Nucleon Form Factors at High Momentum Transfer

Sergey Syritsyn (Stony Brook University & RIKEN BNL), with Bernhardt Musch,

Arjun Gambhir, Kostas Orginos (College of William & Mary, JLab)

WILLIAM & MARY

KEN BNL Research Center

INT Program INT17-68W "The Flavor Structure of Nucleon Sea" *Seattle, WA, October 11, 2017*

Outline

Nucleon form factors at high momentum

 Challenges for high-momentum nucleon structure *Signal / noise for required kinematics Boosted (momentum) smearing*

- Details of calculation
- Preliminary results and comparison to phenomenology
- Summary and Outlook

$\langle P+q|\bar{q}\gamma^{\mu}q|P\rangle = \bar{U}_{P+q}\left[$ e^{\pm}, μ^{\pm} $2M_N$ $G_{E}(Q^{2})=F_{1}(Q^{2})-\frac{Q^{2}}{4M}$ $\frac{Q}{4M^2}F_2(Q^2)$ $\gamma(Q^2)$ $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$ \bullet JLab@12GeV + Super BigBite: \bullet branch is the original motivation \bullet explore form factors at Q^2 up to 18 GeV² **proton of the polarization of the proton of the recoil proton will be measured using a large**based on the Super Bigbite magnet, that will incorporate a double polarimeter instrumented with GEM \bullet (G_E/G_M) dependence \bullet (Se om) acpoincince \bullet (*F₁/F₂*) scaling at Q²-> ∞ maximum value of *Q*² = 12 GeV2. 6 \bullet μ -, d-flavor contributions to form factors values of *Q*² : 5, 8, and 12 GeV² , while achieving an error in the ratio G^p E/Gp ^M of 0.07. The projected results $\frac{\mathsf{S}_{\mathsf{n}}}{\mathsf{n}}$ \bullet \bullet \bullet \bullet in musical communications 2 S_p 4 0.5 0.3 Ily fit (2004) 2 u quark $S = Q^2F_2/F_1$ 1.5 BJY - pQCD (2003) RCQM - Miller (2005) 0.2 צטרבי
ג لاتا
المجموعة 0.4 0.1 d quark \times 0.75 _{µp}G<mark>P</mark>∕G<mark>n</mark> 0.3 4 S_d 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 - 2 0.5 1.5 1.0 u quark ان التي السياسي
الموالي 2 a
G s_{u} 0.0 0.5 1.0 d quark \times 2.5 0 1.0 0.97 $-0.5₀$] 2 [GeV ² Q 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Q^2 [GeV 2] FIG. 3: The *Q*²-dependence for the *u*- and *d*-contributions to r-1527
۱۲۵۳
۱۲۹۲ [G.D.Cates, C.W.de Jager, S.Riordan, B.Wojtsekhovski, plied by *Q2*, *Stephen Cogy of the newsletter,* Denvery former form, [Research Mgmt. Plan for SBS(JLab Hall A)] are explained in the text. transfer squared *Q*². The upper panel shows *S^p* for the proton ^M existing measurements and expected statistical accuracy for the GEp experiment. The

 $F_1(Q^2) \, \gamma^{\mu} \, + \, F_2\,(Q^2)$

 $i\sigma^{\mu\nu}q_{\nu}$

 $\overline{1}$

 U_{P}

the curves of the prediction $117-68$ W. Seattle, Oct 11 2017 \cdots is the data at 2.5 GeV \cdots decreed to the bottom both \cdots

S. Syritsyn, B.Musch, A.Gambir, A.Gambir,

on form factors at fugh monentum

Nucleon Vector Form Factors

provided errors for the measurements made with the Super Bigbite Spectrometer are indicated by the filled by

0.5

S. Syritsyn, B.M

Common Problem with TMD, qPDF

Non-local lattice operator

S. Syritsyn, B.Musch, A.Gambhir, K.Orginos Nucleon Form Factors at High Monentum INT 17-68W, Seattle, Oct 11 2017

Common Problem with TMD, qPDF

Non-local lattice operator

S. Syritsyn, B.Musch, A.Gambhir, K.Orginos Nucleon Form Factors at High Monentum INT 17-68W, Seattle, Oct 11 2017

Accessing Large Q2 : Breit Frame

Minimize E*in,out* for required *Q2 :* $Q^2 = (\vec{p}_{in} - \vec{p}_{out})^2 - (E_{in} - E_{out})^2$

