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Experimental Overview

Part One
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Phenomenology of n - n

» Can search for such oscillations in both free beam and bound nuclei experiments

* Free Oscillation:

Thn-f

Preel(texp) = 1~ (t—)

+ The bound oscillation can be thought of as a free oscillation in a bag-type model
Here, the “experimental” time is of the order of 107235 rather than ~1 — 10 years

From this, we find that:

107235
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where

Tn-n
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10-23s
Similarly, we can use the nuclear potential well’s interaction difference between n and 7 to assess the same phenomena:

AV vs. 7
. 2 — 2
Trn—ﬂi = Rty5

+ It has been shown that R,~5 - 10225~ from an estimated 10 — 15% uncertainty calculation by Friedman and
Gal

R ~10%2571

Ty =

» Precisely, we find that this can be thought of as a nucleon decay-like experiment:

_texp
PA[n(texp) = T_l] =e 4
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.78.016002

Excellence of LArTPCs—See MicroBooNE

An example
charged
current v
event in

MicroBooNE

REAL DATA!

MicroBooNE Public Note 1025

Proton reconstruction is
an important step for
DUNE in nucleon decay
searches...
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SK will soon add gadolinium
to their WCD to tag
neutrons!
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Run 3469 Event 53223, October 21°*, 2015

Neutron
Detection in
LAr??2?
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http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf

Atmospheric v Backgrounds Impede n —» n Event

Adapted from
Y. Kamyshkov

ldentification In Large Underground Experiments

Previous searches for n —» n suffered 10000
greatly from this!

* Super-Kamiokande: 24 candidate events

» Expected sig.eff:bkgrcount = 12%:24.1 o b
-+ DUNE? 8
* CNN: sig.eff:bkgrcount = 14%: 3 o 10
Fully oscillated sample! g
Important v, interactions -
» Truth: sig.eff:bkgrcount = 27%:0 _% "
Unoscillated sample! DON’T BELIEVE! PE

Theorists and computational physicists are 1}

working tirelessly to improve the accuracy of
v generators
* This is a requirement for understanding v

oscillation parameters precisely and
atmospheric background properly

0.1

Hypothetical assumption
of big underground
backgroundless
detectors

Barrow

LAr 1ev, 0 bkg"

Free neutron
beam search
goal at
European
Spallation
Source

Is LAr
backgroundless?

“SUPER-K 1ef, 0 bkg"
®

Hewgs & Karageorgi it

------------ Expected
8 I - B s 400 kt - yr
E ............... goal for

<
e s > 2 = iz .
2Q..Q@ . X g 8 DUNE with
il i 5 % 3 irreducible
£ 3 5 § ¢ o bker?
1 10 100 1000 10000 100000

exposure X 1032 neutron - years

The bottom line...

* GENIE is one of many used today .
*  GIBUU and NUWRO are supposedly *
getting great comparative results from .
MicroBooNE with their novel techniques .

* Plan to run events on these platforms for
separability comparison in the future
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Atm. v bkgr. increases faster than mass

Must counter this with more precise detectors
Must understand underlying nuclear models
Test many simulations against one another for a
full understanding of bkgr. topologies
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https://public.ornl.gov/conferences/ns2016/8_Sunday_NiNP/Session_1/NNP2016_SN1_1_Jorge_Morfin.pdf
http://genie.hepforge.org/
https://gibuu.hepforge.org/trac/wiki
https://github.com/NuWro/nuwro
https://www-microboone.fnal.gov/

Theoretically Important Probability
Parameter Space of 7,5

*A probability
distribution from PSB
can be seen as a
function of predicted
free oscillation time

* Red line shows
horizontal beamline
oscillation time
* ESS, 3yr, ~500X ILL

* Blue shows DUNE

* 10vyears, ~13,500X ILL
* Assumes 100%
efficiency!
* Assumes no
background!

