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Neutron– antineutron oscillation

Majorana mass of neutron ε(nTCn + n̄TCn̄) violating B by two units
comes from six-fermions effective operator 1

M5 (udd)(udd)

%B=2
u

d

d d

d
u

G'B=2

It causes transition n(udd)→ n̄(ūd̄ d̄), with oscillation time τ = ε−1

ε = 〈n|(udd)(udd)|n̄〉 ∼ Λ6
QCD

M5 ∼
(

100 TeV
M

)5 × 10−25 eV

Key moment: n − n̄ oscillation destabilizes nuclei:
(A,Z )→ (A− 1, n̄,Z )→ (A− 2,Z/Z − 1) + π’s

Present bounds on ε from nuclear stability
ε < 1.2× 10−24 eV → τ > 1.3× 108 s Fe, Soudan 2002
ε < 2.5× 10−24 eV → τ > 2.7× 108 s O, SK 2015
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Free neutron– antineutron oscillation

Two states, n and n̄

H =

(
mn + µnBσ ε

ε mn − µnBσ

)

Oscillation probability Pnn̄(t) = ε2

ω2
B

sin2 (ωB t), ωB = µnB

If ωBt � 1, then Pnn̄(t) = 1
2 (ε/ωB)2 = (εt)2

(ωB t)2

If ωBt < 1, then Pnn̄(t) = (t/τ)2 = (εt)2

”Quasi-free” regime: for a given free flight time t, magnetic field
should be properly suppressed to achieve ωBt < 1.
More suppression makes no sense !

Exp. Baldo-Ceolin et al, 1994 (ILL, Grenoble) : t ' 0.1 s, B < 100 nT

τ > 2.7× 108 → ε < 7.7× 10−24 eV
At ESS 2 orders of magnitude better sensitivity can be achieved,
down to ε ∼ 10−25 eV
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SU(3)× SU(2)× U(1) + SU(3)′ × SU(2)′ × U(1)′

G × G ′

  

Regular world Mirror world 

• Two identical gauge factors, e.g. SU(5)× SU(5)′, with identical field
contents and Lagrangians: Ltot = L+ L′ + Lmix

• Exact parity G → G ′: no new parameters in dark Lagrangian L′

• MM is dark (for us) and has the same gravity

• MM is identical to standard matter, (asymmetric/dissipative/atomic)
but realized in somewhat different cosmological conditions: T ′/T � 1.

• New interactions between O & M particles Lmix
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SU(3)× SU(2)× U(1) vs. SU(3)′ × SU(2)′ × U(1)′

Two parities

Fermions and anti-fermions :

qL =

(
uL
dL

)
, lL =

(
νL
eL

)
; uR , dR , eR

B=1/3 L=1 B=1/3 L=1

q̄R =

(
ūR
d̄R

)
, l̄R =

(
ν̄R
ēR

)
; ūL, d̄L, ēL

B=-1/3 L=-1 B=-1/3 L=-1

Twin Fermions and anti-fermions :

q′L =

(
u′L
d ′L

)
, l ′L =

(
ν′L
e′L

)
; u′R , d ′R , e′R

B′=1/3 L′=1 B′=1/3 L′=1

q̄′R =

(
ū′R
d̄ ′R

)
, l̄ ′R =

(
ν̄′R
ē′R

)
; ū′L, d̄ ′L, ē′L

B′=-1/3 L′=-1 B′=-1/3 L′=-1

(ūLYuqLφ̄+ d̄LYdqLφ+ ēLYe lLφ) + (uRY
∗
u q̄Rφ+ dRY

∗
d q̄R φ̄+ eRY

∗
e l̄R φ̄)

(ū′LY
′
uq
′
Lφ̄
′+ d̄ ′LY

′
dq
′
Lφ
′+ ē′LY

′
e l
′
Lφ
′) + (u′RY

′∗
u q̄′Rφ

′+d ′RY
′∗
d q̄′R φ̄

′+e′RY
′∗
e l̄ ′R φ̄

′)

Doubling symmetry (L,R → L,R parity): Y ′ = Y B −B ′ → −(B −B ′)

Mirror symmetry (L,R → R, L parity): Y ′ = Y ∗ B − B ′ → B − B ′
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B violating operators between O and M particles

Ordinary quarks u, d ( antiquarks ū, d̄)
Mirror quarks u′, d ′ ( antiquarks ū′, d̄ ′)

• Neutron -mirror neutron mixing – (Active - sterile neutrons)

1
M5 (udd)(udd) and 1

M5 (udd)(u′d ′d ′) (+ h.c.)

%B=2
u

d

d d

d
u

G'B=2

%B=1,�%Ba=�1

d a
u a

d a

u

d

d

G'B=1

Oscillations n(udd)↔ n̄(ūd̄ d̄) (∆B = 2)
n(udd)→ n̄′(ū′d̄ ′d̄ ′), n′(udd)→ n̄(ūd̄ d̄) (∆B = 1, ∆B ′ = −1)

Can co-generate Baryon asymmetries in both worlds
of the same sign, B,B ′ > 0, with Ω′B ' 5 ΩB
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Neutron – mirror neutron mixing

Effective operator 1
M5 (udd)(u′d ′d ′) → mass mixing βnCn′ + h.c.

violating B and B ′ – but conserving B − B ′

%B=1,�%Ba=�1

d a
u a

d a

u

d

d

G'B=1

β = 〈n|(udd)(u′d ′d ′)|n̄′〉 ∼ Λ6
QCD

M5 ∼
(

10 TeV
M

)5 × 10−15 eV

Key observation: n − n̄′ oscillation cannot destabilise nuclei:
(A,Z )→ (A− 1,Z ) + n′(p′e′ν̄′) forbidden by energy conservation
(In principle, it can destabilise Neutron Stars)

n − n̄′ oscillation can be as fast as β−1 = τnn̄′ ∼ 1 s, without
contradicting experimental and astrophysical limits.
(c.f. τnn̄′ > 2.5× 108 s for neutron – antineutron oscillation)

