Simulation Studies Toward the Search for Neutron—Antineutron Oscillation

By Joshua Barrow

jbarrow3@vols.utk.edu

For the Institute for Nuclear Theory Workshop on Neutron Oscillations:

Appearance, Disappearance, and Baryogenesis

October 23rd, 2017

THE UNIVERSITY OF TENNESSEE KNOXVILLE

This research is funded by Department of Energy-High Energy Physics Grant DE-SC0014558

Experimental Overview

Part One

Phenomenology of $n \to \bar{n}$

- Can search for such oscillations in both free beam and bound nuclei experiments
 - Free Oscillation:

$$P_{free}[n(t_{exp}) = \bar{n}] \sim \left(\frac{t_{exp}}{\tau_{n \to \bar{n}}}\right)^2$$

- The bound oscillation can be thought of as a *free oscillation* in a bag-type model
 - Here, the "experimental" time is of the order of $10^{-23}s$ rather than $\sim 1 10$ years
 - From this, we find that:

$$P_A[n(t_{exp}) = \bar{n}] \propto \Gamma = \frac{1}{\tau_A} = P_{free}[n(t_{exp} \cong 10^{-23}s) = \bar{n}] \cong \left(\frac{10^{-23}s}{\tau_{n \to \bar{n}}}\right)^2 \Longrightarrow \tau_A \cong R\tau_{n \to \bar{n}}^2$$

where

$$R \sim \frac{1}{10^{-23}s} \sim 10^{22} s^{-1}$$

• Similarly, we can use the nuclear potential well's interaction difference between n and \bar{n} to assess the same phenomena:

$$\tau_A = \frac{\Delta V_{n \text{ vs. } \bar{n}}}{\hbar} \tau_{n \to \bar{n}}^2 = R \tau_{n \to \bar{n}}^2$$

- It has been shown that $R_0 \sim 5 \cdot 10^{22} s^{-1}$ from an estimated 10 15% uncertainty calculation by Friedman and Gal
- · Precisely, we find that this can be thought of as a nucleon decay-like experiment:

$$P_A[n(t_{exp}) = \bar{n}] = e^{-\frac{t_{exp}}{\tau_A}}$$

October 23rd, 2017

For the 2017 INT Workshop on Neutron Oscillations

 ${}^{16}_{8}0$

Excellence of LArTPCs—See MicroBooNE

Atmospheric ν Backgrounds Impede $n \rightarrow \overline{n}$ Event Identification In Large Underground Experiments

Previous searches for $n \rightarrow \overline{n}$ suffered greatly from this!

- Super-Kamiokande: 24 candidate events
 - Expected *sig.eff*: bkgrcount = 12%: 24.1
- DUNE?
 - $\underline{CNN}: sig.eff: bkgrcount = 14\%: 3$
 - Fully oscillated sample!
 - Important v_{τ} interactions
 - <u>**Truth**</u>: *sig.eff*: *bkgrcount* = **27**%: **0**
 - Unoscillated sample! DON'T BELIEVE!

Theorists and computational physicists are working tirelessly to improve the accuracy of ν generators

- This is a requirement for understanding ν oscillation parameters precisely and atmospheric background properly
- GENIE is one of many used today
- <u>GIBUU</u> and <u>NuWRO</u> are supposedly getting great comparative results from <u>MicroBooNE</u> with their novel techniques
 - Plan to run events on these platforms for separability comparison in the future

The bottom line...

- Atm. v bkgr. increases faster than mass
- Must counter this with more precise detectors
- Must understand underlying nuclear models
- *Test many simulations against one another* for a full understanding of bkgr. topologies

THE UNIVERSITY TENNESS

Theoretically Important Probability Parameter Space of $\tau_{n \to \overline{n}}$

•A probability distribution from PSB can be seen as a function of predicted free oscillation time

- Red line shows horizontal beamline oscillation time
 - ESS, 3 yr, ~500X ILL
- Blue shows DUNE
 - 10 years, ~13,500X ILL
 - Assumes 100% efficiency!
 - Assumes no background!

