The Flavor Structure of Nucleon Sea INT Workshop INT-17-68W Seattle, October 2-13, 2017

Sea Quark Flavor Asymmetries from Chiral Symmetry Breaking

Peter Schweitzer

University of Connecticut

Overview:

- QCD and dynamical chiral symmetry breaking
- practical tool: chiral quark soliton model
- examples: $M_N(m_\pi)$, GPDs, q PDFs
- sea quark flavor asymmetries
- what gives rise to them?
- conclusions

motivation

• perturbative QCD powerful tool!

establish factorization, provide definitions of non-perturbative objects tells us how a non-perturbative object looks at $Q > \mu_0$ if it is known at μ_0

but how does a non-perturbative object look like at initial scale? how to compute it? Beyond pQCD.

• non-perturbative methods needed

lattice QCD: great!

gives us the correct answer (42!) but we do not not why (that's what QCD says)

models:

give an approximate result (41 ...) but we know exactly why we got it (because we did can be insightful (if model well-motivated, and if it provides predictions we can test)

d
$$\int_{1}^{10} dy \frac{N_c(N_c+2)}{N_c+1+y} - 1 = 41$$
)

global symmetries of QCD

• $\mathcal{L}_{QCD} = \mathcal{L}_{QCD}(\bar{\psi}_q, \psi_q, A_\mu)$ with $m_q \ll M_{hadronic}$ for q = u, d, s $M_{hadronic} \sim \mathcal{O}(M_\rho, M_N) \sim (0.77-0.94) \,\text{GeV} \sim 1 \,\text{GeV}$

• chirality $\psi_{q,L} = \frac{1}{2}(1 - \gamma_5) \psi_q$ and $\psi_{q,R} = \frac{1}{2}(1 + \gamma_5) \psi_q$ vector symmetry V = L + R, axial symmetry V = L - R

global symmetry $U(3)_L \otimes U(3)_R = \underbrace{U(1)_V}_{U(1)_A} \otimes \underbrace{U(1)_A}_{SU(3)_V} \otimes \underbrace{SU(3)_A}_{SU(3)_A}$ baryon number $J^{\pi} = \frac{1}{2}^{+} p, n$ $J^{\pi} = \bar{1}^+ \rho^+, \rho^0, \rho^ J^{\pi} = \frac{3}{2}^{+} \Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-}$ $J^{\pi} = \frac{1}{2}^{-} N(1535)$ so SU(3) octets and decuplets small $m_q \neq 0 \rightarrow$ mass splittings nucleon's chiral partner much heavier \downarrow 1 symmetry is realized symmetry not realized in hadron spectrum spontaneously broken

spontaneous chiral symmetry breaking

- $N_f^2 1$ Goldstone bosons $\pi, \, K, \, \eta$ with $m_h \ll 1 \, {
 m GeV}$
- implemented in $\mathcal{L}_{\chi PT}$ with degrees of freedom N,Δ,π,\ldots powerful effective field theory
- key feature of strong interaction fundamental for light hadron spectrum crucial for structure of nucleon ∈ light hadron spectrum
- how to apply to parton structure of nucleon?
- dynamical microscopic theory needed which:
 - has partonic and Goldstone boson degrees of freedom
 - provides insights in non-perturbative regime(!)
 - is well-motivated, founded on QCD
 - consistent, effective, reliable
 - solvable*

^{*} more easily than lattice QCD, otherwise just do lattice QCD

dynamical chiral symmetry breaking

Shuryak; Diakonov, Petrov (1980s)

- perturb. interactions preserve quark chirality non-perturbative gluon fields can flip it topological gauge fields, instantons
- I, \overline{I} form dilute strongly-interacting medium which stabilizes at $\rho \sim 0.3$ fm and $R \sim 1$ fm non-trivial small parameter $\sim c_0 (\rho/R)^4/N_c \sim \frac{1}{20}$ instanton liquid model of QCD vacuum
- light quarks acquire momentum-dependent mass QCD vacuum structure (quark condensate) $\langle 0|\bar{\psi}\psi|0\rangle = \langle 0|\bar{\psi}_L\psi_R + \bar{\psi}_R\psi_L|0\rangle \neq 0$ order parameter of symmetry breaking
- Goldstone boson π collective excitation $m_\pi^2 f_\pi^2 = -m_q \langle 0 | \bar{\psi} \psi | 0 \rangle$ Gell-Mann–Oakes–Renner
- effective ("constituent") q, \bar{q} with dynamical mass $M(0) \sim 0.35 \text{ GeV}$ for $p \ll \Lambda_{\text{cut}} = \rho^{-1} \sim 0.6 \text{ GeV}$
- chiral symmetry breaking occurs at scale $ho \sim 0.3$ fm