Back-to-back $Q^2=4\vec{p}^2$

At right angle $Q^2=2\vec{p}^2$

For $Q^2 = 8$ GeV²

Challenges for Large Q2 on a Lattice

Stochastic noise : grows faster with *T* [Lepage'89]:

 $\text{Signal} \quad \langle N(T)\bar{N}(0)\rangle$ $\sim e^{-E_N T}$ $\text{Noise} \quad \langle |N(T)\bar{N}(0)|^2 \rangle - |\langle N(T)\bar{N}(0) \rangle|^2 \sim e^{-3m_{\pi}T}$ Signal/Noise $\sim e^{-(E_N - \frac{3}{2}m_\pi)T}$

Excited states: boosting "shrinks" the energy gap $E_1 - E_0 =$ $\overline{}$ $M_1^2 + \vec{p}^2$ – $\overline{}$ $M_2^2 + \vec{p}^2 < M_1 - M_0$

• In this work : use 2-exponential fits

Reduction of lattice correlator noise is crucial

Challenges for Large Q2 on a Lattice (2)

Discretization effects : *O(a1)* for local operator *O(a1)* improved vector-current operator

 $(V_\mu)_I = \bar{q}\gamma_\mu q + c_V a \partial_\nu (\bar{q} i \sigma_{\mu\nu} q)$

improvement term is likely to grow with *Q2*

- need to explore at *Q2*≳1 GeV2
- noise reduction for $N'N$ is critical

High-momentum Hadron States on a Lattice

 $N_{\mathrm{lat}}(x) = (\mathcal{S} u)$ *a* $\frac{a}{x}\left[\left(\mathcal{S} \, d\right) \right]_x^b$ $\frac{b}{x}$ $C\gamma_{5}$ $(\mathcal{S} \, u)$ *c x* $\int e^{abc}$ Nucleon operator is built from ≈Gaussian smeared quarks

Gaussian shape in momentum space : reduced overlap with quark WFs in a boosted nucleon

$$
\mathcal{S}_{\text{at-rest}} = \exp\left[-\frac{w^2}{4}(i\vec{\nabla})^2\right] \sim \exp(-\frac{w^2\vec{k}_{\text{lat}}^2}{4})
$$

SOLUTION: improve the overlap by shifting the spatial smearing operator in momentum space (*"momentum smearing"*) [orig. B.Musch; first explored in G.Bali et al, 1602.05525]

$$
\mathcal{S}_{\vec{k}_0} = \exp[-\frac{w^2}{4}(-i\vec{\nabla} - \vec{k}_0)^2] \sim \exp(-\frac{w^2(\vec{k}_{\text{lat}} - \vec{k}_0)^2}{4})
$$

Modified smearing operator

$$
\left[\mathcal{S}_{\vec{k}_0}(\psi)\right]_x = e^{+\vec{k}_0 \vec{x}} \mathcal{S}(e^{-\vec{k}_0 \vec{y}} \psi_y) \sim e^{+\vec{k}_0 \vec{x}} \cdot \text{smooth fm.}(x)
$$

Modified covariant smearing operator in lattice*color space

$$
\left[\mathcal{S}_{\vec{k}_0}\right]_{x,y} = e^{+i\vec{k}_0\vec{x}} \left[\mathcal{S}\right]_{x,y} e^{-i\vec{k}_0\vec{y}} \qquad \qquad \Longleftrightarrow
$$

