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Primer on Mirror Matter

• Identical copy of SM with opposite parity

• No new parameters

• Long considered a ‘hidden sector’ DM candidate

SM

Phys. Usp. 50 380 (2007)
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Neutron Oscillations

• Small B’ possible due to accumulated MM captured 
by earth

Berezhiani and Bento PRL 96 (2006) 081801
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Previous UCN searches for n → n’

• Strong limits from Serebrov1 if B’= 0 (τ > 448 s)
• Compare to neutron β decay lifetime ~ 15 minutes

• Reanalysis2 with B’≠ 0, anomaly at B’ ~ 100 mG, τ ~ 10 s

• Altarev et al3 scanned 
for B’ up to ±125 mG
• Sensitivity limited by 

large 25 mG step size

• Limit:  τ > 12 s (95% C.L.)

Serebrov, NIMA 611 137 (2009)
Berezhiani and Nesti, Eur. Phys. J C 72 1974 (2012)
Altarev, PRD 80 032003 (2009)



UCN searches

• Disappearance only: study
storage time

• 𝜏𝑠𝑡
−1 = 𝜏β
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• Goals:  Large volume, small μ, high UCN densities

• Considerations: constant μ with B?  unmonitored 
spectral variations?  field uniformity? transport 
in/out of trap?
• Good to have independent approach



Search for n → n’ with CN

1. High neutron flux + long, 
large area guides

2. Magnetic field uniformity 
and control

3. Precise monitoring of 
changes in transmission

4. Regeneration: large area, 
low bkgd detector
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U. Schmidt, Search for Baryon and Lepton number Violations Int’l Workshop (2007)
Z. Berezhiani et al, PRD 96 035039 (2017)
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Contrast: CN vs UCN

• UCN
• Compact!
• Very low flux, 10k’s of bounces
• Measurement cycle ~ minutes, but less sensitive to 

normalization

• CN
• Long beamline required ($$$)
• High flux, few bounces
• Measurement cycle ~ < 1s, but more sensitive to beam 

intensity, detection efficiency
• Back pocket:  regeneration for unambiguous signal



High Flux Isotope Reactor

• 85 MW reactor: highest
reactor based source of 
neutrons for research 
in US
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GP-SANS at HFIR

• Existing instrument: General-
Purpose Small 
Angle Neutron Scattering

• Existing beamlines and 
regeneration detector

• Room for B control coils, 
monitors
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*Note:  heavily subscribed!



• GP-SANS beamline: 1.8 × 1010 n/s,  peaked at 4 Å

• At τ = 15 s expect: 104 n→n’/s; 0.05 n→n’→n/s

GP-SANS neutron flux
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Simulated

Φ = 1.14 × 109
𝑛

𝑐𝑚2𝑠

4 cm × 4 cm aperture, 0.3° divergence
1.8 × 1010 n/s expected in ±20×±20 cm at detector



• Considerations
• Magnetic field control

• Monitoring and detection

• Nonstatistical neutron flux/spectral variations

Stage 1:  Disappearance

11

n

Disappearance region

n’
Monitor

P(n → n′) ∝
𝑡𝐷𝑖𝑠
𝜏

2

Detector



Magnetic field control

• Sensitive to other beamlines, 
some use ~10T magnets 
• 10 mG temporal, 100 mG spatial 

variations;  ~1 G spikes

• Single layer Mu-metal + solenoid 
(z) and Cos-ϴ coils (x-y)
• ~mG level uniformity for 20 cm 

diameter guide
Cos-ϴ coil:

Comsol simulation
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With J. Barrow, B. Chance, B. Rybolt, S. Vavra UTK;  C. Crawford, UKy



Neutron flux monitoring

1S. D. Penn et al, NIMA 457 (2001) 332
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• Detector designed for n-3He 
spin rotation experiment 
(Indiana U.) 
• Implemented for 10-8 level 

asymmetry measurements

• 3He ion chamber1

• n+3He→t+p
• Large signal, well defined 

amplitude, insensitive to gamma 
radiation 

• Current-mode detector: high flux

• Detailed characterizations 
required



Nonstatistical flux variations

• 10-7 level monitoring of transmission goal
• Lots of 2nd order effects become important…

• First trick: run sequence cancels drift (+ - - + - + + -)
• Goal:  sub-second B-field switching

• Obviate monitoring reqs?

• Second trick: Detector 
segmentation1

• Spatial systematics

• 1/f beam noise cancellation

• Sensitivity 10% above stat limit!

1W. M. Snow et al, in prep
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Disappearance sensitivity

• B field step size of 10 mG is sufficient
• Assume 30% upstream monitor required
• Idealized: large guide = no bounces
• Sensitivity up to τ > 18 s (90% C.L)



Stage 2:  Regeneration

• Considerations:
• Somewhat more awkward magnetic field control

• Nominal flux monitoring needed

• Primarily limited by detector backgrounds
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Magnetic field control

• Limited chamber access
• Ambient B field studies: attach 

robot arm to movable detector 
(developed for UCNτ)

• Maps 1.5m radius half-sphere, 
1 mm3 position resolution

A. T. Holley, TTU



Magnetic field scan optimization

• Regeneration more sensitive to B-B’ misalignment

• Optimal sensitivity from 4 point 3D scan (worst 
case β=60°)
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Regeneration detector

• 1 m x 1 m 3He, position-sensitive 
detector1

• n+3He→t+p
• Large signal, well defined amplitude, 

insensitive to gamma radiation 
• 5 mm x 5 mm position resolution

• 2 x 10-4 cps/cm2 background
• Primarily from cosmogenic

neutrons, moderated by
concrete floor

• Can use position cuts and
additional shielding/veto

• Goal: 0.05 cps total

1K. D. Berry et al, NIMA 693 (2012) 179
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Regeneration sensitivity

• B field step size of 5 mG required, 4 point 3D scan

• Assume 1% upstream monitor

• Total background 0.3 cps (1500 mm2 area used)

• Sensitivity up to τ > 15 s (90% C.L)



Simultaneous measurement

• Powerful systematic check to 
produce unambiguous signal

• Reduced statistical sensitivity

• 2 mG steps, 4 pt 3D search

• 30% upstream flux monitor

• Can reach τ < 12 s (90% C.L>) 
in 14 days beamtime

14 days beamtime



What’s next?
• Demonstrate feasibility

• Prototype short section of magnetic field control
• Demonstrate flux monitoring techniques for disappearance

• Phase 1:  Disappearance
• Collimation upgrade in 2018 (reduce magnetic materials)
• Flux monitor characterizations (10-7 level)
• Implement mG-level magnetic field control

• Phase 2: Regeneration 
• Implement mG-level magnetic field control (limited access to 

chamber)
• Implement additional background detectors, shielding, active 

veto system

• Expect to achieve interesting limits with very modest 
costs!
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