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Baryon Number in the SM

• Standard Model Lagrangian:

• accidental symmetries


• B: no p-decay, no n-nbar oscillation

• L, Le, Lμ, Lτ: no nu-oscillation, no cLFV


• Baryon Number violated at quantum level:

• non-perturbative effects associated with SU(2)L 


• ΔB = ΔL = 3 

• Δ(B-L) = 0


• at T=0: effects negligible
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Violation of B in the Standard Model? 

• Baryon number is a symmetry of the classical action. 

• It is broken by quantum tunneling transitions between 
different              vacua. 

• Each transition violates              by 3 units:
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Expectation for Baryon Number Violation

• B and L cannot be exact global symmetries

• all global symmetries violated by quantum gravity


• B or L symmetries are not exact gauge symmetries

• unless gauge coupling g < 10-26 e
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Lee and Yang (1955)

B and L conservation not sacred, 
violated by new particles and fields



Big Hint of Baryon Number Violation

• CMB anisotropy
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Fig. 1.1. The power spectrum anisotropies defined in Eq. 1.2 and 1.3 as a function of
the multiple moment, l. Figure taken from Ref. [2].

(For a review, see, Ref. [8]. See also Scott Dodelson’s lectures.) Agreement
between theory and observation is obtained for a certain range of parameter,
ηB, which is the ratio of the baryon number density, nB, to photon density,
nγ ,

ηBBN

B =
nB

nγ
= (2.6 − 6.2) × 10−10 . (1.1)

The Cosmic Microwave Background (CMB) is not a perfectly isotropic ra-
diation bath. These small temperature anisotropies are usually analyzed by
decomposing the signal into spherical harmonics, in terms of the spherical
polar angles θ and φ on the sky, as

∆T

T
=

∑

l,m

almYlm(θ, φ) , (1.2)

where alm are the expansion coefficients. The CMB power spectrum is
defined by

Cl =
〈
|alm|2

〉
, (1.3)

and it is conventional to plot the quantity l(l + 1)Cl against l. The CMB
measurements indicate that the temperature of the Universe at present is
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Tnow ∼ 3oK. Due to the Bose-Einstein statistics, the number density of the
photon, nγ , scales as T 3. Together, these give a photon number density at
present to be roughly 400/cm3. It is more difficult to count the baryon num-
ber density, because only some fraction of the baryons form stars and other
luminous objects. There are two indirect probes that point to the same
baryon density. The measurement of CMB anisotropies probe the acous-
tic oscillations of the baryon/photon fluid, which happened around photon
last scattering. Fig. 1.1 illustrates how the amount of anisotropies depends
on nB/nγ . The baryon number density, nB ∼ 1/m3, is obtained from the
anisotropic in CMB, which indicates the baryon density ΩB to be 0.044.
Another indirect probe is the Big Bang Nucleosynthesis (BBN), whose pre-
dictions depend on nB/nγ through the processes shown in Fig. 1.2. It is
measured independently from the primordial nucleosynthesis of the light
elements. The value for nB/nγ deduced from primordial Deuterium abun-
dance agrees with that obtained by WMAP [9]. For 4He and 7Li, there are
nevertheless discrepancies which may be due to the under-estimated errors.
Combining WMAP measurement and the Deuterium abundance gives,

nB

nγ
≡ ηB = (6.1 ± 0.3)× 10−10 . (1.4)

Fig. 1.2. Main reactions that determine the primordial abundances of the light elements.
Figure taken from Ref. [2].

Cosmological matter-antimatter 
asymmetry

• Big Bang Nucleosynthesis

• primordial deuterium 

abundance                         
⟺ agree with WMAP 


• 4He & 7Li                           
⟺  discrepancies


• WMAP + Deuterium Abundance



Three Sakharov Conditions

• Baryon number can be generated dynamically, if

• violation of baryon number 
• violation of Charge-Conjugation (C) and Charge Parity (CP)

• departure from thermal equilibrium
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Matter-Antimatter Asymmetry
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Scientists have discovered that neutrinos have
tiny masses, in contradiction to the theoretical
model that describes neutrino interactions.
Credit: symmetry magazine

The Big Bang produced large amounts of matter
and antimatter (top). When matter and
antimatter annihilated, some tiny asymmetry in
the early universe produced our universe, made
entirely of matter (bottom). Did neutrinos cause
the asymmetry? 
Credit: Hitoshi Murayama
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Why neutrinos?
Particle physics has been very successful in creating the Standard Model, a
theoretical framework that describes many particle physics phenomena. However,
major discoveries such as the evidence for dark matter and the observation of
neutrino mass have shown that the Standard Model is incomplete. These findings
strongly suggest that new physics discoveries beyond the Standard Model await us.

Neutrinos could provide the path to unveiling these hidden physics phenomena. In
particular, physicists hope that neutrinos will shed light on these questions:

Why is the universe as we know it made of matter, with no antimatter present?
What is the origin of this matter-antimatter asymmetry, also known as CP
violation?
Are neutrinos connected to the matter-antimatter asymmetry, and if so, how?
If neutrinos exhibit CP violation, is it related to the CP violation observed in
quark interactions?
Are neutrinos their own antiparticles?
What role did neutrinos play in the evolution of the universe?

Physicists have discovered three types of neutrinos so far: electron neutrinos, muon
neutrinos and tau neutrinos. Although neutrinos are among the most abundant
particles in the universe, they rarely interact with other matter. Hence, they are often
referred to as ghost particles.

"For every electron, for every proton, for every neutron, there are about a billion neutrinos... every second there are 100 trillion neutrinos
from the sun passing through each person," says Fermilab theorist Boris Kayser. "It's the neutrinos and photons, particles that make up light
beams, that are by far the most abundant particles in the universe."

Kayser further explains that a recent theory has developed, which is that the neutrinos may have something very important to do with how
the universe came to be dominated by matter and have no antimatter. "Life is possible only because there is no antimatter around. When
matter and antimatter meet, they annihilate each other."

By generating huge numbers of neutrinos using high-intensity accelerators and by building large detectors that increase the chance of
neutrino observation, physicists can study these mysterious particles and learn more about their role in the universe. The proposed Long-
Baseline Neutrino Experiment will give physicists the chance to push the door wide open to search for physics beyond the Standard Model
and allow them to make exciting discoveries at the Intensity Frontier.

Further reading:
For an excellent introduction to the neutrino physics opportunities presented by the
proposed Deep Underground Science and Engineering Laboratory (DUSEL, no
longer a funded entity), read this chapter in the report Deep Science, published by
the National Science Foundation.

Details on the scientific questions surrounding neutrinos and their properties and
interactions are given in this summary by Boris Kayser and Stephen Parke, members
of the Fermilab theory group.

Last modified: 05/14/2012 | email Fermilab
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neutrinos may play an important role in generating 
the matter-antimatter asymmetry  



Baryon Number beyond the SM

• SM as low energy effective theory:


• EFT with quarks, leptons, and gauge fields 
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Weinberg (1979)
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Baryon Number beyond the SM

• SM as low energy effective theory:


• EFT with quarks, leptons, gauge fields and the Higgs:
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Weinberg (1979)

L = LSM +
O5D

M
+
O6D

M2
+ ... (1)

1

new physics 
effects

∆L = 2 
neutrino Majorana 

mass
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On, , g QQQEQE
FUnique window into high scale physics



MSSM

• Solution for gauge hierarchy problem

• BNV and LNV already at renormalizable level

• Gauge invariant superpotential terms up to order 4 
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Problems of the MSSM

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

!
∼ 1/1015 GeV
in order to

explain see–saw
suppressed
νmasses

Constraints from neutrino masses



MSSM

• Gauge invariant superpotential terms up to order 4
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Problems of the MSSM

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu
!
∼TeV

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ
(0)
ij HuLi HuLj + κ

(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

☞ Problematic terms
§ µ/Bµ problem(s)

Why does µ know about the electroweak scale?



MSSM

• Gauge invariant superpotential terms up to order 4
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Problems of the MSSM

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

☞ Problematic terms κ
(1)
1121

!
!

