \right]_{D} , & \mathcal{O}_{8} &= \left[H_{u}^{\dagger} \, H_{d} \, \overline{E} \right]_{D} , \\ \mathcal{O}_{9} &= \left[Q \, \overline{U} \, L^{\dagger} \right]_{D} , & \mathcal{O}_{10} &= \left[Q \, Q \, \overline{D}^{\dagger} \right]_{D} , \end{aligned}$$

,

To satisfy proton decay constrains

- (i) with renormalizable B violation:
 - demand existence of $U^c D^c D^c$,
 - forbid LLE^c (thus automatically LQD^c),
 - forbid $H_d H_u$,
 - forbid LH_u (thus automatically $\mathcal{O}_4, \mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_9$),
 - forbid $\mathcal{O}_1 = QQQL;$
- (ii) with renormalizable L violation:
 - demand existence of LLE^c (thus automatically LQD^c),
 - forbid $U^c D^c D^c$,
 - forbid H_dH_u (thus automatically LH_u , \mathcal{O}_4 , \mathcal{O}_7 , \mathcal{O}_8 , \mathcal{O}_9),
 - forbid $\mathcal{O}_1 = QQQL$ (thus automatically \mathcal{O}_3 and \mathcal{O}_{10}).

Not compatible with SU(5): $U^{c}D^{c} \Leftrightarrow LLE^{c}$

- Pati-Salam Compatible $q_Q = q_L$, $q_{\overline{U}} = q_{\overline{D}} = q_{\overline{E}}$, and $q_{H_u} = q_{H_d}$,
- Allowing Yukawa couplings
- Allowing U^cD^cD^c and forbidding LH_u

 $-3q_{H_u} - 3q_L + 4q_\theta = 0 \mod N \quad (\overline{U}\,\overline{D}\,\overline{D}) ,$ $q_{H_u} + q_L - 2q_\theta \neq 0 \mod N \quad (L\,H_u) .$

$$2q_{H_u} + 2q_L - 2q_\theta \neq 0 \mod N$$

 $\left.\begin{array}{c} \operatorname{PS \ compatibility}\\ \operatorname{allow} \overline{U} \,\overline{D} \,\overline{D}\\ \operatorname{forbid} L \,H_u \end{array}\right\} \curvearrowright \operatorname{Weinberg \ operator \ is \ forbidden.}$

PS compatible RPV models with BNV prefer Dirac neutrinos

- Complete Classifications of discrete symmetries
 - non-universal GS anomaly cancellation
 - absence of mu term in renormalizable superpotential
 - with
 - R parity conserving
 - renormalizable BNV
 - renormalizable LNV
 - no-perturbative BNV and LNV

Solutions w/ Universal Anomaly Cancellation

BNV at renormalizable superpotential

• universal anomaly cancellation up to order 12

	symmetry								residual symmetry									
N	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	θ	N'	Q	U	D	L	E	H_u	H_d	W	GS
5	2	2	0	2	0	3	0	1									_	\checkmark
6	1	2	5	1	5	3	0	0	6	1	2	5	1	5	3	0	—	\checkmark
6	1	0	1	3	5	1	0	1	2	1	0	1	1	1	1	0	\checkmark	\checkmark
6	1	4	3	3	1	5	0	2	2	1	0	1	1	1	1	0	\checkmark	\checkmark
8	4	6	6	4	6	0	0	1									—	\checkmark
9	1	2	8	1	8	6	0	0	9	1	2	8	1	8	6	0	—	—
9	1	5	5	1	5	0	0	3	3	1	2	2	1	2	0	0	—	—
10	2	2	0	2	0	8	0	1									—	\checkmark
10	7	2	5	7	5	3	0	1	2	1	0	1	1	1	1	0	—	\checkmark
12	2	2	0	2	0	10	0	1									—	—
12	0	10	2	4	10	4	0	1									_	\checkmark
12	0	10	2	8	6	4	0	1									_	\checkmark
12	2	2	0	10	4	10	0	1									—	—
12	0	6	6	4	2	0	0	3	3	0	0	0	2	1	0	0	—	\checkmark

Example: Z₈^R Symmetry

- BNV at renormalizable super potential
- U^cD^cD^c allowed at renormalizable superpotential

Field	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	θ
$\widetilde{\mathbb{Z}}_8^R$	4	6	6	4	6	0	0	1

- Compatible with Pati-Salam partial unification
- no neutron-antineutron oscillation

Solutions w/ Non-universal Anomaly Cancellation

Example: Z₃^R Symmetry

BNV and LNV forbidden at renormalizable superpotential

field	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	θ
\mathbb{Z}_3^R	1	1	1	1	1	0	0	1

- Non-universal anomaly cancellation
- BNV and LNV generated after SUSY breaking

$$\mathscr{W}_{\text{eff}} \supset \frac{m_{3/2}}{M_{\text{P}}} L L \overline{E} + \frac{m_{3/2}}{M_{\text{P}}} Q L \overline{D} + \frac{m_{3/2}}{M_{\text{P}}} \overline{U} \overline{D} \overline{D}$$

neutron-antineutron oscillations allowed, and can be enhanced if $M_p \rightarrow M < M_p$

Example: Z₃^R Symmetry

BNV and LNV forbidden at renormalizable superpotential

field	Q	\overline{U}	\overline{D}	L	\overline{E}	H_u	H_d	θ
\mathbb{Z}_3^R	1	1	1	1	1	0	0	1

- Non-universal anomaly cancellation
- BNV and LNV generated after SUSY breaking

$$\mathscr{W}_{\text{eff}} \supset \frac{m_{3/2}}{M_{\text{P}}} L L \overline{E} + \frac{m_{3/2}}{M_{\text{P}}} Q L \overline{D} + \frac{m_{3/2}}{M_{\text{P}}} \overline{U} \overline{D} \overline{D}$$

 LH_u is suppressed by $\ m_{3/2}^2/M_P$, but the μ term is of order $\ m_{3/2}$

counter example: allowing LNV \Rightarrow mu ~ kappa ~ m_{3/2} in SO(10)

Acharya, Kane, Kumar, Lu, Zheng (2014)