0.4

tool: chiral quark soliton model

Diakonov, Eides 1983; Diakonov, Petrov 1986

 $\mathcal{L}_{\text{eff}} = \overline{\Psi} \left(i \not \partial + M U^{\gamma_5} \right) \Psi$ • constituent q, \overline{q} degrees of freedom with **dynamical mass** $M \sim 350 \text{ MeV}$ at energies $\lesssim \rho^{-1} \simeq 600 \text{ MeV}$ (cutoff)

- coupled to chiral field $U^{\gamma_5} = \exp(i\gamma_5\tau^a\pi^a/F_\pi)$ coupling constant $g_{\pi q\bar{q}} = M/F_\pi \sim 4$ is large!
- $\langle N'| \dots |N \rangle = \int \mathcal{D}\bar{\Psi} \,\mathcal{D}\Psi \,\mathcal{D}U \,\langle 0|J_N(\frac{T}{2}) \dots J_N^{\dagger}(-\frac{T}{2})|0 \rangle \,e^{-iS_{\text{eff}}}$ solve limit $T \to \infty$ on paper, integration over $\bar{\Psi}$, Ψ exact path integral over U non-perturbatively in $1/N_c$ expansion $M_N = \min_U E_{\text{sol}}[U]$, quantize zero modes (large N_c picture, Witten 1979)
- **chiral quark-soliton model** (no free parameters!) Diakonov, Petrov, Pobylitsa 1986; Kahana, Ripka 1984
- full Dirac sea, no Fock space truncation: consistent, theoretically appealing! (completeness, locality, analyticity)
- **successful phenomenology!** useful accuracy (10-30)% systematic $1/N_c$ expansion: mass spectrum, form factors, PDFs, GPDs TMDs (Goeke et al, Diakonov et al, Reinhardt et al, Wakamatsu et al)

 $m{H} \psi_{m{n}} = m{E}_{m{n}} \psi_{m{n}}$ $\langle N' | \overline{\Psi} \dots \Psi | N
angle = A \sum ar{\psi}_n \dots \psi_n$

applications of effective theory

• vacuum sector: $\frac{\langle F^2 \rangle}{32\pi^2} \simeq (200 \text{ MeV})^4$ gluon condensate QCD sum rules = instanton density $\Rightarrow R \sim 1 \text{ fm}$ $\langle \bar{\Psi}\Psi \rangle \simeq -(250 \text{ MeV})^3$ quark condensate = const $N_c/(\rho R^2) \Rightarrow \rho \sim \frac{1}{3} \text{ fm}$

• meson sector: chiral Lagrangian integrate out $\int D\bar{\Psi} D\Psi e^{-iS_{\text{eff}}} =$

$$\mathcal{L}_{\pi}(U) = \frac{1}{4} f_{\pi}^2 \partial^{\mu} U \partial_{\mu} U^{\dagger} + \text{Gasser-Leutwyler-terms} + \dots$$
$$f_{\pi}^2 = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \frac{4N_c M^2}{(p^2 + M^2)^2} = (93 \,\mathrm{MeV})^2 \Rightarrow \Lambda_{\mathrm{cut}}$$

low energy coefficients predicted, consistent Schüren, Ruiz Arriola, Goeke 1991

• baryon sector: parameter-free results/predictions, no tuning! M = 350 MeV and $\Lambda_{\text{cut}} \sim \rho^{-1} \sim 600 \text{ MeV}$ determined in vacuum + meson sector examples: M_N , GPDs, PDFs of qmain topic: asymmetries of \overline{q}

nucleon mass $M_N = N_c \sum_{occ} (E_n - E_n^{(0)})_{reg} + \mathcal{O}(N_c^0)$

- at physical point: about 25% too large, spurious soliton center of mass motion $\sqrt{N_c^0}$ -correction $\sim -300 \text{ MeV}$ Pobylitsa et al. 1992 \rightarrow model accuracy $\sim (10-30)\%$
- in chiral limit: $M_N(m_\pi) = M_N(0) + A m_\pi^2 + k \times \frac{3 g_A^2}{32\pi f_\pi^2} m_\pi^3 + \text{higher orders } \sqrt{2\pi}$

k = 1 at finite N_c k = 3 large– N_c limit limits do not commute the role of Δ -resonance leading non-analytic terms

 $m_{\pi} \rightarrow M_{\Lambda} - M_N \rightarrow 0$ in large- N_c Cohen, Broniowski 1992

• heavy quark limit:

 $\lim_{m_q o M_Q} M_N = N_c M_Q$ formal proof \checkmark Goeke et al, EPJA27 (2006) 77

GPDS most demanding for models!