10−8

MP

§ µ/Bµ problem(s)

§ dimension four and five proton decay operators

Setting the Stage: the MSSM

● Supersymmetry (SUSY) is one of the most well motivated extensions 

of the Standard Model (SM), with its minimal SM extension being the MSSM

→ solves hierarchy problem, gauge coupling unification, etc.

● The renormalizable MSSM superpotential is given by

RPV terms 

EWSB:           

Yukawa terms

Proton stability:

μ-term ν-mass:           



MSSM

• Traditional Cure of proton decay problem
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Traditional cure of proton decay problems

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

need to be strongly suppressed



MSSM

• Traditional Cure of proton decay problem
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Traditional cure of proton decay problems

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

forbidden by matter parity

Farrar and Fayet (1978) ; Dimopoulos et al. (1982)

Farrar, Fayet (1978);
Dimopoulos, Raby, Wilczek (1981)



MSSM

• Traditional Cure of proton decay problem


13

Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Traditional cure of proton decay problems

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

forbidden by baryon triality

Ibáñez and Ross (1992)

Ibanez, Ross (1992)



MSSM

• Traditional Cure of proton decay problem
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Traditional cure of proton decay problems

☞ Gauge invariant superpotential terms up to order 4 include

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ

forbidden by proton hexality

Babu et al. (2003b) ; Dreiner et al. (2006)

☞ Proton hexality =matter parity + baryon triality

Ibáñez and Ross (1992)

Dreiner et al. (2006)

Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Traditional cure of proton decay problems

☞ Gauge invariant superpotential terms up to order 4 include
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ij
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☞ Proton hexality =matter parity + baryon triality

Ibáñez and Ross (1992)

Dreiner et al. (2006)

Babu, Gogoladze, Wang (2002);
Dreiner, Luhn, Thormeier (2006)



Proton Hexality
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Traditional cure: proton hexality
Ibáñez and Ross (1992) ; Babu et al. (2003b) ; Dreiner et al. (2006)

☞ Proton hexality P6 =matter parity M
2 × baryon triality B3

Q Ū D̄ L Ē Hu Hd ν̄
M
2 1 1 1 1 1 0 0 1

B3 0 −1 1 −1 2 1 −1 0
P6 0 1 −1 −2 1 −1 1 3

☞ Appealing features
© forbids dimension four and five proton decay operators

© allows Yukawa couplings & Weinberg operator κ(0)ij HuLi HuLj

© unique anomaly–free symmetry with the above features

☞ However:
§ not consistent with unification for matter (i.e. inconsistent with universal

discrete charges for all matter fields)

Babu, Gogoladze, Wang (2002);
Dreiner, Luhn, Thormeier (2006)



Proton Hexality
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Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Proton hexality

☞ Disturbing aspects of proton hexality
§ not consistent with (grand) unification for matter

§ does not address µ problem

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

Supersymmetric unification and R symmetries Introduction

Supersymmetric standard model and grand unification

Proton hexality

☞ Disturbing aspects of proton hexality
§ not consistent with (grand) unification for matter

§ does not address µ problem

W = µHdHu + κi LiHu

+ Yij
e LiHdEj + Y

ij
d QiHdDj + Y

ij
u QiHuUj

+ λijk LiLjEk + λ
′
ijk LiQjDk + λ

′′
ijk UiDjDk

+ κ(0)ij HuLi HuLj + κ
(1)
ijkℓ QiQjQkLℓ + κ

(2)
ijkℓ UiUjDkEℓ + . . .

needs to be suppressed as well. . .



‣ before SUSY breaking: absence of mu term


‣ Giudice-Masiero Mechanism for the mu problem 

‣ after SUSY breaking: realistic effective mu term generated


‣ need a symmetry reason for the absence of these operators before SUSY breaking
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Small mu term and SUSY Breaking

The μ Term and Dirac Neutrino Mass

‣ Absence of perturbative mu term ⇒ constraints on R charges of Hu, Hd  

‣ Absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons

‣ New signature: ΔL = 4 lepton number violation (no ΔL = 2 violation)
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W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;

9

M.-C.C, M. Ratz, C. Staudt, P.  Vaudrevange, Nucl. Phys. B866 (2013) 157 

➜ Non-perturbative mu term ~ TeV automatically arise
 ➜ Giudice-Masiero mechanism at work, automatically!

➜ Non-perturbative, realistic Dirac neutrino mass 
automatically arise
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‣ New signature: ΔL = 4 lepton number violation (no ΔL = 2 violation)
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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‣ Absence of perturbative Weinberg operator ⇒ constraints on R charges of leptons
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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Discrete R Symmetries

• No continuous R symmetries available in MSSM

• Only remaining option:  Discrete R symmetries 
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Supersymmetric unification and R symmetries Anomaly freedom

No–Go for R symmetries in 4D GUTs

R symmetries vs. 4D GUTs

☞ We have seen that only R symmetries can forbid the µ term

• anomaly freedom
• consistency with SU(5)

}
!

⎧
⎨

⎩

only R symmetries
can forbid the µ term
in the MSSM

Chamseddine, Dreiner (1996)
Supersymmetric unification and R symmetries Anomaly freedom

Anomaly–free symmetries, µ and unification

Anomaly–free symmetries, µ and unification

☞ Working assumptions:
(i) anomaly freedom (allow for GS anomaly cancellation)

(ii) µ term forbidden at perturbative level

(iii) Yukawa couplings and Weinberg neutrino mass operator
allowed

(iv) SU(5) or SO(10)GUT relations for quarks and leptons

☞ Will prove:
1. assuming (i) & SU(5) relations:

! only R symmetries can forbid the µ term

2. assuming (i)–(iii) & SO(10) relations:
! unique R

4 symmetry

3. R symmetries are not available in 4D GUTs

Fixing the MSSM with DS

● R-parity (   ): kills    and dim-4 RPV

● Baryon triality (       ): kills dim-5 RPV 

● – unique anomaly free (Green-Schwarz) symmetry that

commutes with , no tree-level μ-term and contains R-parity

Higher order : 

Proton hexality (    )   

[Babu & Gogoladze & Wang (2002);
Lee, Raby, Ross, Ratz et. al. (2010);
Kurosawa, Maru, Yanagida (2001)]

Kurosawa, Maru, Yanagida (2001); 
Babu, Gogoladze, Wang (2002)

Lee, Raby, Ratz, Ross, Schieren, Schmiddt-Hoberg, Vaudrevaunge (2011) 

Supersymmetric unification and R symmetries Anomaly freedom

Unique R

4
symmetry

SO(10) implies unique symmetry
Lee et al. (2011) ; Chen et al. (2012)

☞ Consider R
M symmetry which commutes with SO(10)

i.e. quarks and leptons have universal charge q

Supersymmetric unification and R symmetries Anomaly freedom

Unique R

4
symmetry

Unique R
4 symmetry

Lee et al. (2011) ; Chen et al. (2012)

☞ We know already that

{
• q = qθ ! 0 mod η
• qHu

= qHd
= 0 mod M

☞ “Anomaly universality”

ASU(3)2− R
M
= 3qθ mod η

!
= qθ mod η = ASU(2)2− R

M

➥ η is even! order M is a multiple of 4

☞ Simplest possibility: M = 4 & q = qθ = 1! R
4 symmetry

☞ Alternatives: R
4m symmetry with q = qθ = m & m ∈

☞ However: these are only trivial extensions (as far as the MSSM is concerned)

bottom–line:

unique symmetry : R
4 w/ q = qθ = 1 & qHu

= qHd
= 0



‣ before SUSY breaking: absence of Dirac neutrino masses (as well as Weinberg 
operator)


‣ Giudice-Masiero Mechanism for the mu problem 


‣ after SUSY breaking: realistic effective Dirac neutrino masses generated


‣ need a symmetry reason for the absence of these operators before SUSY breaking
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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with qW = 2qθ (such that
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√
2 θψ(f) +
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.