Neutron disappearance n→ n̄′ and regeneration n→ n̄′ → n
can be searched at small scale ‘Table Top’ experiments



Unusual effects
in n − n′
conversion

Sci-fi in
two parts

Zurab Berezhiani

Summary

Preliminaries

Chapter 1

Chapter 2

Seesaw between ordinary and mirror neutrons

d

d

u

S
N N

S

u

d

d

!"#

M M

N$ N$

Spontaneous
Baryon Violation

Zurab Berezhiani

Summary

Neutron-
antineutron
oscillation

Dark Matter

Supersymmetry
and WIMPs

Mirror Matter

Mirror Matter,
B-violation and
Cogenesis

Conclusions

Low scale spontaneous B − L violation
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S u d + S†d N + MDNN ′ + χN 2 + χ†N ′2 + h.c.
φlN + χ†N2 + h.c.
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〈χ〉 = V /
√

2 MN ,MN ∼ V χ = 1√
2
(V + ρ) exp(iβ/V )

mν ∼ v2

MN
∼

(
1014 GeV

V

)
× 0.1 eV

ε ∼ Λ6
QCD

M4
SMN

∼
(

10 TeV
MS

)4(
1014 GeV

V

)
× 10−25 eV

gn = ε
V =

(
ε

10−24 eV

) (
1 MeV

V

)
× 10−30

τ(n → n̄ + β) ∼ 8π
g2

n∆E ∼ 1033 yr if V ∼ 1 MeV

S u d + S†d N + MDNN ′ + χN 2 + χ†N ′2
gn(χnTCn + χ†n′TCn′ + h.c.)

εnn̄ ∼ Λ6
QCDV

M2
DM

4
S
∼
(

108 GeV
MD

)2 (
1 TeV
MS

)4 (
V

1 MeV

)
× 10−24 eV

τnn̄ > 108 s

n − n′ oscillation with τnn′ ∼ 1 s τnn′ ∼ V
MD
τnn̄

εnn′ ∼ Λ6
QCD

MDM4
S
∼
(

108 GeV
MD

)(
1 TeV
MS

)4

× 10−15 eV

MDM
4
S ∼ (10 TeV)5
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Neutron – mirror neutron oscillation probability

H =

(
mn + µnBσ α

α mn + µnB′σ

)

The probability of n-n’ transition depends on the relative orientation
of magnetic and mirror-magnetic fields. The latter can exist if mirror
matter is captured by the Earth

(Z. Berezhiani, 2009)
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In Astrophysics

Neutrons are making 1/7 fraction of baryon mass in the Universe.

But neutrons bound in nuclei cannot oscillate into mirror twins.

n→ n̄′ or n′ → n̄ conversions can be seen only with free neutrons.

But free neutrons are present only in

• Reactors and accelerators (challenge for τnn̄′ < 103 s)

• In Cosmic Rays (fast n′ → n̄ can solve UHECR puzzles)

• During BBN epoch (fast n′ → n̄ can solve Lithium problem)

− Transition n→ n̄′ can take place for (gravitationally) bound n
in Neutron Stars – can be at the origin of pulsar glitches, conversion
of NS into mixed ordinary/mirror NS, or NS evaporation
(can be at the origin of heavy *trans-Iron* elements)
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Getting Energy from Mirror World

I argued (my previous talk) that in O and M worlds baryon asymmetries
have same sign: B,B ′ > 0. So, mirror neutron n′ oscillates into our
antineutron, n′ → n̄, and vice versa, n→ n̄′

Neutrons can be transformed into
antineutrons, but (happily) with
low efficiency: τnn̄ > 108 s

dark neutrons, before they decay,
can be effectively transformed in-
to our antineutrons in controlla-
ble way, by tuning vacuum and
magnetic fields, if τnn̄′ < 103 s

Two civilisations can agree to built scientific reactors and exchange
neutrons ... we could get plenty of energy out of dark matter !
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Positron Pump

First Part: Against Stupidity ...

Second Part: ...The Gods Themselves ...

Third Part: ... Contend in Vain?

”Mit der Dummheit kämpfen Götter
selbst vergebens!” – Friedrich Schiller
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Oscillation between four states

n(udd), n̄(ūd̄ d̄); n′(u′d ′d ′), n̄′(ū′d̄ ′d̄ ′)

Oscillation between four states (n, n̄, n′, n̄′), each with 2 spin states

H =




mn + µnBσ ε α β
ε mn − µnBσ β α
α β mn + µnB′σ ε
β α ε mn − µnB′σ




Now n→ n̄, n→ n′, n→ n̄′ are possible

If B ′ = 0, in quasi-free regime Pnn̄ = (εt)2 + (αβt2)2

If B ′ � 0, in quasi-free regime Pnn̄ = (εt)2

If B ′ � 0 and B = B ′ (resonance) Pnn̄ = (αβt2)2

with disappearance probability Pnn′ + Pnn̄′ = (αt)2 + (βt)2

ε < 10−24 eV (τnn̄ > 108 s) , α, β < 10−15 eV (τnn′ > 1 s)

Shortcut to n→ n̄ transition ? regeneration n→ n′ → n̄
Interesting for Leah’s HFIR experiment with scanning over B ?
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Majorana Machine

Can be neutrons efficiently transformed into antineutrons
using Mirror World as shortcut ?

So we could get antimatter directly from matter
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Not so Perfect Mirror ...
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The neutron enigma ...