(i) forward limit
$$H^q(x,\xi,t) \to f_1^q(x)$$
 \checkmark all models

(ii) form factors
$$\rightarrow \int dx H^q(x,\xi,t) = F_1^q(t) \neq F(\xi,t) \sqrt{\text{not all models!}}$$

(i) **positivity** $\rightarrow f_1^{\overline{q}}(x) > 0$, Soffer bound \checkmark certain models

(iii) **polynomiality** Lorentz inv. + time-reversal, even N (if odd, highest power ξ^{N-1})

$$\int dx \, x^{N-1} \, H^q(x,\xi,t) = h_0^{q(N)}(t) + h_2^{q(N)}(t) \, \xi^2 + \dots + h_N^{q(N)}(t) \, \xi^N \quad \checkmark$$
$$\int dx \, x^{N-1} \, E^q(x,\xi,t) = e_0^{q(N)}(t) + e_2^{q(N)}(t) \, \xi^2 + \dots + e_N^{q(N)}(t) \, \xi^N \, \checkmark$$
$$- e_N^{q(N)}(t) = h_N^{q(N)}(t) \, \checkmark \quad \text{only ChQSM! (rigorous analytical proof)}$$

(iv) **D-term** \rightarrow even N highest powers ("Polyakov-Weiss terms") $\sqrt{}$ "discovered"

(v) form factors of EMT
gravitational FFs,
$$N = 2$$

 $T_{00}(r) \rightarrow \int d^3x T_{00}(r) = M_N \checkmark$
 $\varepsilon^{ijk}x_jT_{0k}(r) \rightarrow \text{Ji sum rule } J_N = \frac{1}{2}\checkmark$
 $T_{ij}(r) \rightarrow \int_{0}^{\infty} dr r^2 p(r) = 0\checkmark$
 \Rightarrow forces

side remark:

insight from parton densities: how are the quarks distributed? here dynamics: why so distributed? mechanical response function grain of salt: $\sim 3\%$ rel. corr. proton

PDFs

What can we expect in effective theory?

- $xN_c = \mathcal{O}(1)$ applicable \rightarrow "non-exceptional x" (no $x \rightarrow 0$, no $x \rightarrow 1$)
- small $x \leq (M\rho)^2/N_c \sim 0.1$ sensitive to UV-details of theory
- to leading order model quark = QCD quark + $O(M^2 \rho^2)$ at low scale $\mu \sim \rho^{-1}$

- gluons not ignored, but (twist-2 gluons) suppressed by $\mathcal{O}(M^2\rho^2) \sim 30\%$ at $\mu \sim \rho^{-1}$
- solve $\int \mathcal{D}U \dots$ in large- N_c : $\mathsf{PDF}(x) = N_c^2 a_{\mathrm{LO}}(xN_c) + N_c a_{\mathrm{NLO}}(xN_c) + \dots$
- compare to meson-cloud models which "expand" to 1st order in $g_{\pi NN} = g_A M_N / f_{\pi} \sim 12.7$ in ChQSM all orders included in soliton field (non-perturbative method)
- flavor structure: $u \pm d$ leading vs $u \mp d$ subleading (general large N_c)

 $f_1: u+d \gg u-d$

- $g_1: u-d \gg u+d$
- $h_1: u-d \gg u+d$ analog for \bar{q}
- \Rightarrow focus on "non-exceptional x" expect "precision" of 30% or so

results for quarks historical plots (GRV, GRSV, ...)

• unpolarized Diakonov et al, NPB 1996 Pobylitsa et al, PRD 1998

• helicity Diakonov et al, NPB 1996 Goeke et al, 2001

• transversity PS, Urbano et al, PRD 2001

sea quarks

• model results:

flavor asymmetries in all twist-2 PDFs:

helicity Diakonov et al, NPB 1996 unpolarized Pobylitsa et al, PRD 1998 transversity PS et al, PRD 2001

$$egin{aligned} &(g_1^{ar{u}}-g_1^{ar{d}})(x)\sim N_c^2\ &(f_1^{ar{d}}-f_1^{ar{u}})(x)\sim N_c\ &(h_1^{ar{u}}-h_1^{ar{d}})(x)\sim N_c^2 \end{aligned}$$

unpolarized sea: $\bar{d} - \bar{u}$

Gottfried sum: $I_G = \frac{1}{3} + \frac{2}{3} \int dx \, (f_1^{\bar{u}} - f_1^{\bar{d}})(x) = 0.219$

