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Introduction

Elastic 3 free quarks 3 bound quarks Quarks + sea + self-
interacting gluons



In the Bjorken limit

Parton distributions

𝑄2, 𝜈 → ∞, 𝑥 =
𝑄2

2𝑃 ∙ 𝑞

𝑞(𝑥, 𝑄2)

QCD + OPE

Moments of the parton distributions
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𝑎𝑛 = න𝑑𝑥 𝑥𝑛−1𝑞 𝑥

At Leading Order (LO) in pQCD, 

𝐹2 𝑥, 𝑄2 = 𝑥෍

𝑞

𝑒𝑞
2𝑞 𝑥, 𝑄2

𝑞

𝑃

𝑊2 = (𝑃 + 𝑞)2= 𝑀2 + 𝑄2
(1 − 𝑥)

𝑥



Can lattice say something about the large 𝑥 region? Or the 𝑥 dependence in general?

SU(6) symmetry: Τ𝑑 𝑢 → Τ1 2

𝑆 = 0 𝑞𝑞 dominance
(colour-hyperfine interaction): Τ𝑑 𝑢 → 0

𝑆𝑧 = 0 𝑞𝑞 dominance 
(perturbative gluon exchange): Τ𝑑 𝑢 → Τ1 5

DSE with 𝑞𝑞 correlations: Τ𝑑 𝑢 → 0.18-0.28 

Extrapolated ratio at 𝑥 = 1: 0.09 ± 0.03

No model can account for it

The individual distributions

Giving a closer look

From W. Melnitchouk, presentation
at QCD Down Under 2017



Antiquarks are not symmetric

Can we explain these curves from first principles?

From JC Peng, 

EINN2015

Polarized sector: STAR data also consistent with an

asymmetry in favor of u antiquarks



Lattice QCD

𝒂

𝑳

• Replace Euclidian space-time by 4-dimensional

hypercubic lattice:

quark fields on lattice sites,

gluon fields on lattice links.       

• Lattice as a regulator:

UV cut-off: inverse of lat. spacing 𝑎−1,

IR cut-off: inverse of lat. size 𝐿−1.

• Remove the regulator:

continuum limit 𝑎 → 0,

infinite volume limit 𝐿 → ∞.

• Gauge invariant objects:

Wilson line: any path-ordered product of 

gauge link is gauge covariant,

Wilson loops: the trace of a closed loop is

gauge invariant



Moments of the distributions

• If a sufficient number of moments are calculated, one can reconstruct  the 

x dependence of the distributions;

• Hard to simulate high order derivatives on the lattice;

• Nevertheless, the first few moments can be calculated

Extracting the moments

(the two point function)

Nucleon mass

Connected

Disconnected



𝑁(𝑝′, 𝑠′) 𝒪𝑉
𝜇𝜈

𝑁(𝑝, 𝑠) = ത𝑢𝑁(𝑝
′, 𝑠′)Λ𝑞

𝜇𝜈
(𝑄2)𝑢𝑁(𝑝, 𝑠)

Λ𝑞
𝜇𝜈

𝑄2 = 𝐴20
𝑞

𝑄2 𝛾{𝜇𝑃𝜈} + 𝐵20
𝑞

𝑄2
𝜎{𝜇𝛼𝑞𝛼𝑃

𝜈}

2𝑚
+ 𝐶20

𝑞
(𝑄2)

𝑄{𝜇𝑄𝜈}

𝑚

𝑁(𝑝′, 𝑠′) 𝒪𝐴
𝜇,𝑞

𝑁(𝑝, 𝑠) = ത𝑢𝑁 𝑝′, 𝑠′ 𝑔𝐴
𝑞
(𝑄2)𝛾𝜇𝛾5 𝑢𝑁(𝑝, 𝑠)

Example: Proton spin decomposition

ΔΣ = 𝑔𝐴
(0)