For the 2017 INT Workshop on Neutron Oscillations

Simulation Analysis Basic Overview with Some Simple Comparisons

Part Two

DUNE and ESS *<u>Truth-Level</u>* Monte Carlo Analysis is Near Completion

Can looking purely at the kinematics give good results?

- Have studied MC generators for $n \rightarrow \overline{n}$ in...
 - ${}^{12}_{6}C$, with incident **slow** ($|\vec{p}| \cong 0 \frac{GeV}{c}$), free (beam), transformed \bar{n} + cascade from annihilation
 - Original generator developed over 15+ years by Elena Golubeva of INR Moscow
 - Joint publication with full simulation discussion, along with with V&V forthcoming
 - $\frac{40}{18}Ar$, with internal (bound) transformation + annihilation cascade
 - Original generator developed for GENIE over last ~2 years by Jeremy Hewes of DUNE for PhD work
 - Dissertation forthcoming
 - Hewes and Karageorgi's analysis revolves around CNN's rather than truth level discrimination between signal and background
 - Future generator being developed by E. Golubeva for $^{40}_{18}Ar$
 - Will use same cascade models
 - · Will work to study neutrino FSI as well for complete comparison
- Study multiple generators with different assumptions to assess uncertainty in the models
 - Heavily dependent upon nuclear models

$n \rightarrow \overline{n}$ Generator Assumption Comparison **DUNE** $^{40}_{18}Ar$ —**GENIE**

- Fermi Gas Model
 - Bodek-Ritchie Distribution
 - No correlations included
- ~ 10 annihilation channels modeled
- Uses continuous analytical nuclear density function
 - How accurate for large nuclei?
- Probability of annihilation as a function of radius not modeled
 - Uses only density function

ESS ${}^{12}_{6}C$ —E. Golubeva

- Fermi Gas Model
 - Personally Developed
 - No correlations included
- ~ 100 annihilation channels modeled
- Uses approximated ("stepped") discontinuous analytical nuclear density function
 - Accurate for small nucleus
 - Uses zones of constant nuclear density
- Probability of annihilation by radius known analytically

Nuclear Density Functions and the Radial \overline{n} -Annihilation Probability Density

Figure 9.10: Nuclear density profiles for C^{12} , O^{16} and Fe^{56} .

Initial Meson Production in $\overline{n}N$ Annihilation

Final Exiting $\pi^{\pm,0}$ After Nuclear Transport

DUNE $^{40}_{18}Ar$ —**GENIE**

Annihilating Nucleon Momentum

Due to Fermi Motion

DUNE $^{40}_{18}Ar$ —GENIE

ESS ${}^{12}_{6}C$ —E. Golubeva

More Results From ¹²₆C MC Generator for ESS

Potential Inaccuracies in **Current Simulations** and a few **Proposed Directions** for **Future Progress** Part Three

What to add to future generators for $^{40}_{18}Ar$?

- **Resonances** (ρ , η , etc.)
- Infrequent reaction channels
 - Must be kinematically allowed—can change from nucleus to nucleus
- Precise radial density functions
 - Generally well known for light nuclei, but how well heavy?
- Precise annihilation probability functions
 - Matters in bound searches greatly, as the transformation is more likely to occur near or outside the nuclear envelope
 - Completed analytically for \bar{n} on ${}^{12}_{6}C$, but how to model this for \bar{n} on ${}^{40}_{18}Ar$?
 - Can no longer model \bar{n} as a plane wave!!
- Two-body nucleon correlation functions
 - $(n \rightarrow \overline{n})N$ is an inherently two-body system, unlike most ν interactions
 - What are the *real*, *quantum mechanical* nucleon momentum distributions for each annihilating nucleon in ${}^{40}_{18}Ar$?