Acknowledgments

We would like to thank Maximilian Fallbacher and Hans Peter Nilles for useful dis-
cussions. M.R. would like to thank the UC Irvine, where part of this work was done,
for hospitality. M.-C.C. would like to thank TU München, where part of the work was
done, for hospitality. This work was partially supported by the DFG cluster of excellence
“Origin and Structure of the Universe” and the Graduiertenkolleg “Particle Physics at
the Energy Frontier of New Phenomena” by Deutsche Forschungsgemeinschaft (DFG).
P.V. is supported by SFB grant 676. The work of M.-C.C. was supported, in part,
by the U.S. National Science Foundation under Grant No. PHY-0970173. M.-C.C.,
M.R. and P.V. would like to thank the Aspen Center for Physics for hospitality and
support. M.-.C.C. thanks the Galileo Galilei Institute for Theoretical Physics for the
hospitality. This research was done in the context of the ERC Advanced Grant project
“FLAVOUR” (267104).

A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;
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‣ solutions automatically forbid dim-4 proton decay, automatically suppress dim-5 
proton decay in superpotential
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Here, in an obvious notation, ν̄ denotes the right–handed neutrino superfield(s), kLHuν̄

and kH†
dLν̄

are dimensionless coefficients, and we suppress flavor indices. The first

term (2.26a) leads to Dirac neutrino masses when X attains its F–term VEV, ⟨FX⟩ ∼
m3/2 MP, while in the case of (2.26b) one has to observe that, due to the presence of the
‘non–perturbative’ µ term, also Hd attains an F term VEV, ⟨FHd

⟩ ∼ µ ⟨Hu⟩ ∼ m3/2 vEW.
As qHu +qHd

= 0 mod M , both terms are allowed if qν̄+qHu +qL = 0 mod M , which is
precisely the condition that an effective holomorphic Yν term is allowed. Altogether we
find, analogous to what we have discussed around (2.2), that effective neutrino Yukawa
couplings

Yν ∼
m3/2

MP
∼

µ

MP
(2.27)

will arise. For m3/2 in the multi–TeV range this can lead to realistic Dirac neutrino
masses. If we are to connect the suppression of Yν to the smallness of the µ term, it
is natural to assume that the neutrino Yukawa coupling is forbidden by the same R
symmetry that also forbids µ. As discussed above, LHu ν̄ has to have R charge 0.
Moreover, there will also be holomorphic contributions to the Yukawa coupling. That
is, even if both kLHuν̄ and kH†

dLν̄
vanish, Dirac Yukawa couplings of the order m3/2/MP

will get induced, where, as in our discussion of the µ term, m3/2 represents the order
parameter for R symmetry breaking.

2.7 Discussion

We have surveyed anomaly–free symmetries which forbid the µ term and are consistent
with the Giudice–Masiero mechanism and SU(5). We find that these are discrete R
symmetries R

M with M = 4m, m ∈ . The R charges of the Hu Hd are such that
one expects a holomorphic contribution to the µ term of similar size. That is, the
Giudice–Masiero mechanism strongly suggests the presence of additional holomorphic
contributions to the effective µ term!

Assuming further that the symmetries allow the up- and down–type Yukawa coup-
lings and commute with flavor we find that they automatically forbid the troublesome
dimension five proton decay operators and in many cases those of dimension four. In-
terestingly, all these symmetries require a GS axion for anomaly cancellation. That is,
these symmetries appear to be broken at the non–perturbative level. In other words,
imposing compatibility with the Giudice–Masiero mechanism leads us to a situation in
which a holomorphic µ term appears at the non–perturbative level, i.e. in a way the
Giudice–Masiero term is unnecessary.

3 Classification and models

In this section, we explore anomaly–free discrete symmetries that solve some of the most
severe problems of the MSSM. We will demand that the symmetry

1. is flavor–universal and Abelian, i.e. a R
M symmetry;

9

metries we find that, by demanding that the Weinberg operator LHu LHu be allowed,
there exists only one possible symmetry, namely a R

4 symmetry. Following a different
approach, this R

4 has also recently been shown to be the unique anomaly–free symmetry
that commutes with SO(10) [20]. The proof in [20] assumed that the charge of the su-
perspace coordinate θ can always be set 1, which we find to be too strong a requirement.
However, we find that, if one is to allow for arbitrary θ charges, this only leads to trivial
extensions of R

4 , such that the uniqueness of R
4 still prevails.

If one requires instead the discrete symmetry to forbid the Weinberg operator, one
can explain small Dirac neutrino masses. In particular, we successfully obtain a relation
between the smallness of Dirac neutrino Yukawa couplings and the µ term which is
based on anomaly–free discrete R symmetries with the above properties. Specifically,
we find a class of anomaly–free discrete symmetries in which the appealing relations
µ ∼ ⟨W ⟩/M2

P ∼ m3/2 and Yν ∼ µ/MP naturally emerge.
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A Anomaly coefficients for R
M symmetries with ar-

bitrary qθ

The anomaly conditions for discrete R symmetries depend on qθ. Consider a R
M sym-

metry, under which the superpotential transforms as

W → e2π i qW /M
W (A.1)

with qW = 2qθ (such that
∫
d2θW is invariant). Superfields Φ(f) = φ(f) +

√
2 θψ(f) +

θθ F (f) transform as

Φ(f) → e2π i q(f)/M Φ(f) . (A.2)

Correspondingly, the fermions transform as

ψ(f) = e2π i (q(f)−qθ)/M ψ(f) . (A.3)
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SUSY breaking ➜ mu term ~ TeV automatically arise

SUSY breaking ➜ realistic Dirac neutrino mass automatically arise

Dirac Neutrino Mass and the μ Term
M.-C. C., Ratz, Staudt, Vaudrevange (2012)



Dirac Neutrino Mass and the μ Term

• Search Abelian discrete R symmetries,       , that satisfy


• anomaly freedom (a la Green-Schwarz)


• forbidding mu term perturbatively

• consistent with SU(5)


• allowing usual Yukawa couplings


• Weinberg operators forbidden perturbatively


• an example:            symmetry


‣ after SUSY breaking:


‣ ∆ L = 2 operators forbidden ⇒ no neutrinoless double beta decay


‣ ∆L = 4 operators allowed ⇒ new LNV processes 

• A simultaneous solution possible with discrete generation dependent  R symmetries  
(Abelian or non-Abelian!)
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classes of models found

such that 5qHu = 0 mod M . This means that qHu = 0 mod M unless the order is a
multiple of 5. In the latter case we can write the R

M symmetry as 5 × R
M/5 where the

5 factor is a non–R symmetry. Hence we can focus on qHu = 0 mod M , which implies,
by (2.3d), that qHd

= 0 mod M . Then Equations (3.1) and (3.2) imply

q10 = q5 = qθ mod M . (3.4)

That is, the symmetry commutes with SO(10) in the matter sector. We already know
from our discussion in Section 2.4 that the only meaningful R symmetry with this
property is R

4 .
We also scanned the discrete R

M symmetries up to order 200 with general qθ without
assuming a Giudice–Masiero–like mechanism. We obtain, apart from the symmetries
of Tables 2.1 and 2.2 of [8], only a few new symmetries. However, as we show in the
following in an example, these additional symmetries are redundant: consider a R

20

symmetry with (q10, q5, qHu , qHd
, qθ) = (1, 17, 8, 52, 5). This is equivalent to a R

4 × 5

symmetry with charge assignment ((1, 3), (1, 1), (0, 4), (0, 1), (1, 0)). The 5 is nothing
but the non–trivial center of SU(5), i.e. it does not forbid any couplings (see the dis-
cussion in [16, 31]) and the (non–trivial) R

4 factor is the one just discussed in the last
paragraph.