=Y
|
=
S
~

0.07

0.06
0.05
0.04F
0.03
0.02
0.01F
0.00E

Babu, Dev, Fortes, and Mohapatra-DOI: 10.1103/PhysRevD.87.115019
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.115019
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.072006

Simulation Analysis

Basic Overview with Some Simple
Comparisons

Part Two
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DUNE and ESS Truth-Level Monte Carlo Analysis is
Near Completion

Can looking purely at the kinematics give good results?

« Have studied MC generators forn - n in...

« 12¢, with incident slow (|p| = OG—iV), free (beam), transformed 7 + cascade

from annihilation
» Original generator developed over 15+ years by Elena Golubeva of INR Moscow
« Joint publication with full simulation discussion, along with with V&V forthcoming
« 1%4r, with internal (bound) transformation + annihilation cascade

« Original generator developed for GENIE over last ~2 years by Jeremy Hewes of DUNE for PhD
work

Dissertation forthcoming

Hewes and Karageorgi’s analysis revolves around CNN'’s rather than truth level discrimination
between signal and background

- Future generator being developed by E. Golubeva for 134r
*  Will use same cascade models
*  Will work to study neutrino FSI as well for complete comparison

« Study multiple generators with different assumptions to assess

uncertainty in the models
« Heavily dependent upon nuclear models
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n — n Generator Assumption Comparison

DUNE ‘{gAr—GENIE ESS 1%C—E. Golubeva
* Fermi Gas Model  Fermi Gas Model
* Bodek-Ritchie Distribution * Personally Developed
* No correlations included * No correlations included
* ~10 annihilation channels * ~100 annihilation channels
modeled modeled
» Uses continuous analytical » Uses approximated (“stepped”)
nuclear density function discontinuous analytical nuclear
« How accurate for large density function
nuclei? » Accurate for small nucleus
* Probability of annihilation as a « Uses zones of constant
function of radius not modeled nuclear density
Uses only density function * Probability of annihilation by

radius known analytically
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Nuclear Density Functions and the
Radial n-Annihilation Probability Density

ESS 2C—E. Golubeva
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Figure 9.10: Nuclear density profiles for C''?, 0% and Fed5.
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Initial Meson Production In
nN Annihilation

DUNE $24r—GENIE ESS 2c—E. Golubeva
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Final Exiting m*° After
Nuclear Transport

DUNE $24r—GENIE
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ESS 2c—E. Golubeva
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Annihilating Nucleon Momentum

Due to Fermi Motion

40 12
DUNE 73Ar—GENIE ESS *2C—E. Golubeva
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.23.1070

More Results From 2C
MC Generator for ESS

Annihilating Nucleon

Annihilation Radius by Zone

Momentum by Zone
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Potential Inaccuracies

N

Current Simulations
and a few

Proposed Directions
for

Future Progress
Part Three
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What to add to future generators for {oAr?

« Resonances (p,n, etc.)

Infrequent reaction channels
* Must be kinematically allowed—can change from nucleus to nucleus

Precise radial density functions
* Generally well known for light nuclei, but how well heavy?

Precise annihilation probability functions

« Matters in bound searches greatly, as the transformation is more likely to
occur near or outside the nuclear envelope

« Completed analytically for 7 on 12C, but how to model this for 7 on 13Ar?
* Can no longer model nn as a plane wave!!
Two-body nucleon correlation functions
* (n- n)Nis an inherently two-body system, unlike most v interactions

« What are the real, quantum mechanical nucleon momentum distributions
for each annihilating nucleon in 134r?

e Two body momentum distributions needed?

THE UNIVERSITY OF

October 23, 2017 For the 2017 INT Workshop on Neutron Oscillations 16 TENNESSEE T

KNOXVILLE



An Interesting Forthcoming Investigation:

Nucleon Correlations Neutrons
«  There are QM problems with the Protons
assumptions made when throwing 5000 ::‘;L:'mm‘::’;'?::'
momenta for annihilating nucleons in AMS 00704
40AT'
18
T E—

* By making a choice from a
distribution of all nucleons, we have
changed the remaining distribution

* Furthermore, it has been found that
nucleons are choosey about their
neighbors

* Neutrons spend more time around
protons in the nucleus

* These pairs can have inextricably
linked momenta

+ Changes the weights of expected
annihilation reactions

-
« JLAB data on LAr coming early next

year? ‘
+ Can wesimply use atwo body What dO we use as

momentum distribution instead of

looking at individual nucleons? the next distribution?