16

• Two body momentum distributions needed?

An Interesting Forthcoming Investigation:

Nucleon Correlations

- There are QM problems with the assumptions made when throwing momenta for annihilating nucleons in ⁴⁰/₁₈Ar
 - By making a choice from a distribution of *all* nucleons, we have *changed the remaining distribution*
- Furthermore, it has been found that nucleons are choosey about their neighbors
 - Neutrons spend more time around protons in the nucleus
 - These pairs can have <u>inextricably</u>
 <u>linked momenta</u>
 - Changes the weights of expected annihilation reactions
- JLAB data on LAr coming early next year?
- <u>Can we simply use a two body</u> <u>momentum distribution instead of</u> <u>looking at individual nucleons?</u>

October 23rd, 2017

For the 2017 INT Workshop on Neutron Oscillations

Use Inherently Two-Body Momentum Distributions?

October 23rd, 2017 For the 2017 INT Workshop on Neutron Oscillations

TENNESSEE

18

End Goals and To Do's

- Top priorities are...
 - Comparisons between multiple generators for uncertainty assessments
 - For $n \to \overline{n}$
 - For atmospheric v
 - Improving generators
 - **Add more physics** to understand the precise nature of the topologies of $\bar{n}A$ annihilation
 - Analysis of generated events will continue
 - Partial and full detector simulations with reconstruction
 - Proton and neutron detections in LAr
 - Background rejection must be maximized
 - Free or quasi-free? Better separation techniques?
- Assess final feasibility of $\tau_{n \to \overline{n}}$ limit improvements
- Optimize experimental components (ESS)

Go and find the oscillation!

October 23rd, 2017

For the 2017 INT Workshop on Neutron Oscillations

For the extra eager...

BACKUP SLIDES

October 18th.

For the UTK Physics HEP/Astro Seminar

Signal Comparison

 $n \rightarrow \bar{n}$ vs. Backgrounds (ex: Atmospheric Neutrino, ν)

October 23rd, 2017 For the 2017 INT Workshop on Neutron Oscillations

2

Free Neutron Beam Search at the European Spallation Source

EUROPEAN SPALLATION SOURCE

- Europe's answer to the SNS at ORNL
- Hopes to best Institute Laue-Langevin result with...
 - Longer beamline
 - Higher neutron
 reflectivity and more
 neutrons on target
 - Thinner carbon foil
 - General improvements
 in detector technology
- Benefits from ~guaranteed zero background!
 - Beam pulse timing
 - v's aren't seen by foil

• ILL saw
$$\frac{sig}{bkgr} = \frac{0}{0}$$
 for one year

2

Bound Neutron Search at the Deep Underground Neutrino Experiment

- **DUNE** international collaboration of 1000+
 - Partnership of Fermilab and LBNF
 - Will construct world's most intense ν beam
 - The far detector will utilize LArTPCs
 - Fiducial volume of ~40 kilotons
 - LArTPC's superior tracking and PID capabilities enable background reduction
 - Is background-free/quasi-free $n \rightarrow \bar{n}$ search possible?
 - The *real* question we need to answer!!!

October 23rd, 2017

For the 2017 INT Workshop on Neutron Oscillations

Why do we need to be accurate in our $n \rightarrow \overline{n}$ simulations?

- 1. For rare events, knowing precisely the expected topology and associated observables will always help
 - Accurate nuclear models are needed to understand the cascade of particles produced within the nucleus
 - Possibly aid in the separability between signal and background processes
- 2. Ability to *compare simulations and assess their systematic uncertainties* within them independently
 - Should be precise and quantitative
 - This is why we need multiple types from multiple sources
 - Wish to reliably understand whether the systematic uncertainties within these models lead to statistically irreducible background

24

- Looking for consistency of results between simulations
 - Did we get the physics right???
- 3. We learn more about interesting, underlying physics
- 4. Predict and analyze generated signals for hosts of other BSM processes