3.2 Models with Dirac neutrinos

By modifying the above conditions, i.e. by demanding that the symmetry

5. forbids the Weinberg neutrino mass operator perturbatively

and

6. is compatible with the Giudice–Masiero mechanism

we obtain further interesting discrete R symmetries. Some sample symmetries are listed
in Table 1. These symmetries are inequivalent. One way of verifying this is to check
whether or not two given charge assignments are equivalent by computing their Hilbert
superpotential basis [32]. Only if the bases coincide, the assignments are equivalent. In
the case of R symmetries, the Hilbert superpotential basis comprises homogeneous and
inhomogeneous elements, or monomials. Every possible superpotential term contains
precisely one inhomogeneous monomial and an arbitrary number of homogeneous mono-
mials. In appendix C we list the Hilbert superpotential basis for examples with the R

12

symmetries.

3.2.1 Comments on the R

8
symmetry

One of simplest charge assignments appears to be the one of the R
8 symmetry. Clearly

the usual Yukawa couplings 10 10Hu and 10 5Hd are allowed. Further, the Higgs
bilinear HuHd has R charge 0 mod 8. If we assign the right–handed neutrino ν̄ R

11

(a) R
M symmetries.

M q10 q5 qHu qHd
qθ ρ qν̄

4 0 0 2 2 1 1 2
4 2 2 2 2 1 1 0
8 1 5 2 6 2 2 1
12 1 9 4 8 3 3 11
12 2 6 2 10 3 3 4
12 4 0 10 2 3 3 2
16 1 13 6 10 4 4 13
24 1 21 10 14 6 6 17
28 1 25 12 16 7 7 19
28 2 22 10 18 7 7 24
28 4 16 6 22 7 7 6
32 1 29 14 18 8 8 21
36 1 33 16 20 9 9 23
36 2 30 14 22 9 9 28
36 4 24 10 26 9 9 2

(b) Residual symmetries.

M ′ q10 q5 qHu qHd
qν̄

2 0 0 0 0 0
2 0 0 0 0 0
4 1 1 2 2 1
6 1 3 4 2 5
3 1 0 1 2 2
3 2 0 2 1 1
8 1 5 6 2 5
12 1 9 10 2 5
14 1 11 12 2 5
7 1 4 5 2 5
7 2 1 3 4 3
16 1 13 14 2 5
18 1 15 16 2 5
9 1 6 7 2 5
9 2 3 5 4 1

Table 1: Classification of anomaly–free discrete R symmetries that forbid neutrino
masses perturbatively. We restrict to orders ≤ 36. (a) shows some sample symmetries.
The equality between qθ and ρ is due to Equation (2.23). The charge of the right–handed
neutrino superfield ν̄ is determined by the requirement that qν̄ + qHu + qL = 0 mod M
(cf. the discussion below (2.26)). In (b) we display the residual symmetries that remain
after the (‘hidden sector’) superpotential acquires its VEV.

charge 1, the Dirac neutrino Yukawa coupling will also be induced by R breaking. That
is, we will have an effective superpotential which is schematically of the form

Weff ∼ m3/2 HuHd +
m3/2

MP
LHu ν̄ +

m3/2

M2
P

QQQL . (3.5)

Here we suppress flavor indices. Once the superpotential of the hidden sector acquires a
VEV, the R

8 is spontaneously broken down to a 4 symmetry under which all matter
fields have charge 1 and the Higgs fields have charge 2 (Table 1 (b)). Of course, this
symmetry gets broken down to the usual matter (or ‘R’) parity once the Higgs scalars
attain their VEVs.

The Hilbert superpotential basis [32] for this model (setting all quarks to zero) is
given by the inhomogeneous monomials

ν̄4 ;
(
LLE

)
ν̄ ;

(
LHdE

)
;
(
LLE

)4
;
(
LLE

)2
(LHu)

2 ; (LHu)
4 , (3.6)
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M.-C. C., Ratz, Staudt, Vaudrevange (2012)



MSSM with RPV Operators

• No sign of SUSY (yet!) at the LHC

• Rich phenomenology, though need to be careful about proton 

decay


• Classifications of        symmetries compatible with MSSM models 
with RPV operators (BNV, LNV)

• allowing BNV, LNV at dim-3, 4, 5; mu term

• allowing GS anomaly cancellation

• compatibility with GUT


• only for q𝛉 = 1 with all R charges being integers 
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Supersymmetric unification and R symmetries Anomaly freedom

Unique R

4
symmetry

SO(10) implies unique symmetry
Lee et al. (2011) ; Chen et al. (2012)

☞ Consider R
M symmetry which commutes with SO(10)

i.e. quarks and leptons have universal charge q

☞ existence of u- and d–type Yukawas requires that

2q + qHu
= 2qθ mod M and 2q + qHd

= 2qθ mod M

R charge of
superspace
coordinate θ

superpotential
has R charge 2qθ∫

d2θW ⊂ L

Dreiner, Hannusek, Luhn (2012)



MSSM with RPV Operators

• Classifications of        symmetries compatible with MSSM models 
with RPV operators (BNV, LNV)

• allowing BNV, LNV at dim-3, 4, 5; mu term

• allowing GS anomaly cancellation

• compatibility with GUT


• only for q𝛉 = 1 with all R charges being integers 


• Complete Classifications 


• with q𝛉 > 1 with all R charges being integers


• allowing for non-universal GS cancellation of discrete anomalies
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Supersymmetric unification and R symmetries Anomaly freedom

Unique R

4
symmetry

SO(10) implies unique symmetry
Lee et al. (2011) ; Chen et al. (2012)

☞ Consider R
M symmetry which commutes with SO(10)

i.e. quarks and leptons have universal charge q

☞ existence of u- and d–type Yukawas requires that

2q + qHu
= 2qθ mod M and 2q + qHd

= 2qθ mod M

R charge of
superspace
coordinate θ

superpotential
has R charge 2qθ∫

d2θW ⊂ L

Dreiner, Hannusek, Luhn (2012)

M.-C. C, Ratz, Takhistov (2014)



Anomaly Cancellation

• For a U(1)R symmetry:


• Cancelled by GS axion with coupling to field strengths
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One can also determine the order M in the inhomogeneous equation

A · q = b mod M (2.17)

with some nc–dimensional vector b. After bringing A to Smith normal form and multi-
plying Equation (2.17) with U from the left, we obtain

D · q′ = b′ mod M (2.18)

with

b′ = U · b and q′ = V −1 · q . (2.19)

If nc > nq, b′ can have non–trivial entries at the positions nq+1, . . . , nc. Then, a solution
is only possible if M divides b′nq+1, . . . b

′
nc
. Hence, we see that the maximal meaningful

order may even be even more constrained for inhomogeneous equations. An application
of our methods will be discussed in Section 3.4.3.

In conclusion, we have looked at symmetries that fulfill certain constraint equations.
We have focussed on systems in which the constraint equations do not allow for contin-
uous or U(1) solutions. We have then shown that the maximal meaningful order of N

symmetries compatible with the constraints can be read off from the Smith normal form
(2.10) of the matrix encoding the constraint equations, and is given by the last diagonal
element dnq (cf. equation (2.11)).

2.4 Anomaly (non–)universality

As mentioned, anomalies for discrete symmetries can be cancelled by a discrete version
of the Green–Schwarz (GS) mechanism [17]. This, however, may destroy the beautiful
picture of the MSSM gauge coupling unification if the anomalies are not universal, i.e.
if the GS axion couples with different coefficients to the various field strength terms of
the SM gauge group factors.