=෍

𝑞

𝑔𝐴
𝑞
(0) = Δ𝑢 + Δ𝑑 + Δ𝑠 + ⋯

The total quark angular momentum is given by

𝐽𝑞𝑢𝑎𝑟𝑘 =
1

2
෍

𝑞

𝐴20
𝑞

0 + 𝐵20
𝑞

0 =
1

2
ΔΣ + 𝐿𝑞𝑢𝑎𝑟𝑘𝑠

Total helicity

carried by quarks

𝑥 𝑞 = 𝐴20
𝑞

0
Average fraction 𝑥 of the nucleon 

momentum carried by quark 𝑞

Orbital angular momentum 

carried by quarks

Similar expression can be 

obtained for the total angular

momentum of gluons, 𝐽𝑔𝑙𝑢𝑜𝑛



In nonrelativistic quark model, spin of the proton is carried by quarks only

ΔΣ = Δ𝑢 + Δ𝑑 + Δ𝑠 = 1

Experimentally, from hadron weak decays

𝑔𝐴 = Δ𝑢 − Δ𝑑 = 1.269(3) using 𝑆𝑈(2) symmetry

𝑎8 = Δ𝑢 + Δ𝑑 − 2Δ𝑠 = 0.586 31 using 𝑆𝑈(3) symmetry 

From measurements in polarized DIS, one obtains

0׬
1
𝑑𝑥𝑔1 𝑥, 𝑄2 =

1

18
(4Δ𝑢 + Δ𝑑 + Δ𝑠)

Early EMC (1988) data:          ΔΣ ≈ 0,    Δ𝑠 ≈ −(0.1 − 0.2)

Spin sum rule

1

2
= 𝐽𝑞𝑢𝑎𝑟𝑘𝑠 + 𝐽𝑔𝑙𝑢𝑜𝑛𝑠 =

1

2
ΔΣ + 𝐿𝑞𝑢𝑎𝑟𝑘𝑠 + Δ𝐺 + 𝐿𝑔𝑙𝑢𝑜𝑛𝑠

From where does the spin comes from?



Open symbols: only connected 

contributions

Filled symbols: both connected and 

disconnected contributions

Total angular momentum Average 𝑥: 𝑥

Results for 𝜇 = 2 GeV

• First ever results at the physical point;

• Spin sum rule satisfied;

• Momentum sum rule satisfied;

• Slightly negative polarized strangeness

Connected

disconnected

C. Alexandrou et al., arXiv: 1706.02973, PRL 119 (2017) 034503 



Quark distributions

The most general form of the matrix element is:

We use the following four-vectors

In general, we have

𝜆𝜇1𝜆𝜇2 𝑃 𝑂𝜇1 𝜇2 𝑃 = 2𝑎𝑛
0

𝑃+𝑃+ − 𝜆2
𝑀2

4
= 2𝑎𝑛

(0)
𝑃+𝑃+



Taking the inverse Mellin transform

𝑞 𝑥 = න
−∞

+∞𝑑𝜉−

4𝜋
𝑒−𝑖𝑥𝑃

+𝜉− 𝑃 ത𝜓(𝜉−)𝛾+𝑊(𝜉−, 0)𝜓(0) 𝑃

𝑊 𝜉−, 0 = 𝑒−𝑖𝑔 0׬
𝜉−

𝐴+ 𝜂− 𝑑𝜂−

• Light cone correlations

• Equivalent to the distributions in the Infinite Momentum Frame

• Light cone dominated

• Not calculable on Euclidian lattice

(Wilson line)

Using



Quasi Distributions

with 𝜇 = 𝑀2/4(𝑃3)
2

𝑃 𝑂3⋯3 𝑃 = 2෤𝑎2𝑘
(0)
(𝑃3)

2𝑘෍

𝑗=0

𝑘

𝜇𝑗
2𝑘 − 𝑗 !