0.1

0.2 0.3 0.4 0.5
Interior Nucleon Momentum (GeV/c)

L T
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https://arxiv.org/abs/1412.0138
https://www.phy.anl.gov/theory/research/momenta2/
https://www.jlab.org/exp_prog/proposals/14/PR12-14-012.pdf

Use Inherently Two-Body
I\/Iomentum Dlstrlbutlons’P
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https://www.jlab.org/exp_prog/proposals/14/PR12-14-012.pdf

End Goals and To Do’s

» Top priorities are...
« Comparisons between multiple generators for uncertainty assessments
s Forn-n
» For atmospheric v
* Improving generators

+ Add more physics to understand the precise nature of the topologies of nA
annihilation

* Analysis of generated events will continue
e Partial and full detector simulations with reconstruction
 Proton and neutron detections in LAr

» Background rejection must be maximized
* Free or quasi-free? Better separation techniques?

« Assess final feasibility of 7,5 limit improvements
* Optimize experimental components (ESS)

e Go and find the oscillation!
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For the extra eager...

BACKUP SLIDES
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Signal Comparison

n — n vs. Backgrounds (ex: Atmospheric Neutrino, v)

n — n Annihilation and Knockouts | Neutral Current Atmospheric v
+ Noncontinuous I «  Continuous
[ energy ener
)%
spectrum I v
® . spectrum
T Generally a
. Generally a
° ~spherical
T ~correlated
topology \K
topology
\ * Low momentum I /
_—_”. due only to 40 Larglae range of
“RAr Fermi motion I AT tota
/ I / momentum
“pion star” \0 | /‘ @ ®
I ® - NeHHS R ron
I ® -rProton
I @® -Pion
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Free Neutron Beam Search at the /3w
European Spallation Source

* Europe’s answer to the
SNS at ORNL

* Hopes to best Institute
Laue-Langevin result
with... Cold Magnetic Vacuum
«  Longer beamline . Neutron shield tube

/ Moderator Detgptor

* Higher neutron
reflectivity and more

neutrons on target ]
- - / : D~4m
* Thinner carbon foil Supermirror |

7
« General improvements ‘ fOleIUS"Tg T ninitation 17
i reflector
|n.detector technology ¥ target
* Benefits from
~guaranteed zero -
background! L ~200m
* Beam pulse timing
* v’s aren’t seen by foil

sig 0
bregr 0 for one

\J

e |LL saw

year
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Bound Neutron Search at the AE
Deep Underground Neutrino Experiment o uweicromn

NEUTRINO EXPERIMENT

« DUNE international collaboration of
1000+
» Partnership of Fermilab and LBNF

* Wil construct world’s most intense v
beam

» The far detector will utilize LArTPCs
= * Fiducial volume of ~40 kilotons
" » LArTPC's superior tracking and PID

capabilities enable background
reduction

* Is background-free/quasi-free n - n
search possible?
* The real question we need to answer!!!
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Why do we need to be accurate In
our n —» n simulations?

1. Forrare events, knowing precisely the expected topology and associated
observables will always help

. Accurate nuclear models are needed to understand the cascade of particles
produced within the nucleus

. Possibly aid in the separability between signal and background processes
2. Ability to compare simulations and assess their systematic uncertainties
within them independently
. Should be precise and quantitative
. This is why we need multiple types from multiple sources

. Wish to reliably understand whether the systematic uncertainties within these models
lead to statistically irreducible background

. Looking for consistency of results between simulations
. Did we get the physics right???
3.  We learn more about interesting, underlying physics
4. Predict and analyze generated signals for hosts of other BSM processes
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