Smearing with twisted gauge links

$$
\Delta_{x,y} \longrightarrow e^{+i\vec{k}_0 \vec{x}} \Delta_{x,y} e^{-i\vec{k}_0 \vec{y}}
$$

$$
U_{x,\mu} \longrightarrow e^{-ik_{\mu}} U_{x,\mu}
$$

S. Syritsyn, B.Musch, A.Gambhir, K.Orginos Nucleon Form Factors at High Monentum INT 17-68W, Seattle, Oct 11 2017

Signal Gain : Traditional vs. Boosted Smearing

Nucleon Effective Energy: m_π = 300 MeV, a=0.094 fm, 32³x64

each quark is boosted with the same k=[0 0 1]

w ≈ *5.55a* chosen as ≈ optimal

Signal Gain : Traditional vs. Boosted Smearing

Nucleon Effective Energy: m_π = 300 MeV, a=0.094 fm, 32³x64

each quark is boosted with the same k=[0 0 1]

w ≈ *5.55a* chosen as ≈ optimal

Preliminary Study: 2 Gauge Ensembles

Exploratory study with clover-improved Wilson action (WM/JLab)at $m_\pi \approx 300$ MeV

- 323x64
- a=0.094 fm
- *pmin=0.42 GeV*
- *tsep = (8 .. 12)a = 0.65 .. 0.97 fm*
- *boost-smear with [1,0,0]*
- *240*64=15,360 samples*
	- $Q^2 \leq 6.1 \,\mathrm{GeV}^2$

- 323x96 a=0.114 fm *pmin=0.34 GeV tsep = (6 .. 10)a = 0.68 .. 1.14 fm boost-smear with [1,1,0]*
	- *210*96=20,160 samples*

$Q^2 \leq 8.3 \text{ GeV}^2$

each quark is smeared with the same "boost" k=p/3

Effective Energy from Boost-Smeared C2pt

Nucleon Form Factors at a=0.094 fm *• No disconnected diagrams*

• No discretization corrections

expect $Q^2 F_1(Q^2)/F_2(Q^2) \sim \log[Q^2/\Lambda^2]$ scaling [Belitsky, Ji, Yuan (2003)]

data of Riordan *et al.* as well as those of Refs.[14-18], we

GEp/GMp for Proton and Neutron

• No disconnected diagrams

• No discretization corrections

lattice data are normalized by the physical $\mu_{p,n}$

GEp/GMp for Proton

*• No disconnected diagrams •**No discretization corrections*

Q² Dependence of F₁^u and F₁^d

• No disconnected diagrams

• No discretization corrections

expect $F_1(Q^2)$ \sim Q^4 , $F_2(Q^2)$ \sim Q^6 scaling [Lepage, Brodsky (1979)]

- Both form factors overshoot experiment (x2-2.5)
- evidence for excited states

Light Flavor contributions to F1,2

• No disconnected diagrams

• No discretization corrections

Disconnected Nucleon FF's for up to ~1 GeV2

[J. Green, S. Meinel, et al; PRD92:031501]

Nf=2+1 dynamical fermions, m**^π** ≈ 320 MeV (the "coarse" JLab Clover ensemble)

$$
|(G_E^{u/d})_{\text{disc}}| \lesssim 0.010 \text{ of } |(G_E^{u-d})_{\text{conn}}|
$$

$$
|(G_E^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_E^{u-d})_{\text{conn}}|
$$

$$
|(G_M^{u/d})_{\text{disc}}| \lesssim 0.015 \text{ of } |(G_M^{u-d})_{\text{conn}}|
$$

$$
|(G_M^s)_{\text{disc}}| \lesssim 0.005 \text{ of } |(G_M^{u-d})_{\text{conn}}|
$$

S. Syritsyn, B.Musch, A.Gambhir, K.Orginos Nucleon Form Factors at High Monentum INT 17-68W, Seattle, Oct 11 2017

Disconnected Nucleon FF's: Relative Contribution

- a=0.094 fm ensemble
- Ratio of disconnected to connected(U) contributions
- Simplified preliminary analysis (plateau averages)

O(a) Vector Current Improvement

Improved vector current $(V_\mu)_I = \bar{q}\gamma_\mu q + c_V a \partial_\nu \bar{q} i \sigma_{\mu\nu} q$

O(a¹) correction : form factors of *a* $\langle N|\partial_{\nu}(\bar{q}i\sigma^{\mu\nu}q)|N\rangle$