April 2016, ScientificAmerican.com 37Illustration by Bill Mayer

I N  B R I E F

The best experiments  in the world cannot agree on how 
long neutrons live before decaying into other particles. 
Two main types  of experiments are under way: bottle 
traps count the number of neutrons that survive after var-

ious intervals, and beam experiments look for the parti-
cles into which neutrons decay. 
Resolving the discrepancy  is vital to answering a number 
of fundamental questions about the universe. 

Two precision experiments disagree on how long  
neutrons live before decaying. Does the discrepancy reflect 

measure ment errors or point to some deeper mystery?

By Geoffrey L. Greene and Peter Geltenbort

PA RT I C L E  P H YS I CS

enwgmaneutronthe
enwgmaneutronthe
enwgmaneutronthe
enwgmaneutronthe

sad0416Gree3p.indd   37 2/11/16   6:07 PM

38 Scientifi c American, April 2016

LUCKILY FOR LIFE ON EARTH, MOST MATTER IS NOT RADIOACTIVE. WE TAKE THIS FACT FOR 
granted, but it is actually somewhat surprising because the neutron, one of the 
two components of atomic nuclei (along with the proton), is prone to radioac-
tive decay. Inside an atomic nucleus, a typical neutron can survive for a very 
long time and may never decay, but on its own, it will transform into other par-
ticles within 15 minutes, more or less. The words “more or less” cover a disturb-
ing gap in physicists’ understanding of this particle. Try as we might, we have 

not been able to accurately measure the neutron lifetime. 

This “neutron lifetime puzzle” is not just embarrassing for us 
experimentalists; resolving it is vital for understanding the na-
ture of the universe. The neutron decay process is one of the sim-
plest examples of the nuclear “weak” interaction—one of nature’s 
four fundamental forces. To truly understand the weak force, we 
must know how long neutrons live. Furthermore, the survival 
time of the neutron determined how the lightest chemical ele-
ments fi rst formed after the big bang. Cosmologists would like to 
calculate the expected abundances of the elements and compare 
them with astrophysical measurements: agreement would con-
fi rm our theoretical picture, and discrepancy could indicate that 
undiscovered phenomena aff ected the process. To make such a 
comparison, however, we need to know the neutron lifetime. 

More than 10 years ago two experimental groups, one a Rus-
sian-led team in France and the other a team in the U.S., attempt-
ed separately to precisely measure the lifetime. One of us (Gelten-
bort) was a member of the fi rst team, and the other (Greene) was 
a member of the second. Along with our colleagues, we were sur-
prised and somewhat disturbed to fi nd that our results disagreed 
considerably. Some theoreticians suggested that the diff erence 
arose from exotic physics—that some neutrons in the experi-
ments might have transformed into particles never before detect-
ed, which would have aff ected the diff erent experiments in diver-
gent ways. We, however, suspected a more mundane reason—per-
haps one of our groups, or even both, had simply made a mistake 
or, more likely, had overestimated the accuracy of its experiment. 
The U.S. team recently completed a long, painstaking project to 
study the most dominant source of uncertainty in its experiment 
in hopes of resolving the discrepancy. Rather than clearing up the 
situation, that eff ort confi rmed our earlier result. Similarly, other 
re  searchers later confi rmed the fi ndings of Geltenbort’s team. 
This discrepancy has left us even more perplexed. But we are not 
giving up—both groups and others continue to seek answers.

TIMING NEUTRONS
IN THEORY,  measuring the neutron lifetime should be straightfor-
ward. The physics of nuclear decay are well understood, and we 

have sophisticated techniques for studying the process. We know, 
for instance, that if a particle has the possibility of transforming 
into a lower-mass particle or particles while conserving such char-
acteristics as charge and spin angular momentum, it will. Free 
neutrons display this instability. In a process called beta decay, a 
neutron breaks up into a proton, an electron and an antineutrino 
(the antimatter counterpart of the neutrino), which collectively 
sum to a slightly lower mass but the same total charge, spin angu-
lar momentum and other conserved properties. These conserved 
properties include “mass-energy,” meaning that the daughter 
particles carry the diff erence in mass in the form of kinetic ener-
gy, the energy of motion.

We cannot predict exactly when a particular neutron will de -
cay because the process is a fundamentally random quantum phe-
nomenon—we can say only how long neutrons live on average. 
Thus, we must measure the average neutron lifetime by studying 
the decay of many neutrons. 

Investigators have employed two experimental methods—one 
called the “bottle” technique and the other the “beam” ap  proach. 
Bottle experiments confi ne neutrons in a container and count 
how many are left after a given time. The beam method, in con-
trast, looks not for the disappearance of neutrons but rather for 
the appearance of the particles into which they decay.

The bottle approach is particularly challenging because neu-
trons can pass easily through matter and thus through the walls 
of most containers. Following a suggestion fi rst explicitly made by 
Russian physicist Yuri Zel’dovich, experimentalists who use the 
bottle approach—as Geltenbort and his colleagues in France do—
get around the problem by trapping extremely cold neutrons 
(that is, those with a very low kinetic energy) within a container of 
very smooth walls [see box on page 40]. If the neutrons are slow 
enough and the bottle smooth enough, they refl ect from the walls 
and hence remain in the bottle. To achieve this eff ect, the neu-
trons must move at speeds on the order of just a few meters per 
second, as opposed to the roughly 10 million meters per second 
neutrons travel when emitted during nuclear fi ssion, for instance. 
These “ultracold” neutrons are so slow that you could “outrun” 