𝑗! 2𝑘 − 2𝑗 !
≡ 2෤𝑎2𝑘(𝑃3)

2𝑘

X. Ji, “Parton Physics on a Euclidean Lattice,” PRL 110 (2013) 262002.

Suppose we project outside of the light-cone:

We take n=2 
= -1

Mass terms contribute

In general,



Defining

Taking the inverse 

Mellin transform

• Nucleon moving with finite momentum in the 

z direction

• Pure spatial correlation

• Can be simulated on a lattice



The light cone distributions:
𝑥 =

𝑘+

𝑃+

0 ≤ 𝑥 ≤ 1

Quasi distributions:

𝑥 < 0 or 𝑥 > 1 is possible

Usual partonic interpretation is lost

But they can be related to each other!

𝑃3 large but finite

Distributions can be defined in an

Infinite Momentum Frame: 𝑃3, 𝑃
+

goes to infinite



Infinite momentum:

Finite momentum:

Largest value at which the calculations are meaningful

Infrared region untouched when going from 

a finite to an infinite momentum

Extracting quark distributions from quark quasi-distributions

𝑃3 → ∞,Λ 𝑓𝑖𝑥𝑒𝑑

Λ → ∞,𝑃3 𝑓𝑖𝑥𝑒𝑑

𝑥𝑐~Λ/𝑃3

𝑞 𝑥, 𝜇 = 𝑞𝑏𝑎𝑟𝑒 𝑥 1 +
𝛼𝑠
2𝜋

𝑍𝐹 𝜇 +
𝛼𝑠
2𝜋

න
𝑥

1

𝑞 1
𝑥

𝑦
, 𝜇 𝑞𝑏𝑎𝑟𝑒 𝑦

𝑑𝑦

𝑦
+ 𝒪 𝛼𝑠

2

෤𝑞 𝑥, Λ, 𝑃3 = 𝑞𝑏𝑎𝑟𝑒 𝑥 1 +
𝛼𝑠
2𝜋

෪𝑍𝐹(Λ, 𝑃3) +
𝛼𝑠
2𝜋

න
𝑥/𝑥𝑐

1

෤𝑞 1
𝑥

𝑦
, Λ, 𝑃3 𝑞𝑏𝑎𝑟𝑒 𝑦

𝑑𝑦

𝑦
+ 𝒪 𝛼𝑠

2

(Λ is the UV regulator)



Perturbative QCD in the continuum

Linear divergence comes

from this type of diagram

Mass counterterm introduced

to remove the linear div.

T. Ishikawa, Y. Q. Ma, J. W. Qiu and S. Yoshida, 

``Practical quasi parton distribution functions,''

arXiv:1609.02018.

J. W. Chen, X. Ji and J. H. Zhang, 

``Improved quasi parton distribution through Wilson line 

renormalization,''

arXiv:1609.08102.

Wilson line

T. Ishikawa, Y. Q. Ma, J. W. Qiu and S. Yoshida, 
``On the Renormalizability of Quasi Parton Distribution 
Functions,'' arXiv:1707.03107.

W. Wang, S. Zhao and R. Zhu,

``A Complete Matching for Quasi Parton Distribution 

Functions at One-Loop Order,‘’ arXiv:1708.02458 

I. W. Stewart and Y. Zhao, 

``Matching the Quasi Parton Distribution in a 
Momentum Subtraction Scheme,‘’ arXiv:1709.04933



Desired quantity From latticeFrom pQCD

C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos, k. Hadjiyiannakou, K. Jansen, FS and  C. Wiese, 

“A Lattice Calculation of Parton Distributions,” PRD92 (2015) 014502.

X. Xiong, X. Ji, J.-H. Zhang and Y. Zhao, 

“One loop matching for parton distributions:Nonsinglet case,”PRD90 (2014) 014051.

