Nucleon Form Factors at High Momentum Transfer

Sergey Syritsyn (Stony Brook University & RIKEN BNL), with Bernhardt Musch, Arjun Gambhir, Kostas Orginos (College of William & Mary, JLab)

INT Program INT17-68W
"The Flavor Structure of Nucleon Sea"
Seattle, WA, October 11, 2017

Outline

Nucleon form factors at high momentum

- Phenomenological motivation Form factors: JLab program, Perturbative Q²-scaling limit Lattice TMDs & qPDFs
- Challenges for high-momentum nucleon structure Signal / noise for required kinematics Boosted (momentum) smearing
- Details of calculation
- Preliminary results and comparison to phenomenology
- Summary and Outlook

Nucleon Vector Form Factors

$$\langle P + q | \bar{q} \gamma^{\mu} q | P \rangle = \bar{U}_{P+q} \left[F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \frac{i \sigma^{\mu\nu} q_{\nu}}{2M_N} \right] U_P$$

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

- JLab@12GeV + Super BigBite: explore form factors at Q² up to 18 GeV²
 - (G_E/G_M) dependence
 - (F_1/F_2) scaling at $Q^2 \rightarrow \infty$
 - u-, d-flavor contributions to form factors

[G.D.Cates, C.W.de Jager, S.Riordan, B.Wojtsekhovski, PRL106:252003, arXiv:1103.1808]

all A)]

Common Problem with TMD, qPDF

[B.Musch, M.Engelhardt, et al] Non-local lattice operator

LC limit of spacelike staple: Collins-Soper parameter

 $\hat{\zeta} = \frac{P \cdot v}{m_N |v|} \to \infty$

Common Problem with TMD, qPDF

[B.Musch, M.Engelhardt, et al] Non-local lattice operator

Collins-Soper parameter

Accessing Large Q²: Breit Frame

Minimize $E_{in,out}$ for required Q^2 :

$$Q^{2} = (\vec{p}_{in} - \vec{p}_{out})^{2} - (E_{in} - E_{out})^{2}$$

Back-to-back

$$Q^2 = 4\vec{p}^2$$

At right angle

$$Q^2 = 2\vec{p}^2$$

For
$$Q^2 = 8 \text{ GeV}^2$$

$$|\vec{p}| = \frac{1}{2}\sqrt{Q^2} \approx 1.4 \text{ GeV}$$

$$E_N \approx 1.8 \; GeV$$

$$|\vec{p}| = \sqrt{\frac{1}{2}Q^2} \approx 2.0 \text{ GeV}$$
 $E_N \approx 2.3 \text{ GeV}$

Challenges for Large Q² on a Lattice

Stochastic noise : grows faster with T [Lepage'89]:

Signal
$$\langle N(T)\bar{N}(0)\rangle$$
 $\sim e^{-E_NT}$
Noise $\langle |N(T)\bar{N}(0)|^2\rangle - |\langle N(T)\bar{N}(0)\rangle|^2$ $\sim e^{-3m_\pi T}$
Signal/Noise $\sim e^{-(E_N - \frac{3}{2}m_\pi)T}$

Excited states: boosting "shrinks" the energy gap

$$E_1 - E_0 = \sqrt{M_1^2 + \vec{p}^2} - \sqrt{M_2^2 + \vec{p}^2} < M_1 - M_0$$

In this work : use 2-exponential fits

Reduction of lattice correlator noise is crucial

Challenges for Large Q² on a Lattice (2)

Discretization effects : O(a¹) for local operator O(a¹) improved vector-current operator

$$(V_{\mu})_{I} = \bar{q}\gamma_{\mu}q + c_{V} \, a \, \partial_{\nu}(\bar{q}i\sigma_{\mu\nu}q)$$

improvement term is likely to grow with Q²

Disconnected contractions

expensive:
$$\langle N'|J_{\mu}|N\rangle_{\rm disc}\sim \langle N'N\cdot{\rm Tr}[\gamma_{\mu}D^{-1}]\rangle$$

negligible for small $Q^2 \lesssim 1 \text{ GeV}^2$ [J. Green, S. Meinel, et al; PRD92:031501]

- need to explore at $Q^2 \gtrsim 1 \text{ GeV}^2$
- noise reduction for $\dot{N}'\dot{N}$ is critical

High-momentum Hadron States on a Lattice

Nucleon operator is built from ≈Gaussian smeared quarks

$$N_{\text{lat}}(x) = (\mathcal{S} u)_x^a \left[(\mathcal{S} d)_x^b C \gamma_5 (\mathcal{S} u)_x^c \right] \epsilon^{abc}$$

Gaussian shape in momentum space : reduced overlap with quark WFs in a boosted nucleon

$$S_{\text{at-rest}} = \exp\left[-\frac{\vec{w}^2}{4}(i\vec{\nabla})^2\right] \sim exp\left(-\frac{\vec{w}^2\vec{k}_{\text{lat}}^2}{4}\right)$$