Peter Geltenbort  �Ò�D�ÒÜD|��ÒZ�r§Ü�ÒÜ�DÜ�Ü�r��§ÒÜ�ÜæÜ�
"Dær�"D§�rè�§��§��Ír§«O�rd��ÍD§Zrd�é�rÍr��r�æÒrÒ�
«§r�«{�Ü�r�¡«ÒÜ��§Ür§Òr�§ræÜÍ«§�Ò«æÍZrÒ��§�Ü�r�é«Í�f�
Ü«�ÍrÒrDÍZ��Ü�r�{æ§fD¡r§ÜD��§DÜæÍr�«{�Ü��Ò�µDÍÜ�Z�r»
«§r�«{�Ü�r�¡«ÒÜ��§Ür§Òr�§ræÜÍ«§�Ò«æÍZrÒ��§�Ü�r�é«Í�f�
Ü«�ÍrÒrDÍZ��Ü�r�{æ§fD¡r§ÜD��§DÜæÍr�«{�Ü��Ò�µDÍÜ�Z�r»

�y¹��àyĂ�"Î��àyy´y���Ò�D�µÍ«{rÒÒ«Í�«{�µ�ëÒ�ZÒ�DÜ�Ü�r�7§�èrÍÒ�Üë�
«{�5r§§rÒÒrrd�é�Ü��D��«�§Ü�Dµµ«�§Ü¡r§Ü�DÜ�Ü�r�'D��2�f�r�%DÜ�«§D��
"DO«ÍDÜ«ÍëÊÒ�3µD��DÜ�«§�%ræÜÍ«§�3«æÍZr»��r��DÒ�Orr§�ÒÜæfë�§��
Ü�r�µÍ«µrÍÜ�rÒ�«{�Ü�r�§ræÜÍ«§�{«Í�¡«Ír�Ü�D§��ð�ërDÍÒ»
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Two methods to measure the neutron lifetime

diff erence of this size by chance alone is less than one part in 
10,000. We must therefore seriously consider the possibility that 
the discrepancy results from an unknown unknown—we have 
missed something important.

EXOTIC PHYSICS
AN EXCITING  explanation for the diff erence could be that it actually 
re  fl ects some exotic physical phenomenon not yet discovered. A 
reason to think such a phenomenon might exist is that although 
the bottle and beam methods disagree, other beam studies show 
good agreement among them selves, as do other bottle studies. 

Imagine, for example, that in addition to the regular beta de -
cay, neutrons decayed via some previously unknown process that 
does not create the protons sought in beam experiments. The bot-
tle experiments, which count the total number of “lost” neutrons, 
would count both the neutrons that disappeared via beta decay 
as well as those that underwent this second process. We would 
therefore conclude that the neutron lifetime was shorter than 
that from “normal” beta decay alone. Meanwhile the beam exper-
iments would dutifully record only beta decays that produce pro-
tons and would thus result in a larger value for the lifetime. So 
far, as we have seen, the beam experiments do measure a slightly 
longer lifetime than the bottles. 

A few theorists have taken this notion seriously. Zurab Berezhi-
ani of the University of L’Aquila in Italy and his colleagues have 

suggested such a secondary process: a free neutron, they propose, 
might sometimes transform into a hypothesized “mirror neutron” 
that no longer interacts with normal matter and would thus seem 
to disappear. Such mirror matter could contribute to the total 
amount of dark matter in the universe. Although this idea is quite 
stimulating, it remains highly speculative. More defi nitive con-
fi rmation of the divergence between the bottle and beam meth-
ods of measuring the neutron lifetime is necessary before most 
physicists would accept a concept as radical as mirror matter. 

Much more likely, we think, is that one (or perhaps even both) 
of the experiments has underestimated or overlooked a systemat-
ic eff ect. Such a possibility is always present when working with 
delicate and sensitive experimental setups.

WHY THE NEUTRON LIFETIME MATTERS
FIGURING OUT WHAT WE MISSED  will of course give us experimental-
ists peace of mind. But even more important, if we can get to the 
bottom of this puzzle and precisely measure the neutron lifetime, 
we may be able to tackle a number of long-standing, fundamen-
tal questions about our universe.

First of all, an accurate assessment of the timescale of neutron 
decay will teach us about how the weak force works on other parti-
cles. The weak force is responsible for nearly all radioactive de  cays 
and is the reason, for instance, that nuclear fusion occurs within 
the sun. Neutron beta decay is one of the simplest and most pure 
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Diff erent Techniques, 
Diff erent Results

Scientists have tried  two main techniques to measure the average 
neutron lifetime: the “bottle” and the “beam” methods. The various 
bottle measurements over the years tend to agree with one an -
other within their calculated error bars, as do the beam measure-
x³îäÍ�5�x�ßxäø§îä��ß¸�î�x�îÿ¸�îx`�³�Ôøxäj��¸ÿxþxßj�̀ ¸³���`îÍ�
The discrepancy, about eight seconds between the bottle and 
UxD�DþxßD�xäj�Dā�³¸î�äxx�§�¦x�ø`�j�Uøî��î��ä�ä��³���`D³î§ā�
larger than the measurements’ uncertainty, which means the 
divergence repre sents a real problem. Either the researchers have 
underestimated the uncertainty of their results, or, more exciting, 
î�x�l���xßx³`x�Dß�äxä��ß¸�ä¸x�ø³¦³¸ÿ³�Ç�āä�`D§�Ç�x³¸x³¸³Í�

E X P E R I M E N T S

The Bottle Method
'´y�ĀDĂ�ï¹�®yDåùày��¹Ā�¨¹´��́ yùïà¹´å�¨�ÿy��å�ï¹���¨¨�D�̀ ¹´ïD�´yà�Ā�ï��
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®D´Ă�ÈDàï�`¨yå�Ā�¨¨�yå`DÈy��à¹®�ï�y�U¹ïï¨y�ï¹�yāïàDÈ¹¨Dïy�ï¹�D��ĂÈ¹ï�yï�`D¨�
U¹ïï¨y�ï�Dï�̀ ¹´ïD�´å�́ yùïà¹´å�Èyà�y`ï¨Ă�Ā�ï��́ ¹�̈ ¹ååyåÎ
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examples of a weak force interaction. To calculate the details of 
other, more complex nuclear processes involving the weak force, 
we must fi rst fully understand how it operates in neutron decay.