𝑞 𝑥, 𝜇 = ෤𝑞 𝑥, Λ, 𝑃3 −
𝛼𝑠
2𝜋

෤𝑞 𝑥, Λ, 𝑃3 𝛿𝑍𝐹
1 𝜇

𝑃3
,
Λ

𝑃3
−
𝛼𝑠
2𝜋

න
−1

1

𝑍 1
𝑥

𝑦
,
𝜇

𝑃3
,
Λ

𝑃3
෤𝑞 𝑥, Λ, 𝑃3

𝑑𝑦

𝑦
+ 𝒪 𝛼𝑠

2

Solving for the quark distributions

𝜇 is the renormalization scale

Λ =
1

𝑎
is the UV cut-off

Infrared physics is the same for 𝑞(𝑥) and ෤𝑞(𝑥)

Matching affects the UV only



Lattice QCD and the 𝑥 dependence of the distributions

Maximally twisted mass ensemble: 𝑎𝜇 = 0.0055 ⟹ 𝑚𝑝𝑠 ≅ 370 MeV

𝑃3 =
2𝜋

𝐿
,
4𝜋

𝐿
,⋯

𝑎 ≈ 0.082 𝑓𝑚

ℎ 𝑃3, 𝑧 = 𝑃 ത𝜓(𝑧)𝛾3𝑊3(𝑧, 0)𝜓(0) 𝑃

𝐶3𝑝𝑡 𝑡, 𝜏, 0 = 𝑁𝛼(𝑃, 𝑡)𝒪(𝜏)𝑁𝛼(𝑃, 0)

𝒪 𝑧, 𝜏, 𝑄2 = 0 =෍

𝑦

ത𝜓(𝑦 + 𝑧)𝛾3𝑊3(𝑦 + 𝑧, 𝑦)𝜓(𝑦)

Setup:

𝐶3𝑝𝑡(𝑡, 𝜏, 0; 𝑃3)

𝐶2𝑝𝑡(𝑡, 0; 𝑃3)
=
−𝑖𝑃3
𝐸

ℎ 𝑃3, 𝑧 , 0 ≪ 𝜏 ≪ 𝑡

Not the physical point yet



Unpolarized distributions: 𝑢 𝑥 − 𝑑 𝑥

• 5 steps of HYP smearing in the gauge links;

• Momentum smearing in the quark fields allows to reach higher values of 𝑃3;

• Matching and TMC applied;

• Bare matrix elements;

• Away from the physical point;

𝑃3 = 6𝜋/𝐿 ≈ 1.43 GeV

𝑃3 = 8𝜋/𝐿 ≈ 1.90 GeV

𝑃3 = 10𝜋/𝐿 ≈ 2.37 GeV

antiquarks

quarks

𝑢 −𝑥 − 𝑑 −𝑥 = ҧ𝑑 𝑥 − ത𝑢(𝑥)

C. Alexandrou, K. Cichy, M. Constantinou, 

K. Hadjiyiannakou, K. Jansen, FS and C.Wiese, 

``Updated Lattice Results for Parton Distributions,''

arXiv:1610.03689, to appear in PRD



Momentum smearing

• We would like to study the PDFs at 

larger momenta

Problem: poor signal

• Possible solution by Bali et al. in 

arXiv:1602.05525

• Alter Gaussian smearing so that in 

momentum space the desired 

momentum is modeled

𝑆𝑀 𝑘 𝜓 𝑥 =
1

1 + 8𝜅
𝜓 𝑥 + 𝜅 ෍𝑒𝑖𝑘 Ƹ𝑗𝑈𝑗 𝑥 𝜓(𝑥 + Ƹ𝑗)



Gaussian and Momentum Smearing

𝑃3 =
6𝜋

𝐿

• 30000 measurements for the

case of Gaussian smearing;

• 150 measurements for the case

of momentum smearing;

• We can now access larger values

for the nucleon momentum;

• 150 measurements for the cases

of 𝑃3 =
6𝜋

𝐿
,
8𝜋

𝐿
;

• 300 measurements for the case 

of 𝑃3 =
10𝜋

𝐿
.