We start out by discussing anomaly (non–)universality. For a U(1)(R) symmetry, the
relevant anomaly coefficients are

A3 =
1

2

∑

f

[
2qfQ + qf

U
+ qf

D
− 4qθ

]
+ 3qθ

=
3

2

[
2qQ + qU + qD

]
− 3qθ , (2.20a)

A2 =
1

2

[
qHu + qHd

− 2qθ +
∑

f

(
3qfQ + qfL − 4qθ

)]
+ 2qθ

=
1

2

[
qHu + qHd

+ 3
(
3qQ + qL

)]
− 5qθ , (2.20b)

A1 =
1

2

[
qHu + qHd

− 2qθ +
1

3

∑

i

(
qfQ + 8qf

U
+ 2qf

D
+ 3qfL + 6qf

E
− 20qθ

)]
Y 2
L

=
3

10

[
qHu + qHd

+ qQ + 8qU + 2qD + 3qL + 6qE − 22qθ
]
. (2.20c)

8



Anomaly Cancellation

• For a discrete       symmetry:

• A1, A2, A3 defined only up to modulo 


• Anomaly universality: universal axion couplings to field strengths


• Pati-Salam partial unification: non-universal anomaly cancellation 
allowed
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In the second line of each equation we switched to family–independent charges. qθ
denotes the charge of the superspace coordinate θ, i.e. qθ = 0 for a non–R symmetry.
YL controls the normalization of hypercharge, i.e. Y 2

L = 3/5 if U(1)Y is part of a unified
SU(5) symmetry.

By imposing the existence of the Yukawa couplings we can eliminate the charges of
the U , D and E fields,

qU ≡ − qQ − qHu + 2qθ , (2.21a)

qD ≡ − qQ − qHd
+ 2qθ , (2.21b)

qE ≡ − qL − qHd
+ 2qθ . (2.21c)

where ‘≡’ means ‘equal modulo N ’. After eliminating qU , qD and qE via (2.21), the
anomaly coefficients (2.20) become

A3 = −
3

2
(qHu + qHd

− 2qθ) , (2.22a)

A2 =
1

2

[
qHu + qHd

+ 3 (qL + 3qQ)− 10qθ
]
, (2.22b)

A1 = −
3

10

[
7 (qHu + qHd

) + 3 (qL + 3qQ)− 10qθ
]
. (2.22c)

By allowing for different couplings of the axion a to the field strengths of SU(3)C,
SU(2)L and U(1)Y , it is always possible to cancel the anomalies with the Green–Schwarz
mechanism [18,19]. However, if one is to preserve gauge coupling unification in a natural
way, the anomalies need to be universal, i.e.

A3 = A2 = A1 . (2.23)

For a discrete R
N symmetry, the coefficients in (2.20) are only defined up to modulo

η =

{
N/2 if N is even ,
N if N is odd .

(2.24)

The anomaly universality condition (2.23) then boils down to

A3 ≡ A2 ≡ A1 , (2.25)

where now ‘≡’ means modulo η.
Let us note that in DHL [16] the anomaly universality condition has been taken to

be A3 ≡ A2. However, it is crucial to include the anomaly coefficient due to U(1)Y ,
the AU(1)Y −U(1)Y − R

N
, particularly when addressing compatibility with gauge coupling

unification. Therefore, we will employ in the first part of our analysis the universality
condition (2.25).

The discrete anomaly universality conditions can be rewritten as

A3 −A2 = − 2qHd
− 2qHu −

3

2
qL −

9

2
qQ + 8qθ ≡ 0 , (2.26a)

A3 −A1 =
3

10
(2qHd

+ 2qHu + 3qL + 9qQ) ≡ 0 . (2.26b)

9

In the second line of each equation we switched to family–independent charges. qθ
denotes the charge of the superspace coordinate θ, i.e. qθ = 0 for a non–R symmetry.
YL controls the normalization of hypercharge, i.e. Y 2

L = 3/5 if U(1)Y is part of a unified
SU(5) symmetry.

By imposing the existence of the Yukawa couplings we can eliminate the charges of
the U , D and E fields,

qU ≡ − qQ − qHu + 2qθ , (2.21a)

qD ≡ − qQ − qHd
+ 2qθ , (2.21b)

qE ≡ − qL − qHd
+ 2qθ . (2.21c)

where ‘≡’ means ‘equal modulo N ’. After eliminating qU , qD and qE via (2.21), the
anomaly coefficients (2.20) become

A3 = −
3

2
(qHu + qHd

− 2qθ) , (2.22a)

A2 =
1

2

[
qHu + qHd

+ 3 (qL + 3qQ)− 10qθ
]
, (2.22b)

A1 = −
3

10

[
7 (qHu + qHd

) + 3 (qL + 3qQ)− 10qθ
]
. (2.22c)

By allowing for different couplings of the axion a to the field strengths of SU(3)C,
SU(2)L and U(1)Y , it is always possible to cancel the anomalies with the Green–Schwarz
mechanism [18,19]. However, if one is to preserve gauge coupling unification in a natural
way, the anomalies need to be universal, i.e.

A3 = A2 = A1 . (2.23)

For a discrete R
N symmetry, the coefficients in (2.20) are only defined up to modulo

η =

{
N/2 if N is even ,
N if N is odd .

(2.24)

The anomaly universality condition (2.23) then boils down to

A3 ≡ A2 ≡ A1 , (2.25)

where now ‘≡’ means modulo η.
Let us note that in DHL [16] the anomaly universality condition has been taken to

be A3 ≡ A2. However, it is crucial to include the anomaly coefficient due to U(1)Y ,
the AU(1)Y −U(1)Y − R

N
, particularly when addressing compatibility with gauge coupling

unification. Therefore, we will employ in the first part of our analysis the universality
condition (2.25).

The discrete anomaly universality conditions can be rewritten as

A3 −A2 = − 2qHd
− 2qHu −

3

2
qL −

9

2
qQ + 8qθ ≡ 0 , (2.26a)

A3 −A1 =
3

10
(2qHd

+ 2qHu + 3qL + 9qQ) ≡ 0 . (2.26b)
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Supersymmetric unification and R symmetries Anomaly freedom

Anomaly freedom
Chen et al. (2012)

Anomaly freedom
+

Grand unification
+

Green–Schwarz
anomaly cancellation

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

→ “Anomaly universality”

Example: anomaly coefficients for N

symmetry

AG2− N
=

∑

f

ℓ(f ) · q(f )
!
= ρ mod η

Agrav2− N
=

∑

m

q(m)
!
= ρ mod η

traditional anomaly
freedom:

all A coefficients vanish

➨ ➨ ➨ ➨ ➨

anomaly “universality”:

ASU(3)2− N
= ASU(2)2− N

if SU(3) × SU(2)
⊂ SU(5) or E8

In the second line of each equation we switched to family–independent charges. qθ
denotes the charge of the superspace coordinate θ, i.e. qθ = 0 for a non–R symmetry.
YL controls the normalization of hypercharge, i.e. Y 2

L = 3/5 if U(1)Y is part of a unified
SU(5) symmetry.

By imposing the existence of the Yukawa couplings we can eliminate the charges of
the U , D and E fields,

qU ≡ − qQ − qHu + 2qθ , (2.21a)

qD ≡ − qQ − qHd
+ 2qθ , (2.21b)

qE ≡ − qL − qHd
+ 2qθ . (2.21c)

where ‘≡’ means ‘equal modulo N ’. After eliminating qU , qD and qE via (2.21), the
anomaly coefficients (2.20) become

A3 = −
3

2
(qHu + qHd

− 2qθ) , (2.22a)

A2 =
1

2

[
qHu + qHd

+ 3 (qL + 3qQ)− 10qθ
]
, (2.22b)

A1 = −
3

10

[
7 (qHu + qHd

) + 3 (qL + 3qQ)− 10qθ
]
. (2.22c)

By allowing for different couplings of the axion a to the field strengths of SU(3)C,
SU(2)L and U(1)Y , it is always possible to cancel the anomalies with the Green–Schwarz
mechanism [18,19]. However, if one is to preserve gauge coupling unification in a natural
way, the anomalies need to be universal, i.e.

A3 = A2 = A1 . (2.23)

For a discrete R
N symmetry, the coefficients in (2.20) are only defined up to modulo

η =

{
N/2 if N is even ,
N if N is odd .

(2.24)

The anomaly universality condition (2.23) then boils down to

A3 ≡ A2 ≡ A1 , (2.25)

where now ‘≡’ means modulo η.
Let us note that in DHL [16] the anomaly universality condition has been taken to

be A3 ≡ A2. However, it is crucial to include the anomaly coefficient due to U(1)Y ,
the AU(1)Y −U(1)Y − R

N
, particularly when addressing compatibility with gauge coupling

unification. Therefore, we will employ in the first part of our analysis the universality
condition (2.25).