Discerning the exact rate of neutron decay would also help 
test the big bang theory for the early evolution of the cosmos. 
According to the theory, when the universe was about one second 
old, it consisted of a hot, dense mixture of particles: protons, neu-
trons, electrons, and others. At this time, the temperature of the 
universe was roughly 10 billion degrees—so hot that these parti-
cles were too energetic to bind together into nuclei or atoms. 
After about three minutes, the universe expanded and cooled to a 
temperature where protons and neutrons could stick together to 
make the simplest atomic nucleus, deuterium (the heavy isotope 
of hydrogen). From here other simple nuclei were able to form—
deuterium could capture a proton to make an isotope of helium, 
two deuterium nuclei could join together to create heavier heli-
um, and small numbers of larger nuclei formed, up to the ele-
ment lithium (all the heavier elements are thought to have been 
produced in stars many millions of years later). 

This process is known as big bang nucleosynthesis. If, while 
the universe was losing heat, neutrons had decayed at a rate that 
was much faster than the universe cooled, there would have been 
no neutrons left when the universe reached the right tempera-
ture to form nuclei—only the protons would have remained, and 
we would have a cosmos made almost entirely of hydrogen. On 

the other hand, if the neutron lifetime were much longer than the 
time required to cool suffi  ciently for big bang nucleosynthesis, 
the universe would have an overabundance of helium, which in 
turn would have aff ected the formation of the heavier elements 
involved in the evolution of stars and ultimately life. Thus, the 
balance between the universal cooling rate and the neutron life-
time was quite critical for the creation of the elements that make 
up our planet and everything on it. 

From astronomical data we can measure the cosmic ratio of 
helium to hydrogen, as well as the amounts of deuterium and other 
light elements that exist throughout the universe. We would like to 
see if these measurements agree with the numbers predicted by big 
bang theory. The theoretical prediction, however, depends on the 
precise value of the neutron lifetime. Without a reliable value for it, 
our ability to make this comparison is limited. Once the neutron 
lifetime is known more precisely, we can compare the observed 
ratio from astrophysical experiments with the predicted value 
from theory. If they agree, we gain further confi dence in our stan-
dard big bang scenario for how the universe evolved. Of course, if 
they disagree, this model might have to be altered. For instance, 
certain discrepancies might indicate the existence of new exotic 
particles in the universe such as an extra type of neutrino, which 
could have interfered in the process of nucleosynthesis. 

One way to resolve the diff erence between the beam and bot-
tle results is to conduct more experiments using methods of com-
parable accuracy that are not prone to the same, potentially con-
founding systematic errors. In addition to continuing the beam 
and bottle projects, scientists in several other groups worldwide 
are working on alternative methods of measuring the neutron 
lifetime. A group at the Japan Proton Accelerator Research Com-
plex (J-PARC) in Tokai is developing a new beam experiment that 
will detect the electrons rather than protons produced when neu-
trons decay. In another very exciting development, groups at ILL, 
the Petersburg Nuclear Physics Institute in Russia, Los Alamos 
National Laboratory, the Technical University of Munich and the 
Johannes Gutenberg University  Mainz in Germany plan to use 
neutron bottles that confi ne ultracold neutrons with magnetic 
fi elds rather than material walls. This is possible because the neu-
tron, though electrically neutral, behaves as though it is a small 
magnet. The number of neutrons accidentally lost through the 
sides of such bottles should be quite diff erent from that of previ-
ous measurements and thus should produce quite diff erent sys-
tematic uncertainties. We fervently hope that, together, continu-
ing bottle and beam experiments and this next generation of 
measurements will fi nally solve the neutron lifetime puzzle. 
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The Beam Method
In contrast to the bottle method, the beam technique looks not for neutrons 

but for one of their decay products, protons. Scientists direct a stream 

¹��´yùïà¹´å�ï�à¹ù���D´�y¨y`ïà¹®D�´yï�`�ÚïàDÈÛ�®Dmy�¹��D�®D�´yï�`���y¨m�
and ring-shaped high-voltage electrodes. The neutral neutrons pass right 

through, but if one decays inside the trap, the resulting positively charged 

protons will get stuck. The researchers know how many neutrons were in 

the beam, and they know how long they spent passing through the trap, 

so by counting the protons in the trap they can measure the number of 

neutrons that decayed in that span of time. This measurement is the decay 

rate, which is the slope of the decay curve at a given point in time and 

which allows the scientists to calculate the average neutron lifetime.
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diff erence of this size by chance alone is less than one part in 
10,000. We must therefore seriously consider the possibility that 
the discrepancy results from an unknown unknown—we have 
missed something important.

EXOTIC PHYSICS
AN EXCITING  explanation for the diff erence could be that it actually 
re  fl ects some exotic physical phenomenon not yet discovered. A 
reason to think such a phenomenon might exist is that although 
the bottle and beam methods disagree, other beam studies show 
good agreement among them selves, as do other bottle studies. 