HYP Smearing

It replaces a given gauge link with some average over neighbouring links, 

i.e. ones from the hypercubes attached to it

Crude substitute for renormalization

Parameters

𝑃3 =
4𝜋

𝐿

𝛼𝑠 =
6

4𝜋𝛽
≈ 0.245

Λ =
1

𝑎
≅ 2.5 GeV



Crossing relation:

𝛥𝑢 𝑥 − 𝛥𝑑 𝑥

Δ𝑢 𝑥 > Δ𝑑(𝑥)

𝑃3 =
4𝜋

𝐿
𝑃3 =

6𝜋

𝐿

Δത𝑞 𝑥 = Δ𝑞 −𝑥

Helicity distribution



Only other results for the bare distributions

H. W. Lin et al.,  

`Flavour Structure of the Nucleon Sea from Lattice QCD,''

Phys. Rev. D91 (2015) 054510

arXiv:1402.1462

Uses highly improved staggered quarks
and HYP smearing

J.-W. Chen et al.,

“Nucleon Helicity and Transversity Parton Distributions

from Lattice QCD,''

Nucl. Phys. B911 (2016) 246

arXiv:1603.06664



By comparison, a direct calculation of the moments

using the same ensemble gives:

𝑔𝐴
𝑢−𝑑 = 1.17(2)

𝑔𝑇
𝑢−𝑑 = 1.08(3)

𝑥 𝑞 = 0.233(9)

𝑥 Δ𝑞 = 0.298(8)

𝑥 𝛿𝑞 = 0.316(12)

C. Alexandrou et al.,

Nucleon form factors and moments of generalized parton

distributions using $N_f=2+1+1$ twisted mass fermions,

Phys. Rev. D88 (2013), 014509

Physical point calculation should shift 𝑥 𝑞to the left!

Integral of the distributions compared to the direct extraction of the moments



Origin of the large 𝑥 ↔ −𝑥 asymmetry

No HYP smearing in the gluon fields!!!

ℎ 𝑃3, 𝑧 = ℎ 𝑃3, −𝑧
†

Δℎ 𝑃3, 𝑧 = Δℎ 𝑃3, −𝑧
†

𝛿ℎ 𝑃3, 𝑧 = 𝛿ℎ 𝑃3, −𝑧
†

Matrix elements obeys the 

following relations:

Renormalization seems to be  fundamental

for the asymmetry

Imaginary part is odd under 𝑧 → −𝑧

The asymmetry between 𝑥 and −𝑥 only appear

because the imaginary part is an odd function

Combined effect



Non-perturbative renormalization I

Proposed renormalization program described in:

C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, H. Panagoupolos, FS

“A complete non-perturbative renormalization prescription for quase-PDFs”, arXiv:1706.00265, 

NPB923 (2017) 394.

Important insights also from the lattice perturbative paper:

M. Constantinou and H. Panagopoulos, 

“Perturbative renormalization of quasi-PDFs”, arXiv:1705.11193

Discovered mixing between the vector and scalar matrix elements (unpolarized PDF). This

perturbative analysis is very important guidance to non-perturbative renormalization!

Similar non-perturbative renormalization procedure was also presented, almost 

simultaneously, in: Jiunn-Wei Chen, Tomomi Ishikawa, Luchang Jin, Huey-Wen Lin, Yi-Bo Yang, 

Jian-Hui Zhang, Yong Zhao, “ Parton distribution function with Non-perturbative renormalization

from lattice QCD”, arXiv:1706.01295.



Features of the proposed renormalization 

programme:

▪ Removes the linear divergence that re-sums into a multiplicative exponential factor, 𝑒−𝛿𝑚 𝑧 +𝑐 𝑧 ,

𝛿𝑚 is the strength of the divergence, operator independent 

𝑐 an arbitrary scale, fixed by the renormalization prescription.

▪ Takes away the logarithmic divergence with respect to the regulator, log(𝑎𝜇), where 𝜇 is the 

renormalization scale.

▪ Applies the necessary finite renormalization related to the lattice regularization.