The discrete anomaly universality conditions can be rewritten as

A3 −A2 = − 2qHd
− 2qHu −

3

2
qL −

9

2
qQ + 8qθ ≡ 0 , (2.26a)

A3 −A1 =
3

10
(2qHd

+ 2qHu + 3qL + 9qQ) ≡ 0 . (2.26b)
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R-parity Violating MSSM

• Renormalizable Superpotential


• Non-renormalizable BNV and LNV operators
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• allowing for a GS cancellation of discrete anomalies with non–universal couplings
of a;

• identifying redundant symmetries in DHL [16];

• presenting a novel method allowing one to systematically identify the maximal
symmetry compatible with given selection criteria.

Moreover, we will also comment on R parity conserving scenarios.
In our analysis, we consider both R and non–R Abelian discrete symmetries, and

impose that

1. the nucleon is sufficiently long–lived, i.e. that the dangerous operators are either
forbidden by a residual M symmetry or sufficiently suppressed by appropriate
powers of m3/2/Λ. Here, Λ is the cutoff scale which we take to be the Planck scale
MP unless stated otherwise. We will also discuss settings with a lower cutoff scale.

2. the discrete symmetry forbids the µ term at the perturbative level.

Further, we demonstrate additional features that were absent from DHL [16] including

• the compatibility of charges with (partial) unification, specifically whether the
matter charges commute with the Pati–Salam group GPS = SU(4) × SU(2)L ×
SU(2)R;2

• a natural suppression of the neutrino masses either through the Weinberg operator
or from supersymmetry breaking, thus yielding light Dirac neutrinos.

This paper is organized as follows. In Section 2, we present a novel method for
classifying discrete symmetries. We comment on anomaly cancellation, provide a recipe
for identifying and eliminating equivalent symmetries, and comment on the limitations
of our analysis. In Section 3, we illustrate our methods by presenting models obtained
for anomaly–universal as well as non–universal scenarios while considering both R parity
violation and conservation. Section 4 contains our conclusions.

2 Classification

2.1 Goals of our classification

In the MSSM, the renormalizable superpotential terms consistent with the SM gauge
symmetry are

Wren = µHuHd + Y u
fg Qf U g Hu + Y d

fg Qf Dg Hd + Y e
fg Lf Eg Hd

+ κf Lf Hu + λfgh Lf Lg Eh + λ′ fgh Lf Qg Dh + λ′′ fgh U f Dg Dh , (2.1)

2We do not consider compatibility of matter charges with SU(5) or SO(10) in the case of RPV. This
is because, if U DD is allowed, so is automatically LLE, and vice versa. See [20] for a discussion of R
parity violation in settings with GUT relations.

2

where the first line denotes the usual couplings of the MSSM, while the second line
contains the so–called R parity violating terms. In what follows, we will suppress the
flavor indices f , g and h. We will further assume that there is no flavor dependence of
the discrete charges, i.e. qfQ = qQ for all f and so on.

At the non–renormalizable level, additional B and L violating operators need to be
considered (cf. e.g. [16, 21–23])

O1 = [QQQL]F , O2 =
[
U U DE

]
F

,

O3 = [QQQHd]F , O4 =
[
QU EHd

]
F

,

O5 = [LHu LHu]F , O6 = [LHu HdHu]F ,

O7 =
[
U D

†
E
]

D
, O8 =

[
H†

uHdE
]
D

,

O9 =
[
QU L†

]
D

, O10 =
[
QQD

†
]

D
, (2.2)

as well as operators of even higher dimensions.
We will discuss settings with renormalizable baryon number violation (!!B), renormal-

izable lepton number violation (✓✓L) as well as “non–perturbative” B and L violation,
which appears only after the “hidden sector” superpotential acquires its VEV. We will
further comment on settings with R parity conservation. To constrain overly rapid pro-
ton decay, renormalizable!!B operators must be forbidden in the case of the RPV setting
with renormalizable ✓✓L, and vice versa for the RPV setting with renormalizable!!B. Since
not all of the above higher–dimensional operators shown in Equation (2.2) are indepen-
dent (see [16, 21, 23]), only a subset of such terms need to be considered to account for
all the phenomenological constraints. In RPV setups with either renormalizable !!B or
renormalizable ✓✓L, one needs only to examine the existence condition for the Weinberg
operator O5 [24] for neutrino mass generation.

We consider different classes of models based on Abelian discrete R or non–R sym-
metries, (R)

N , with properties specified below. We distinguish between (R)
N symmetries

that are anomaly–free in the traditional sense and symmetries in which the anoma-
lies are cancelled by a non–trivial (discrete) Green–Schwarz (GS) mechanism [17]. In
the second case, we discriminate between universal and non–universal couplings of the
GS axion to the various field strengths of the standard model gauge group GSM =
SU(3)C × SU(2)L × U(1)Y .

To sum up, we search for, both in the anomaly–universal case and in the anomaly
non–universal case, classes of models that have the following respective properties:

1. R parity conservation;

2. renormalizable RPV with ✓✓L and the existence of O5 at the perturbative level;

3. renormalizable RPV with !!B and the existence of O5 at the perturbative level;

4. “non–perturbative” ✓✓L and !!B.
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• To satisfy proton decay constrains 
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Figure 1: Contribution to proton decay obtained from combining LHuHdHu with U cDcDc.
Shown here is one possible diagram relevant for the decay channel p → K+ν̄.

operator O6 in case (i), this need not necessarily be the case since the coupling λ′′112 is
already experimentally bounded to be smaller than 10−4, but could even be much smaller
depending on a hadronic scale parameter [59, 60]. We therefore do not impose the condi-

tion that O6 vanish in case (i), but rather state if a given Z
[R]
N symmetry allows for this

nonrenormalizable operator or not.
For future reference and convenience, we summarize the constraints on the Z

[R]
N sym-

metries discussed in this section for both cases,

(i) with renormalizable B violation:

– demand existence of U cDcDc,

– forbid LLEc (thus automatically LQDc),

– forbid HdHu,

– forbid LHu (thus automatically O4, O7, O8, O9),

– forbid O1 = QQQL;

(ii) with renormalizable L violation:

– demand existence of LLEc (thus automatically LQDc),

– forbid U cDcDc,

– forbid HdHu (thus automatically LHu, O4, O7, O8, O9),

– forbid O1 = QQQL (thus automatically O3 and O10).

4 Possible Z
[R]
N symmetries

In this section we combine the phenomenological constraints of the previous section with
the discrete anomaly condition of Eq. (2.15). Including the right-handed neutrino N c,10 we

10Being SM gauge singlets, the right-handed neutrinos N c do not alter the anomaly coefficients
ASU(3)C−SU(3)C−U(1)[R]

and ASU(2)W−SU(2)W−U(1)[R]
. Hence, the results of this section remain valid in

scenarios where N c is absent.
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ūc
R

d̄cR ν̄L

s̃cR

vd

vu

χ0

s̄L

Figure 1: Contribution to proton decay obtained from combining LHuHdHu with U cDcDc.
Shown here is one possible diagram relevant for the decay channel p → K+ν̄.

operator O6 in case (i), this need not necessarily be the case since the coupling λ′′112 is
already experimentally bounded to be smaller than 10−4, but could even be much smaller
depending on a hadronic scale parameter [59, 60]. We therefore do not impose the condi-

tion that O6 vanish in case (i), but rather state if a given Z
[R]
N symmetry allows for this

nonrenormalizable operator or not.
For future reference and convenience, we summarize the constraints on the Z

[R]
N sym-

metries discussed in this section for both cases,

(i) with renormalizable B violation:

– demand existence of U cDcDc,

– forbid LLEc (thus automatically LQDc),

– forbid HdHu,

– forbid LHu (thus automatically O4, O7, O8, O9),

– forbid O1 = QQQL;

(ii) with renormalizable L violation:

– demand existence of LLEc (thus automatically LQDc),

– forbid U cDcDc,

– forbid HdHu (thus automatically LHu, O4, O7, O8, O9),

– forbid O1 = QQQL (thus automatically O3 and O10).