Imagine, for example, that in addition to the regular beta de -
cay, neutrons decayed via some previously unknown process that 
does not create the protons sought in beam experiments. The bot-
tle experiments, which count the total number of “lost” neutrons, 
would count both the neutrons that disappeared via beta decay 
as well as those that underwent this second process. We would 
therefore conclude that the neutron lifetime was shorter than 
that from “normal” beta decay alone. Meanwhile the beam exper-
iments would dutifully record only beta decays that produce pro-
tons and would thus result in a larger value for the lifetime. So 
far, as we have seen, the beam experiments do measure a slightly 
longer lifetime than the bottles. 

A few theorists have taken this notion seriously. Zurab Berezhi-
ani of the University of L’Aquila in Italy and his colleagues have 

suggested such a secondary process: a free neutron, they propose, 
might sometimes transform into a hypothesized “mirror neutron” 
that no longer interacts with normal matter and would thus seem 
to disappear. Such mirror matter could contribute to the total 
amount of dark matter in the universe. Although this idea is quite 
stimulating, it remains highly speculative. More defi nitive con-
fi rmation of the divergence between the bottle and beam meth-
ods of measuring the neutron lifetime is necessary before most 
physicists would accept a concept as radical as mirror matter. 

Much more likely, we think, is that one (or perhaps even both) 
of the experiments has underestimated or overlooked a systemat-
ic eff ect. Such a possibility is always present when working with 
delicate and sensitive experimental setups.

WHY THE NEUTRON LIFETIME MATTERS
FIGURING OUT WHAT WE MISSED  will of course give us experimental-
ists peace of mind. But even more important, if we can get to the 
bottom of this puzzle and precisely measure the neutron lifetime, 
we may be able to tackle a number of long-standing, fundamen-
tal questions about our universe.

First of all, an accurate assessment of the timescale of neutron 
decay will teach us about how the weak force works on other parti-
cles. The weak force is responsible for nearly all radioactive de  cays 
and is the reason, for instance, that nuclear fusion occurs within 
the sun. Neutron beta decay is one of the simplest and most pure 
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Diff erent Techniques, 
Diff erent Results

Scientists have tried  two main techniques to measure the average 
neutron lifetime: the “bottle” and the “beam” methods. The various 
bottle measurements over the years tend to agree with one an -
other within their calculated error bars, as do the beam measure-
x³îäÍ�5�x�ßxäø§îä��ß¸�î�x�îÿ¸�îx`�³�Ôøxäj��¸ÿxþxßj�̀ ¸³���`îÍ�
The discrepancy, about eight seconds between the bottle and 
UxD�DþxßD�xäj�Dā�³¸î�äxx�§�¦x�ø`�j�Uøî��î��ä�ä��³���`D³î§ā�
larger than the measurements’ uncertainty, which means the 
divergence repre sents a real problem. Either the researchers have 
underestimated the uncertainty of their results, or, more exciting, 
î�x�l���xßx³`x�Dß�äxä��ß¸�ä¸x�ø³¦³¸ÿ³�Ç�āä�`D§�Ç�x³¸x³¸³Í�

E X P E R I M E N T S

The Bottle Method
'´y�ĀDĂ�ï¹�®yDåùày��¹Ā�¨¹´��́ yùïà¹´å�¨�ÿy��å�ï¹���¨¨�D�̀ ¹´ïD�´yà�Ā�ï��
´yùïà¹´å�D´m�y®ÈïĂ��ï�D�ïyà�ÿDà�¹ùå�ï�®y��´ïyàÿD¨å�ù´myà�ï�y�åD®y�̀ ¹´�
m�ï�¹´å�ï¹�åyy��¹Ā�®D´Ă�ày®D�´Î�5�yåy�ïyåïå���¨¨��´�È¹�´ïå�D¨¹´��D�̀ ùàÿy�ï�Dï�
àyÈàyåy´ïå�´yùïà¹´�my`DĂ�¹ÿyà�ï�®yÎ��à¹®�ï��å�`ùàÿyj�å`�y´ï�åïå�ùåy�D�å�®È¨y�
�¹à®ù¨D�ï¹�`D¨`ù¨Dïy�ï�y�DÿyàD�y�́ yùïà¹´�̈ ��yï�®yÎ�
y`Dùåy�́ yùïà¹´å�¹``D�
å�¹´D¨¨Ă�yå`DÈy�ï�à¹ù���ï�y�ĀD¨¨å�¹��ï�y�U¹ïï¨yj�å`�y´ï�åïå�ÿDàĂ�ï�y�å�Ćy�¹��
ï�y�U¹ïï¨y�Då�Āy¨¨�Då�ï�y�y´yà�Ă�¹��ï�y�́ yùïà¹´å�U¹ï��¹��Ā��`��D��y`ï��¹Ā�
®D´Ă�ÈDàï�`¨yå�Ā�¨¨�yå`DÈy��à¹®�ï�y�U¹ïï¨y�ï¹�yāïàDÈ¹¨Dïy�ï¹�D��ĂÈ¹ï�yï�`D¨�
U¹ïï¨y�ï�Dï�̀ ¹´ïD�´å�́ yùïà¹´å�Èyà�y`ï¨Ă�Ā�ï��́ ¹�̈ ¹ååyåÎ
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diff erence of this size by chance alone is less than one part in 
10,000. We must therefore seriously consider the possibility that 
the discrepancy results from an unknown unknown—we have 
missed something important.

EXOTIC PHYSICS
AN EXCITING  explanation for the diff erence could be that it actually 
re  fl ects some exotic physical phenomenon not yet discovered. A 
reason to think such a phenomenon might exist is that although 
the bottle and beam methods disagree, other beam studies show 
good agreement among them selves, as do other bottle studies. 