SOLUTION: improve the overlap by shifting the spatial smearing operator in momentum space ("momentum smearing") [orig. B.Musch; first explored in G.Bali et al, 1602.05525]

$$S_{\vec{k}_0} = \exp\left[-\frac{w^2}{4}(-i\vec{\nabla} - \vec{k}_0)^2\right] \sim \exp\left(-\frac{w^2(\vec{k}_{\text{lat}} - \vec{k}_0)^2}{4}\right)$$

Modified smearing operator

$$\left[\mathcal{S}_{\vec{k}_0}(\psi)\right]_x = e^{+\vec{k}_0\vec{x}}\mathcal{S}(e^{-\vec{k}_0\vec{y}}\psi_y) \sim e^{+\vec{k}_0\vec{x}} \cdot \text{smooth fcn.}(x)$$

Modified covariant smearing operator in lattice*color space

$$\left[\mathcal{S}_{\vec{k}_0}\right]_{x,y} = e^{+i\vec{k}_0\vec{x}} \left[\mathcal{S}\right]_{x,y} e^{-i\vec{k}_0\vec{y}}$$

Smearing with twisted gauge links

$$\Delta_{x,y} \longrightarrow e^{+i\vec{k}_0\vec{x}} \Delta_{x,y} e^{-i\vec{k}_0\vec{y}}$$
 $U_{x,\mu} \longrightarrow e^{-ik_\mu} U_{x,\mu}$

Signal Gain: Traditional vs. Boosted Smearing

Nucleon Effective Energy: m_{π} = 300 MeV, a=0.094 fm, 32³x64

- each quark is boosted with the same k=[0 0 1]
- w ≈ 5.55a chosen as ≈ optimal

Signal Gain: Traditional vs. Boosted Smearing

Nucleon Effective Energy: m_{π} = 300 MeV, a=0.094 fm, 32³x64

- each quark is boosted with the same k=[0 0 1]
- w ≈ 5.55a chosen as ≈ optimal

Preliminary Study: 2 Gauge Ensembles

Exploratory study with clover-improved Wilson action (WM/JLab)at $m_{\pi} \approx 300 \text{ MeV}$

- $32^3 \times 64$
- a=0.094 fm
- p_{min}=0.42 GeV
- tsep = (8 .. 12)a = 0.65 .. 0.97 fm
- boost-smear with [1,0,0]
- 240*64=15,360 samples

$$Q^2 \lesssim 6.1 \, \mathrm{GeV}^2$$

- 323x96
- a=0.114 fm
- p_{min}=0.34 GeV
- tsep = (6 .. 10)a = 0.68 .. 1.14 fm
- boost-smear with [1,1,0]
- 210*96=20,160 samples

$$Q^2 \lesssim 8.3 \text{ GeV}^2$$

each quark is smeared with the same "boost" k=p/3

Effective Energy from Boost-Smeared C2pt

Nucleon Form Factors at a=0.094 fm

- No disconnected diagrams
- No discretization corrections

F_{2p}/F_{1p} Scaling

- No disconnected diagrams
- No discretization corrections

 S_p

6

- comparison to exp. data and pheno.parameterization [Alberico et al, PRC74:065204(2009)]
- expect $Q^2 F_1(Q^2)/F_2(Q^2) \sim \log[Q^2/\Lambda^2]$ scaling [Belitsky, Ji, Yuan (2003)]

F_{2p}/F_{1p} Scaling: a-Dependence

No discretization corrections

 S_p

BJY - pQCD (2003)

2 ВЈҮ - pQCD (2003)

1 2 3 4 5 6 7 8 [G.D.Cates, C.W.de Jager, S.Riordan, B.Wojtsekhovski, PRL106:252003, arXiv:1103.1808]

- comparison to exp. data and pheno.parameterization [Alberico et al, PRC74:065204(2009)]
- expect $Q^2 F_1(Q^2)/F_2(Q^2) \sim \log[Q^2/\Lambda^2]$ scaling [Belitsky, Ji, Yuan (2003)]

G_{Ep}/G_{Mp} for Proton and Neutron

- No disconnected diagrams
- No discretization corrections

lacktriangle lattice data are normalized by the physical $\mu_{p,n}$

G_{Ep}/G_{Mp} for Proton

- No disconnected diagrams
- No discretization corrections

lacktriangle lattice data are normalized by the physical $\mu_{p,n}$

Q² Dependence of F₁^u and F₁^d

- No disconnected diagrams
- No discretization corrections

- expect $F_1(Q^2) \sim Q^4$, $F_2(Q^2) \sim Q^6$ scaling [Lepage, Brodsky (1979)]
- Both form factors overshoot experiment (x2-2.5)
- evidence for excited states