Relative magnitude of $O(a^1)$ effects : $\{O(a^1)\}\$ / $\{O(a^0)\}$ form factors

need improvement coefficient c_V : can be computed from current conservation

Axial Form Factors

\mathcal{S} and \mathcal{S} are \mathcal{S} are \mathcal{S} and \mathcal{S} are \mathcal{S} and \mathcal{S} or \mathcal{S} are \mathcal{S} and \mathcal{S} are \mathcal{S} and \mathcal{S} are \mathcal{S} and \mathcal{S} are \mathcal{S} and \mathcal{S} are \mathcal{S} and **•** *No disconnected diagrams* \sim No dioexativation conventions **•** *No discretization corrections*

Figure 1. Axial mass MA extractions. Left panel: from (quasi)elastic neutrino and antineutrino

BNR refer to different methods evaluating the corrections beyond the soft pion limit as explained

implications for neutrino flux norm. (e.g. in IceCube)

- Axial radius (r_A^2) =12 / m_A^2 : model dependence varying nuclear / G_A shape models: $m_A=0.9...$ 1.4 GeV
- Reanalysis suggests large uncertainty in *GA(Q2)* \bigcirc [B.Bhattacharya,R.Hill,G.Paz, PRD84:073006(2011)]

[V.Bernard et at, J.Phys.G28:R1(2002)]

n=2 Generalized Form Factors

• No disconnected diagrams • No discretization corrections

Goal: constraints on GPD analysis from lattice

Summary and Outlook

Initial results for high-momentum form factors with a new technique *"momentum(boosted)" smearing : essential for studying relativistic hadrons on a lattice*

 G_{Ep}/G_{Mp} agrees qualitatively with experiment; $F₂/F₁$ scaling agrees qualitatively with experiment, perturbative QCD *agreement is (apparently?) independent of excited states*

Discretization effects grow quickly with *Q2 Form factors on a=0.1 fm lattice: ~O(1) at Q2=6 GeV2 Non-perturbative vector current improvement needed*

The new TMD and PDF programmes on a lattice (Lin, Engelhardt) depend on efficient and reliable evaluation relativistic nucleon matrix elements *computing form factors is a "benchmark" for studying discretization and excited state effects for relativistic nucleons on a lattice*

Implications for neutrino physics (axial current) and constraining GPD

(BACKUP) Disconnected Quark Loops

\n- \n Stochastic evaluation: \n
$$
\begin{cases} \n \xi(x) = \text{ random } Z_2 \text{-vector} \\ \n E[\xi^\dagger(x)\xi(y)] = \delta_{x,y} \n \end{cases}
$$
\n
$$
\sum_x e^{iqx} \not\!\! p^{-1}(x,x) \approx \frac{1}{N_{MC}} \sum_{i}^{N_{MC}} \xi_{(i)}^\dagger (e^{iqx} \not\!\! p^{-1}\xi_{(i)}) \n \end{cases}
$$
\n
$$
\text{Var}(\sum_x \not\!\! p^{-1}(x,x)) \sim \frac{1}{N_{MC}}
$$
\n*(contributions from* $\not\!\! p^{-1}(x \neq y)) \n \quad \tau_{\mathcal{O}}$ \n
\n- \n Explain $\not\!\! p^{-1}(x,y)$ **FALLOFF to reduce** $\sum_{x \neq y} |\not\!\! p^{-1}(x,y)|^2$:\n *Nierarchical probing method [K. Organos, A. Stathopoulos, '13]*:\n *In sum over N=2^{nd+1} 3D(4D) Hadamard vectors, near-(x,y) terms cancel:*\n
$$
\text{near } (x, y) \leftrightarrow \int_{-\infty}^{\infty} 0, \quad 1 \leq |x - y| \leq 2^k,
$$
\n
\n

1 *N* \sum *i* $z_i(x)z_i(y)$ [†] = { $\begin{cases} 0, & 1 \leq |x-y| \leq 2^k, \\ 1, & x = x \text{ or } 2^k > |x| \end{cases}$ 1, $x = y$ or $2^k < |x - y|$

Further decrease variance by deflating low-lying, long-range modes [A.Gambhir's PhD thesis]

 \sum_{z_2} \sum_{z_3} \sum_{z_4}

 $\mathbf{H}_{z_{6}}$ $\mathbf{H}_{z_{7}}$ $\mathbf{H}_{z_{8}}$

33 210 33 211 33 212

333

 $\hat{N}(T)$

MU