Imagine, for example, that in addition to the regular beta de -
cay, neutrons decayed via some previously unknown process that 
does not create the protons sought in beam experiments. The bot-
tle experiments, which count the total number of “lost” neutrons, 
would count both the neutrons that disappeared via beta decay 
as well as those that underwent this second process. We would 
therefore conclude that the neutron lifetime was shorter than 
that from “normal” beta decay alone. Meanwhile the beam exper-
iments would dutifully record only beta decays that produce pro-
tons and would thus result in a larger value for the lifetime. So 
far, as we have seen, the beam experiments do measure a slightly 
longer lifetime than the bottles. 

A few theorists have taken this notion seriously. Zurab Berezhi-
ani of the University of L’Aquila in Italy and his colleagues have 

suggested such a secondary process: a free neutron, they propose, 
might sometimes transform into a hypothesized “mirror neutron” 
that no longer interacts with normal matter and would thus seem 
to disappear. Such mirror matter could contribute to the total 
amount of dark matter in the universe. Although this idea is quite 
stimulating, it remains highly speculative. More defi nitive con-
fi rmation of the divergence between the bottle and beam meth-
ods of measuring the neutron lifetime is necessary before most 
physicists would accept a concept as radical as mirror matter. 

Much more likely, we think, is that one (or perhaps even both) 
of the experiments has underestimated or overlooked a systemat-
ic eff ect. Such a possibility is always present when working with 
delicate and sensitive experimental setups.

WHY THE NEUTRON LIFETIME MATTERS
FIGURING OUT WHAT WE MISSED  will of course give us experimental-
ists peace of mind. But even more important, if we can get to the 
bottom of this puzzle and precisely measure the neutron lifetime, 
we may be able to tackle a number of long-standing, fundamen-
tal questions about our universe.

First of all, an accurate assessment of the timescale of neutron 
decay will teach us about how the weak force works on other parti-
cles. The weak force is responsible for nearly all radioactive de  cays 
and is the reason, for instance, that nuclear fusion occurs within 
the sun. Neutron beta decay is one of the simplest and most pure 
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Diff erent Techniques, 
Diff erent Results

Scientists have tried  two main techniques to measure the average 
neutron lifetime: the “bottle” and the “beam” methods. The various 
bottle measurements over the years tend to agree with one an -
other within their calculated error bars, as do the beam measure-
x³îäÍ�5�x�ßxäø§îä��ß¸�î�x�îÿ¸�îx`�³�Ôøxäj��¸ÿxþxßj�̀ ¸³���`îÍ�
The discrepancy, about eight seconds between the bottle and 
UxD�DþxßD�xäj�Dā�³¸î�äxx�§�¦x�ø`�j�Uøî��î��ä�ä��³���`D³î§ā�
larger than the measurements’ uncertainty, which means the 
divergence repre sents a real problem. Either the researchers have 
underestimated the uncertainty of their results, or, more exciting, 
î�x�l���xßx³`x�Dß�äxä��ß¸�ä¸x�ø³¦³¸ÿ³�Ç�āä�`D§�Ç�x³¸x³¸³Í�
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The Bottle Method
'´y�ĀDĂ�ï¹�®yDåùày��¹Ā�¨¹´��́ yùïà¹´å�¨�ÿy��å�ï¹���¨¨�D�̀ ¹´ïD�´yà�Ā�ï��
´yùïà¹´å�D´m�y®ÈïĂ��ï�D�ïyà�ÿDà�¹ùå�ï�®y��´ïyàÿD¨å�ù´myà�ï�y�åD®y�̀ ¹´�
m�ï�¹´å�ï¹�åyy��¹Ā�®D´Ă�ày®D�´Î�5�yåy�ïyåïå���¨¨��´�È¹�´ïå�D¨¹´��D�̀ ùàÿy�ï�Dï�
àyÈàyåy´ïå�´yùïà¹´�my`DĂ�¹ÿyà�ï�®yÎ��à¹®�ï��å�`ùàÿyj�å`�y´ï�åïå�ùåy�D�å�®È¨y�
�¹à®ù¨D�ï¹�`D¨`ù¨Dïy�ï�y�DÿyàD�y�́ yùïà¹´�̈ ��yï�®yÎ�
y`Dùåy�́ yùïà¹´å�¹``D�
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®D´Ă�ÈDàï�`¨yå�Ā�¨¨�yå`DÈy��à¹®�ï�y�U¹ïï¨y�ï¹�yāïàDÈ¹¨Dïy�ï¹�D��ĂÈ¹ï�yï�`D¨�
U¹ïï¨y�ï�Dï�̀ ¹´ïD�´å�́ yùïà¹´å�Èyà�y`ï¨Ă�Ā�ï��́ ¹�̈ ¹ååyåÎ
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diff erence of this size by chance alone is less than one part in 
10,000. We must therefore seriously consider the possibility that 
the discrepancy results from an unknown unknown—we have 
missed something important.

EXOTIC PHYSICS
AN EXCITING  explanation for the diff erence could be that it actually 
re  fl ects some exotic physical phenomenon not yet discovered. A 
reason to think such a phenomenon might exist is that although 
the bottle and beam methods disagree, other beam studies show 
good agreement among them selves, as do other bottle studies. 

Imagine, for example, that in addition to the regular beta de -
cay, neutrons decayed via some previously unknown process that 
does not create the protons sought in beam experiments. The bot-
tle experiments, which count the total number of “lost” neutrons, 
would count both the neutrons that disappeared via beta decay 
as well as those that underwent this second process. We would 
therefore conclude that the neutron lifetime was shorter than 
that from “normal” beta decay alone. Meanwhile the beam exper-
iments would dutifully record only beta decays that produce pro-
tons and would thus result in a larger value for the lifetime. So 
far, as we have seen, the beam experiments do measure a slightly 
longer lifetime than the bottles. 