▪ Unpolarized – eliminates the mixing between the vector operator and the twist-3 scalar operator;

the two may be disentangled by the construction of a 2 x 2 mixing matrix.

Non-perturbative renormalization scheme: RI’-MOM

Considered flavour non-singlet operators: 𝒪Γ = ത𝑢(𝑥)Γ𝒫𝑒𝑖𝑔 0׬
𝑧
𝑑𝜁 𝐴 𝜁 ҧ𝑑(𝑥), where Γ = 𝛾𝜇 , 𝛾𝜇𝛾5, 𝛾𝜇𝛾𝜈

G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa 

and A. Vladikas, ``A General method for nonperturbative 

renormalization of lattice operators,''

Nucl. Phys. B 445 (1995) 81



RI’-MOM renormalization conditions:

For the operator:  𝑍𝑞
−1 𝑍𝒪

1

12
𝑇𝑟[𝜈 𝑝, 𝑧 𝜈𝐵𝑜𝑟𝑛 𝑝, 𝑧 )−1 |𝑝2=ഥ𝜇02 = 1

For the quark field: 𝑍𝑞 =
1

12
𝑇𝑟[ 𝑆 𝑝

−1
𝑆𝐵𝑜𝑟𝑛 𝑝 ]|𝑝2=ഥ𝜇02

▪ Momentum 𝑝 entering the vertex function is set to the RI’ renormalization scale

ҧ𝜇0, chosen such that 𝑝3 is the same as the nucleon boost 𝑃3, 

▪ 𝜈 𝑝, 𝑧 is the amputated vertex function of the operator,

▪ 𝜈𝐵𝑜𝑟𝑛 is its tree-level value, 𝜈𝐵𝑜𝑟𝑛 𝑝, 𝑧 = 𝑖𝛾3𝛾5𝑒
𝑖𝑝𝑧 for helicity,

▪ 𝑆 𝑝 is the fermion propagator (𝑆𝐵𝑜𝑟𝑛 𝑝 at tree-level) 



▪ The vertex functions 𝜈(𝑝) contain the same linear divergence as the nucleon 

matrix elements.

▪ This is crucial, as it allows the extraction of the exponential together with the 

multiplicative Z-factor.

▪ 𝑍𝒪 can be factorized as 𝑍𝒪 = ҧ𝑍𝒪 𝑒
+𝛿𝑚

𝑧

𝑎
−𝑐 𝑧

, where ҧ𝑍𝒪 is the multiplicative Z-factor

of the operator. Already expected by Dotsenko & Vergeles, NPB 169 (1980) 527.

▪ Note that the exponential comes with a different sign compared to the nucleon 

matrix element (𝑍𝒪 is related to the inverse of the vertex function).

▪ Consequently, the above renormalization condition handles all the divergences 

which are present in the matrix element under consideration.

▪ In the absence of a Wilson line (𝑧 = 0), the renormalization functions reduce to 

the local currents, free of any power divergence, e.g. for helicity 𝑍𝒪 𝑧 = 0 ≡ 𝑍𝐴.



Renormalization – helicity 𝑃3 = 6𝜋/32 ≈ 1.43 GeV

ҧ𝜇0 =
2𝜋

32

4

2
+

1

4
, 0,0,3

𝑧 = 0 ⇒ 𝑍𝐴 ≈ 0.86

ҧ𝜇0 =
2𝜋

32

7

2
+

1

4
, 3,3,3

𝑧 = 0 ⇒ 𝑍𝐴 ≈ 0.77

C. Alexandrou, M. Constantinou, H. Panagopoulos, PRD95 (2017) 034505:    𝑍𝐴 = 0.75556(5)

• Perturbative Z-factor in DR and in the MS-scheme is real in all orders Thus, important two-
loop contributions to the conversion factor, mainly in the imaginary part at large z

• Large lattice artefacts at high values of 𝑧/𝑎. See C. Alexandrou et al. 1706.00265 for a 
detailed discussion on the uncertainties affecting the renormalization factors.