4 Possible Z
[R]
N symmetries

In this section we combine the phenomenological constraints of the previous section with
the discrete anomaly condition of Eq. (2.15). Including the right-handed neutrino N c,10 we

10Being SM gauge singlets, the right-handed neutrinos N c do not alter the anomaly coefficients
ASU(3)C−SU(3)C−U(1)[R]

and ASU(2)W−SU(2)W−U(1)[R]
. Hence, the results of this section remain valid in

scenarios where N c is absent.

8

Not compatible with SU(5):   UcDcDc  ⇔  LLEc 



R-parity Violating MSSM

• Pati-Salam Compatible

• Allowing Yukawa couplings
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3.2 Pati–Salam compatible settings

In contrast to SU(5) and SO(10), the Pati–Salam (PS) partial unification [31] can be
reconciled more easily with RPV. We note that the Pati–Salam group evades the no–go
theorems for R symmetries in four–dimensional GUT models [32]. RPV models with an
underlying PS symmetry have not been extensively studied, a gap which we aim to fill.

Specifically, we consider 4D Pati–Salam models with GPS = SU(4)×SU(2)L×SU(2)R
spontaneously broken to GSM by the VEV of a D–flat combination of (4, 1, 2)⊕

(
4, 1, 2

)

Higgses with R charge 0. This VEV may then explain the effective coupling U DD or
LLE. In addition, we would need Higgses in the (6, 1, 1) and (1, 1, 1) representations
with R charge 2. Pati–Salam models of this type have been derived from the heterotic
string [33].

We note that since the PS group does not fully unify into a single gauge group, one
can allow for different couplings of the GS axion to the different SM gauge factors. In
other words, PS does no lead to anomaly universality, which is consistent with the fact
that the PS symmetry does not imply gauge coupling unification.

Let us now have a look at RPV models which are compatible with PS. As a first
example, we show that

PS compatibility
allow U DD
forbid LHu

⎫
⎬

⎭
! Weinberg operator is forbidden. (3.3)

Starting with the PS compatibility, which implies

qQ = qL , qU = qD = qE , and qHu = qHd
, (3.4)

one can now write down the conditions for the U DD operator being allowed and the
LHu term being forbidden,

−3qHu − 3qL + 4qθ = 0 mod N (U DD) , (3.5)

qHu + qL − 2qθ ≠ 0 mod N (LHu) . (3.6)

Here we have taken into account the conditions for the existence of the Yukawa couplings
by the means of (2.21). This leads to

2qHu + 2qL − 2qθ ≠ 0 mod N , (3.7)

which forbids the Weinberg operator. This result may be interpreted as the statement
that PS compatible !!B RPV models tend to favor Dirac neutrino masses.

3.3 Scenarios with anomaly universality

3.3.1 Effective R parity conservation (RPCeff)

We start by looking at scenarios which effectively preserve R parity, in which the usual R
parity violating operators are forbidden. However, we do not explicitly impose R parity.
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PS compatible RPV models with BNV prefer Dirac neutrinos 



• Complete Classifications of discrete symmetries 

• non-universal GS anomaly cancellation 

• absence of mu term in renormalizable superpotential
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no-perturbative BNV and LNV 


29

R-parity Violating MSSM



Solutions w/ Universal Anomaly Cancellation
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Figure 1: Summary of our results. We present the simplest discrete R symmetries with
universal anomalies and the specified properties. The symbol “–” indicates the absence
of a solution.
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Figure 2: Summary of our results. We present the simplest discrete R symmetries with
non–universal anomalies and the specified properties. The symbol “–” indicates the
absence of a solution.
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• allowing for a GS cancellation of discrete anomalies with non–universal couplings
of a;

• identifying redundant symmetries in DHL [16];

• presenting a novel method allowing one to systematically identify the maximal
symmetry compatible with given selection criteria.

Moreover, we will also comment on R parity conserving scenarios.
In our analysis, we consider both R and non–R Abelian discrete symmetries, and

impose that

1. the nucleon is sufficiently long–lived, i.e. that the dangerous operators are either
forbidden by a residual M symmetry or sufficiently suppressed by appropriate
powers of m3/2/Λ. Here, Λ is the cutoff scale which we take to be the Planck scale
MP unless stated otherwise. We will also discuss settings with a lower cutoff scale.

2. the discrete symmetry forbids the µ term at the perturbative level.

Further, we demonstrate additional features that were absent from DHL [16] including

• the compatibility of charges with (partial) unification, specifically whether the
matter charges commute with the Pati–Salam group GPS = SU(4) × SU(2)L ×
SU(2)R;2

• a natural suppression of the neutrino masses either through the Weinberg operator
or from supersymmetry breaking, thus yielding light Dirac neutrinos.

This paper is organized as follows. In Section 2, we present a novel method for
classifying discrete symmetries. We comment on anomaly cancellation, provide a recipe
for identifying and eliminating equivalent symmetries, and comment on the limitations
of our analysis. In Section 3, we illustrate our methods by presenting models obtained
for anomaly–universal as well as non–universal scenarios while considering both R parity
violation and conservation. Section 4 contains our conclusions.

2 Classification

2.1 Goals of our classification

In the MSSM, the renormalizable superpotential terms consistent with the SM gauge
symmetry are

Wren = µHuHd + Y u
fg Qf U g Hu + Y d

fg Qf Dg Hd + Y e
fg Lf Eg Hd

+ κf Lf Hu + λfgh Lf Lg Eh + λ′ fgh Lf Qg Dh + λ′′ fgh U f Dg Dh , (2.1)

2We do not consider compatibility of matter charges with SU(5) or SO(10) in the case of RPV. This
is because, if U DD is allowed, so is automatically LLE, and vice versa. See [20] for a discussion of R
parity violation in settings with GUT relations.

2



• universal anomaly cancellation up to order 12
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BNV at renormalizable superpotential

N qQ qŪ qD̄ qL qĒ qHu qHd
qθ

4 0 2 2 0 2 0 0 1
8 4 6 6 4 6 0 0 1
9 1 5 5 1 5 0 0 3
12 4 2 2 4 2 0 0 3
16 4 6 6 4 6 8 8 1
18 1 14 14 1 14 9 9 3
24 4 2 2 4 2 0 0 3
36 4 2 2 4 2 0 0 3
48 4 2 2 4 2 0 0 3
72 4 2 2 4 2 0 0 3
144 4 2 2 4 2 0 0 3

Table B.1: R
N symmetries with renormalizable U DD, matter charges that commute

with PS and the Higgs charges which fulfill the GM condition qHu + qHd
= 0 mod N .

C (R)
N

symmetries of B violating settings

Here we list the (R)
N≤12 inequivalent symmetries of settings with renormalizable !!B.

symmetry residual symmetry
N Q U D L E Hu Hd θ N ′ Q U D L E Hu Hd W GS
5 2 2 0 2 0 3 0 1 − − !
6 1 2 5 1 5 3 0 0 6 1 2 5 1 5 3 0 − !
6 1 0 1 3 5 1 0 1 2 1 0 1 1 1 1 0 ! !
6 1 4 3 3 1 5 0 2 2 1 0 1 1 1 1 0 ! !
8 4 6 6 4 6 0 0 1 − − !
9 1 2 8 1 8 6 0 0 9 1 2 8 1 8 6 0 − −
9 1 5 5 1 5 0 0 3 3 1 2 2 1 2 0 0 − −
10 2 2 0 2 0 8 0 1 − − !
10 7 2 5 7 5 3 0 1 2 1 0 1 1 1 1 0 − !
12 2 2 0 2 0 10 0 1 − − −
12 0 10 2 4 10 4 0 1 − − !
12 0 10 2 8 6 4 0 1 − − !
12 2 2 0 10 4 10 0 1 − − −
12 0 6 6 4 2 0 0 3 3 0 0 0 2 1 0 0 − !