A few theorists have taken this notion seriously. Zurab Berezhi-
ani of the University of L’Aquila in Italy and his colleagues have 

suggested such a secondary process: a free neutron, they propose, 
might sometimes transform into a hypothesized “mirror neutron” 
that no longer interacts with normal matter and would thus seem 
to disappear. Such mirror matter could contribute to the total 
amount of dark matter in the universe. Although this idea is quite 
stimulating, it remains highly speculative. More defi nitive con-
fi rmation of the divergence between the bottle and beam meth-
ods of measuring the neutron lifetime is necessary before most 
physicists would accept a concept as radical as mirror matter. 

Much more likely, we think, is that one (or perhaps even both) 
of the experiments has underestimated or overlooked a systemat-
ic eff ect. Such a possibility is always present when working with 
delicate and sensitive experimental setups.

WHY THE NEUTRON LIFETIME MATTERS
FIGURING OUT WHAT WE MISSED  will of course give us experimental-
ists peace of mind. But even more important, if we can get to the 
bottom of this puzzle and precisely measure the neutron lifetime, 
we may be able to tackle a number of long-standing, fundamen-
tal questions about our universe.

First of all, an accurate assessment of the timescale of neutron 
decay will teach us about how the weak force works on other parti-
cles. The weak force is responsible for nearly all radioactive de  cays 
and is the reason, for instance, that nuclear fusion occurs within 
the sun. Neutron beta decay is one of the simplest and most pure 
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Diff erent Techniques, 
Diff erent Results

Scientists have tried  two main techniques to measure the average 
neutron lifetime: the “bottle” and the “beam” methods. The various 
bottle measurements over the years tend to agree with one an -
other within their calculated error bars, as do the beam measure-
x³îäÍ�5�x�ßxäø§îä��ß¸�î�x�îÿ¸�îx`�³�Ôøxäj��¸ÿxþxßj�̀ ¸³���`îÍ�
The discrepancy, about eight seconds between the bottle and 
UxD�DþxßD�xäj�Dā�³¸î�äxx�§�¦x�ø`�j�Uøî��î��ä�ä��³���`D³î§ā�
larger than the measurements’ uncertainty, which means the 
divergence repre sents a real problem. Either the researchers have 
underestimated the uncertainty of their results, or, more exciting, 
î�x�l���xßx³`x�Dß�äxä��ß¸�ä¸x�ø³¦³¸ÿ³�Ç�āä�`D§�Ç�x³¸x³¸³Í�
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The Bottle Method
'´y�ĀDĂ�ï¹�®yDåùày��¹Ā�¨¹´��́ yùïà¹´å�¨�ÿy��å�ï¹���¨¨�D�̀ ¹´ïD�´yà�Ā�ï��
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  See a video about neutron beta decay at  3`�y´ï���`�®yà�`D´Î`¹®ëDÈà÷ĈÀêë́ yùïà¹´�¨��yï�®ySCIENTIFIC AMERICAN ONLINE  
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Neutron Lifetime Measurements
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Beam method average* (blue zone):

888.0 +– 2.1 seconds

1990
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1995 2000 2005 2010 2015

Bottle method average (green zone):

879.6 +– 0.6 seconds

Uncertainty

Disagreement

*The beam method average does not include the 2005 measurement, which was superseded by the 2013 beam study.
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Why the neutron lifetime measured in UCN traps is smaller than that
measured in beam method ? Missing decay channel seems impossible
(neutron would be unstable also in nuclei).
But n→ n′ conversion can be plausible explanation

+ beta-decay of n′ in invisible channel

Something new should be added – transitional magnetic moments
between n and n′ (In preparation with Kamyshkov et al.)
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n − n′ transitional magnetic moment

n − n′ mass mixing βnCn′ + h.c.

transitional magnetic moments µnn′(Fµν + F ′µν)nCσµνn′ + h.c.

Hamiltonian of n and n′ system becomes

H =

(
mn + µnBσ α + xµn(B + B′)σ

α + xµn(B + B′)σ mn + µnB′σ

)
, x =

µnn′

µn

If B � B ′ (or B ′ � B), oscillation probability becomes Pnn̄′ = x2.

Interplay of α and µnn′ can alleviate problem ....
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Toccata: invisible decay

Imagine that mirror parity is not perfect,
but it is mildly broken (e.g. by some parity odd parity scalar)

So that particle masses in O and M sectors have tiny differences:

mn > m′n, mn −m′n = ∆m ≤ 1 MeV, and |m′p −m′n| ' MeV

Now free neutron can decay in invisible mode n→ n′ + η, where η
can be some massless boson. E.g. it can be Goldstone if mass mixing
term βnCn′ + h.c. emerges via spontaneous breaking of
U(1)B × U(1)′B by some Higgs χ(1, 1).

Trap method – the neutron total width: τ−1
dec = Γtot = Γvis + Γinv

beam method – beta-decay width Γvis(n→ peν̄) = τ−1
inv ' 10−27 GeV.

Γinv(n→ n′η) ' 10−29 will suffice for 1 % discrepancy ...
E.g. if m′p > mn > mp > m′n, n′ can be self-interacting DM
(σ/m ∼ 1b/GeV), but also mirror hydrogen fraction can present and
some mirror helium (as dissipative component)
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... and Fuga: not so invisible decay via µnn′

If decay occurs via transitional magnetic moment:

Γ(n→ n′γ′, γ) = 1
8πµ

2
nn′m

3
n

(
1− m′2n

m2
n

)2

= 4α2x2mn(∆m/mn)3

Branching Br(n′γ) ' 10−2 can be obtained then for ∆m ' 1 MeV
and x = µnn′/µn ∼ 10−9

Imagine what incredible consequences for Neutron Star
transformations ....

To be Continued ..... Stay Tuned !
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