1-loop conversion factor from RI’ to 𝑀𝑆 used, from M. Constantinou and H. Panagopoulos,
arXiv: 1705.11193 



Comparison of bare and renormalized matrix elements

𝑅𝑒 Δℎ𝑟𝑒𝑛 = 𝑅𝑒 𝑍𝑀𝑆 𝑅𝑒 Δℎ𝑏𝑎𝑟𝑒

−𝐼𝑚 𝑍𝑀𝑆 𝐼𝑚 Δℎ𝑏𝑎𝑟𝑒
𝐼𝑚 Δℎ𝑟𝑒𝑛 = 𝑅𝑒 𝑍𝑀𝑆 𝐼𝑚 Δℎ𝑏𝑎𝑟𝑒

+𝐼𝑚 𝑍𝑀𝑆 𝑅𝑒 Δℎ𝑏𝑎𝑟𝑒



Isovector quark distribution in the 𝑀𝑆 scheme at 2 GeV

We still need to address:

• Cut-off and volume effects;

• Non-physical pion mass;

• Possible contamination of excited states;

• Extrapolation to infinite nucleon boost;

• Improvements in the renormalization functions.

Helicity distributions

𝑃3 =
6𝜋

𝐿
≈ 1.43 GeV

𝑚𝜋 ≈ 370 MeV



Nonperturbative renormalization II: the auxiliary field approach

We want to renormalize  𝒪Γ(𝑥, 𝜉, 𝑛) ≡ ത𝜓 𝑥 + 𝜉𝑛 Γ𝑊 𝑥 + 𝜉𝑛 𝜓 𝑥

Introduce an auxiliary scalar, colour triplet field 𝜁 𝜉𝑛 defined on the line 𝑥 + 𝜉𝑛
to simplify the renormalization of 𝒪Γ(𝑥, 𝜉, 𝑛)

Modify the action to: 𝑆 = 𝑆𝑄𝐶𝐷 + 𝑑𝜉׬ ҧ𝜁 𝑛 ∙ 𝐷 + 𝑚 𝜁

So the propagator 𝜁(𝜉2) ҧ𝜁(𝜉1) = 𝜃 𝜉2 − 𝜉1 𝑊(𝑥2, 𝑥1)𝑒
−𝑚(𝜉2−𝜉1)

In terms of a local bilinear field, 𝜙 ≡ ҧ𝜁𝜓, one has for 𝑚 = 0, 𝜉 > 0 that

𝒪Γ 𝑥, 𝜉, 𝑛 = ത𝜙(𝑥 + 𝜉𝑛)Γ𝜙(𝑥)
𝜁

(expectation values over 𝜁 fields) 

In the end we have: 𝒪Γ
𝑅 𝑥, 𝜉, 𝑛 = 𝑍𝜙

2𝑒−𝑚 𝜉 𝒪Γ′(𝑥, 𝜉, 𝑛)

With Γ′ = Γ + 𝑟𝑚𝑖𝑥𝑠𝑔𝑛 𝜉 𝛾 ∙ 𝑛, Γ + 𝑟𝑚𝑖𝑥
2 𝛾 ∙ 𝑛Γ𝛾 ∙ 𝑛,           𝜙𝑅 = 𝑍𝜙(𝜙 + 𝑟𝑚𝑖𝑥𝛾 ∙ 𝑛𝜙) 

Based on J. Green talk given at the Lattice 2017, Granada, Spain
Jeremy Green, Karl Jansen, FS,  arXiv: 1707.07152
See also the talk of Y. Zhao for a similar proposal 1706.08962

In the continuum:

N. S. Craigie and H. Dorn, NPB185 (1981) 204

H. Dorn, Fortsch. Phys. 34 (1986) 11



Renormalization conditions

• First equation is sensitive to 𝑚, while the other

two are construct to not depend on it;

• These conditions define a family of renormalization

schemes at the scale 𝑝0
2;

• Dependence on 𝑝0 and 𝑝0 ∙ 𝑛/ 𝑝0 ;

• RI´-MOM condition for 𝑆𝜓.