Light Flavor contributions to F_{1,2}

- No disconnected diagrams
- No discretization corrections

Disconnected Nucleon FF's for up to ~1 GeV²

[J. Green, S. Meinel, et al; PRD92:031501]

 N_f =2+1 dynamical fermions, $m_\pi \approx 320$ MeV (the "coarse" JLab Clover ensemble)

$$|(G_E^{u/d})_{\text{disc}}| \lesssim 0.010 \text{ of } |(G_E^{u-d})_{\text{conn}}|$$

 $|(G_E^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_E^{u-d})_{\text{conn}}|$

$$|(G_M^{u/d})_{\text{disc}}| \lesssim 0.015 \text{ of } |(G_M^{u-d})_{\text{conn}}|$$

 $|(G_M^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_M^{u-d})_{\text{conn}}|$

Disconnected Nucleon FF's: Relative Contribution

- a=0.094 fm ensemble
- Ratio of disconnected to connected(U) contributions
- Simplified preliminary analysis (plateau averages)

No disconnected diagrams

Improved vector current $\;(V_\mu)_I=\bar q\gamma_\mu q+c_V\,a\partial_\nu \bar q i\sigma_{\mu\nu} q$

 $O(a^1)$ correction : form factors of $a \langle N | \partial_{\nu} (\bar{q} i \sigma^{\mu \nu} q) | N \rangle$

Relative magnitude of $O(a^1)$ effects : $\{O(a^1)\}/\{O(a^0)\}$ form factors

ullet need improvement coefficient c_V : can be computed from current conservation

Axial Form Factors

- No disconnected diagrams
- No discretization corrections

- © $G_A(Q^2)$ are measured in ν -scattering, π -production; implications for neutrino flux norm. (e.g. in IceCube)
- Axial radius $(r_A^2)=12 / m_A^2$: model dependence varying nuclear / G_A shape models: $m_A=0.9 \dots 1.4 \text{ GeV}$
- Reanalysis suggests large uncertainty in $G_A(Q^2)$ [B.Bhattacharya,R.Hill,G.Paz, PRD84:073006(2011)]

[V.Bernard et at, J.Phys.G28:R1(2002)]

n=2 Generalized Form Factors

- No disconnected diagrams
- No discretization corrections

Generalized form factors: moments of GPDs

Goal: constraints on GPD analysis from lattice

Summary and Outlook

- Initial results for high-momentum form factors with a new technique "momentum(boosted)" smearing: essential for studying relativistic hadrons on a lattice
- G_{Ep}/G_{Mp} agrees qualitatively with experiment; F₂/F₁ scaling agrees qualitatively with experiment, perturbative QCD agreement is (apparently?) independent of excited states
- Discretization effects grow quickly with Q² Form factors on a=0.1 fm lattice: ~O(1) at Q²=6 GeV² Non-perturbative vector current improvement needed
- The new TMD and PDF programmes on a lattice (Lin, Engelhardt) depend on efficient and reliable evaluation relativistic nucleon matrix elements computing form factors is a "benchmark" for studying discretization and excited state effects for relativistic nucleons on a lattice
- Implications for neutrino physics (axial current) and constraining GPD

(BACKUP) Disconnected Quark Loops

• Stochastic evaluation: $\begin{cases} \xi(x) = \text{ random } Z_2\text{-vector} \\ E\big[\xi^\dagger(x)\xi(y)\big] = \delta_{x,y} \end{cases}$

$$\sum_{x} e^{iqx} \not \!\!\! D^{-1}(x,x) \approx \frac{1}{N_{MC}} \sum_{i}^{N_{MC}} \xi_{(i)}^{\dagger} \left(e^{iqx} \not \!\!\! D^{-1} \xi_{(i)} \right)$$

$$\operatorname{Var} \left(\sum_{x} \not \!\!\! D^{-1}(x,x) \right) \sim \frac{1}{N_{MC}} \quad \text{(contributions from } \not \!\!\! D^{-1}(x \neq y) \text{)}$$

• Exploit $\mathcal{D}^{-1}(x,y)$ FALLOFF to reduce $\sum_{x\neq y} |\mathcal{D}^{-1}(x,y)|^2$:

Hierarchical probing method [K.Orginos, A.Stathopoulos, '13] : In sum over $N=2^{nd+1}$ 3D(4D) Hadamard vectors, near-(x,y) terms cancel:

$$\frac{1}{N} \sum_{i} z_{i}(x) z_{i}(y)^{\dagger} = \begin{cases} 0, & 1 \leq |x - y| \leq 2^{k}, \\ 1, & x = y \text{ or } 2^{k} < |x - y| \end{cases}$$

Further decrease variance by deflating low-lying, long-range modes [A.Gambhir's PhD thesis]