Table C.1: Anomaly–universal !!B symmetries up to order 12. We specify the residual
symmetry after the breaking of the R symmetry, and show in the W column if the
Weinberg operator LHu LHu (O5) is allowed. The last column indicates whether or not
a non–trivial GS mechanism is at work.

22



• BNV at renormalizable super potential

• UcDcDc allowed at renormalizable superpotential

• Compatible with Pati-Salam partial unification


• no neutron-antineutron oscillation
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Example: Z8R Symmetry

Field Q U D L E Hu Hd θ
R
12 4 4 0 0 4 6 10 1

Table 3.2: Anomaly–universal effective R parity conserving symmetry R
12.

3.3.2 B violation at the renormalizable level

For the case of baryon number violating RPV setting, we impose the existence of the
U DD operator, and, at the same time, the absence of the LLE term. Following
DHL [16], the full set of phenomenological constraints can be specified as

!!B RPV !

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2qHd
+ qHu + 3qQ − 4qθ = 0 mod N (U DD) ,

qL − qHd
≠ 0 mod N (LLE) ,

qHu + qHd
− 2qθ ≠ 0 mod N (HuHd) ,

qL + qHu − 2qθ ≠ 0 mod N (LHu) ,
3qQ + qL − 2qθ ≠ 0 mod N (QQQL) .

(3.10)

Additionally, we will require that the LHuHdHu term be absent.7 This results in

qL + qHd
+ 2qHu − 2qθ ≠ 0 mod N (LHu HdHu) (3.11)

A complete list of unique (GS) anomaly–universal solutions up to order 12, satisfying
the constraints of (3.10) and (3.11), can be found in Table C.1 in Appendix C. This set
contains a ˜R

8 symmetry with the charge assignment of Table 3.3. This ˜R
8 symmetry is

not only compatible with the Pati–Salam group, but also allows for the Giudice–Masiero
mechanism to be implemented.

Field Q U D L E Hu Hd θ
˜R
8 4 6 6 4 6 0 0 1

Table 3.3: Anomaly–universal !!B RPV symmetry ˜R
8 .

3.3.3 L violation at the renormalizable level

Similarly, we can identify (GS) anomaly–universal symmetries which violate lepton num-
ber at the renormalizable level and satisfy the appropriate phenomenological constraints.
However, a straightforward argument [20] appears to demonstrate that all such symme-
tries are disfavored. Let us review this in more detail.

7If the ✓L operator LHu HdHu is allowed, its combination with the!!B term U DD could result in a
fast proton decay. DHL [16] argue that, since the relevant U DD coupling contributing to such process
is λ

′′

112, which is already strongly bounded by the experiment [8,38,39], the LHu Hd Hu operator needs
not be explicitly forbidden. However, we will take on a more conservative position, and impose its
absence.

14



Solutions w/ Non-universal Anomaly Cancellation

33

R parity
conserved

λ & λ′ ̸= 0
before
✘✘✘✘SUSY

λ′′ ̸= 0
before
✘✘✘✘SUSY

R
4 − ˜R

8

λ · λ′′ and λ′ · λ′′

small: −

yes

no no

yes

yes no

Figure 1: Summary of our results. We present the simplest discrete R symmetries with
universal anomalies and the specified properties. The symbol “–” indicates the absence
of a solution.

R parity
conserved

λ & λ′ ̸= 0
before
✘✘✘✘SUSY

λ′′ ̸= 0
before
✘✘✘✘SUSY

R
8 − ˜R

4

λ · λ′′ and λ′ · λ′′

small: R
3

yes

no no

yes

yes no

Figure 2: Summary of our results. We present the simplest discrete R symmetries with
non–universal anomalies and the specified properties. The symbol “–” indicates the
absence of a solution.

20

• allowing for a GS cancellation of discrete anomalies with non–universal couplings
of a;

• identifying redundant symmetries in DHL [16];

• presenting a novel method allowing one to systematically identify the maximal
symmetry compatible with given selection criteria.

Moreover, we will also comment on R parity conserving scenarios.
In our analysis, we consider both R and non–R Abelian discrete symmetries, and

impose that

1. the nucleon is sufficiently long–lived, i.e. that the dangerous operators are either
forbidden by a residual M symmetry or sufficiently suppressed by appropriate
powers of m3/2/Λ. Here, Λ is the cutoff scale which we take to be the Planck scale
MP unless stated otherwise. We will also discuss settings with a lower cutoff scale.

2. the discrete symmetry forbids the µ term at the perturbative level.

Further, we demonstrate additional features that were absent from DHL [16] including

• the compatibility of charges with (partial) unification, specifically whether the
matter charges commute with the Pati–Salam group GPS = SU(4) × SU(2)L ×
SU(2)R;2

• a natural suppression of the neutrino masses either through the Weinberg operator
or from supersymmetry breaking, thus yielding light Dirac neutrinos.

This paper is organized as follows. In Section 2, we present a novel method for
classifying discrete symmetries. We comment on anomaly cancellation, provide a recipe
for identifying and eliminating equivalent symmetries, and comment on the limitations
of our analysis. In Section 3, we illustrate our methods by presenting models obtained
for anomaly–universal as well as non–universal scenarios while considering both R parity
violation and conservation. Section 4 contains our conclusions.

2 Classification

2.1 Goals of our classification

In the MSSM, the renormalizable superpotential terms consistent with the SM gauge
symmetry are

Wren = µHuHd + Y u
fg Qf U g Hu + Y d

fg Qf Dg Hd + Y e
fg Lf Eg Hd

+ κf Lf Hu + λfgh Lf Lg Eh + λ′ fgh Lf Qg Dh + λ′′ fgh U f Dg Dh , (2.1)

2We do not consider compatibility of matter charges with SU(5) or SO(10) in the case of RPV. This
is because, if U DD is allowed, so is automatically LLE, and vice versa. See [20] for a discussion of R
parity violation in settings with GUT relations.

2



Example: Z3R Symmetry

• BNV and LNV forbidden at renormalizable superpotential


• Non-universal anomaly cancellation

• BNV and LNV generated after SUSY breaking
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Lepton-violating Symmetries

● L-violating symmetries (renorm. level) disfavored

→     of μ-term size 

● Can avoid conclusion, if L-violation and μ-term generated after SUSY/R breaking

● “non-perturbative” 

- non-universal anomalies (proof in paper no solution for universal)

– B, L violation appears after SUSY/R breaking

– assuming SUSY/R breaking is of order

–             is suppressed by          , but the μ term is of order

[Chen, Ratz & VT (2015)]

[Acharya, et. al. (2014)]

counter-example

Lepton-violating Symmetries

● L-violating symmetries (renorm. level) disfavored

→     of μ-term size 

● Can avoid conclusion, if L-violation and μ-term generated after SUSY/R breaking

● “non-perturbative” 

- non-universal anomalies (proof in paper no solution for universal)

– B, L violation appears after SUSY/R breaking

– assuming SUSY/R breaking is of order

–             is suppressed by          , but the μ term is of order

[Chen, Ratz & VT (2015)]

[Acharya, et. al. (2014)]

counter-example

neutron-antineutron oscillations allowed, and can be 
enhanced if Mp → M < Mp 



Example: Z3R Symmetry

• BNV and LNV forbidden at renormalizable superpotential


• Non-universal anomaly cancellation

• BNV and LNV generated after SUSY breaking
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counter-example

Lepton-violating Symmetries

● L-violating symmetries (renorm. level) disfavored

→     of μ-term size 

● Can avoid conclusion, if L-violation and μ-term generated after SUSY/R breaking

● “non-perturbative” 
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– assuming SUSY/R breaking is of order

–             is suppressed by          , but the μ term is of order

[Chen, Ratz & VT (2015)]
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counter-example

counter example: allowing LNV ⇒ mu ~ kappa ~ m3/2 in SO(10)
Acharya, Kane, Kumar, Lu, Zheng (2014)