• 𝑚 is determined from the 5 HYP;

• 𝜉0 = 0.6 fm is chosen;

• For the helicity case, 𝑟𝑚𝑖𝑥 is negligible;

• 𝑍𝜙 determinded in a similar way,

for 𝑝0 ∥ 𝑛, 𝑝0 ≈ 1.85 GeV

Compute 𝑆𝜁 𝜉 = 𝜁(𝑥 + 𝜉𝑛) ҧ𝜁(𝑥) 𝑄𝐶𝐷+𝜁 = 𝑊(𝑥 + 𝜉𝑛, 𝑥) 𝑄𝐶𝐷, the momentum space propagator 𝑆𝜓(𝑝), 

and the mixed Green function for 𝜙: 𝐺 𝜉, 𝑝 = 𝑑4𝑥𝑒𝑖𝑝∙𝑥׬ 𝜁(𝜉𝑛)𝜙(0) ത𝜓(𝑥)
𝑄𝐶𝐷

. Then apply the conditions: 



• Two lattice spacings used: 𝑎 ≅ 0.082 fm (𝛽 = 1.95), and 𝑎 ≅ 0.064 fm (𝛽 = 2.10)

• 𝑚𝜋 ≈ 370 MeV for both

• Helicity case used because 𝑟𝑚𝑖𝑥 is vanishingly small in this case

Setup and results

After renormalization the tree link types shown above sit on 

top of each other

Before renormalization After renormalization



Linear divergence seems under control

Discretization effects are not too large

Results for the two different lattice spacings after renormalization

And the isovector helicity quasi-PDF:

Oscillations caused by the hard 

cut-off in the Fourier transform. It will

be fixed in future studies.

For discussions about the long tail and

oscillations, see Chen´s talk and  Lin et al. 

1708.05301

Conversion to 𝑀𝑆 still needs to be done



Summary

▪ Calculation of bare non-singlet quark distributions in lattice QCD at large values 

of the nucleon momentum;

▪ Asymmetry in the light antiquark distributions for all cases appears naturally; 

▪ Calculated moments agree with previous calculation using a different method;

▪ A full renormalization prescription to handle all the divergences present in the

matrix elements for the quasi-PDFs was presented;

Standard logarithmic divergence handled with ҧ𝑍𝒪

Power divergence renormalized with 𝑒+𝛿𝑚
𝑧

𝑎
−𝑐 𝑧

▪ For unpolarized, mixing between vector and scalar matrix elements – needs 

computation of a mixing matrix;

▪ For conversion to 𝑀𝑆, one needs to take care of truncation effects in the 

conversion factor. 𝐼𝑚 𝑍𝑀𝑆 should vanish for all 𝑧;



• Corrections modify the qPDFs in the right direction;

• We are running at the physical point, but the noise to ratio there is significantly

worse;

• The long range has to be better understood after renormalization;

• Alternative nonperturbative renormalization was presented. The 

renormalization of the non-local operator is replaces by the 

renormalization of a local quark bilinear;

• Increasingly rapid progress in this field.

Thanks for the attention!



Minimum Bjorken x

Largest momentum 

Smallest momentum

Present approach is valid at intermediate and large 𝑥

cut imposed by the Lattice spacing

If the correlation lenght of the parton in th nucleon is ~ 1/Λ𝑄𝐶𝐷

Δ𝑧Δ𝑘3~1 ⟶
1

Λ𝑄𝐶𝐷
𝑥𝑚𝑖𝑛𝑃3~1

𝑥𝑚𝑖𝑛~
Λ𝑄𝐶𝐷
𝑃3

So, in terms of the injected momentum, the minimal value of 𝑥 is

Ԧ𝑝 =
2𝜋

𝐿
𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧

Ԧ𝑝 =
𝜋

𝑎

Ԧ𝑝 =
2𝜋

𝐿