• why?

expand model expression in ∂U \Leftrightarrow Sullivan process (\rightarrow Wally) (no small parameter to justify but gives a feeling about involved quantum numbers)

helicity sea: $ar{u}-ar{d}$

• model result Diakonov et al, NPB 1996 predictions for W^{\pm} in ppDressler et al EPJC 2001 (thanks to Werner)

 L. Adamczyk et al.
 (STAR Collaboration),
 PRL 113, (2014) 072301
 → talks by Bernd Surrow and Elke Aschenauer

• why?

expand model expression in ∂U $\Leftrightarrow \sigma$ - π interference (no small parameter to justify but gives a feeling about involved quantum numbers)

transversity sea: $\bar{u} - \bar{d}$

model result
 PS et al, PRD 2001
 waiting for experimental test
 meanwhile compare to lattice
 Chen et al, NPB 911 (2016) 246
 (→ Huey-Wen Lin's talk)
 (+ Kang, Prokudin, Sun, Yuan PRD93)

• why?

expand model expression in ∂U \Leftrightarrow higher order chiral dynamics! (no small parameter to justify)

emerging picture:

$ar{q}$ -asymmetry e	xperiment	χ QSM
$egin{aligned} &(f_1^{ar{d}}-f_1^{ar{u}})(x)\sim N_c\ &(g_1^{ar{u}}-g_1^{ar{d}})(x)\sim N_c^2\ &(h_1^{ar{u}}-h_1^{ar{d}})(x)\sim N_c^2 \end{aligned}$	√ √ future	√ promising waiting

do we understand?

- $(g_1^{\bar{u}} g_1^{\bar{d}})(x)$ sizable, perhaps larger than $(f_1^{\bar{d}} f_1^{\bar{u}})(x)$. Why? Explanation: large- N_c
- but why should $(g_1^{\bar{u}} g_1^{\bar{d}})(x)$ and $(f_1^{\bar{d}} f_1^{\bar{u}})(x)$ be sizable in first place?
- and why should $(h_1^{\overline{u}} h_1^{\overline{d}})(x)$ be less sizable?

 \hookrightarrow go beyond 1-D for new insights: look at TMDs $f_1^{\bar{q}}(x, p_T)$, $g_1^{\bar{q}}(x, p_T)$, $h_1^{\bar{q}}(x, p_T)$

TMDs in ChQSM:

• valence quarks $\equiv (u+d) - (\bar{u} + \bar{d})$

 $\langle p_T^2
angle_{
m val} \sim 0.15 {
m GeV}^2 \sim {\cal O}(M^2)$

 \rightarrow bound state (similar: bag, spectator, LFCM)

TMDs in ChQSM:

• valence quarks $\equiv (u + d) - (\bar{u} + \bar{d})$ $\langle p_T^2 \rangle_{\rm val} \sim 0.15 {\rm GeV}^2 \sim \mathcal{O}(M^2)$

 \rightarrow bound state (similar: bag, spectator, LFCM)

• sea quarks $\equiv \bar{q} \equiv (\bar{u} + \bar{d})$

 $p_T \sim 1/\rho$ power-like behavior quasi model-independent:

$$egin{aligned} f_1^{ar q}(x,p_T) &pprox f_1^{ar q}(x) \; rac{m{C_1}\,M^2}{M^2+p_T^2} \ m{C_1} &= rac{2N_c}{(2\pi)^3 F_\pi^2} &\leftarrow ext{chiral dynamics!} \end{aligned}$$

• valence vs sea: qualitatively different!! quantitatively different $\langle p_T^2 \rangle_{
m sea} \sim 3 \langle p_T^2 \rangle_{
m val}!!$

• $g_1^{\text{val}}(x, p_T)$ vs. $g_1^{\text{sea}}(x, p_T)$ similar behavior here: $\text{val} \equiv (u - d) - (\bar{u} - \bar{d})$, $\text{sea} \equiv (\bar{u} - \bar{d})$

remarkable: $g_1^{\bar{q}}(x, p_T) \approx g_1^{\bar{q}}(x) \frac{C_1 M^2}{M^2 + p_T^2}$ same coefficient $C_1 \leftarrow$ chiral dynamics!!

Why is that ...?

valence quark picture

realized in quark models: whether ChQSM, spectator (Jakob et al), LFCM (Pasquini et al), bag (Avakian et al), NJL-jet (Matevosyan et al), details differ, but **bound-state** is bound-state

 $\langle p_T^2 \rangle_{
m val} \sim M^2$

but what binds these valence quarks? it's the soliton field due to χ SB, strong coupling $f_{\pi q \bar{q}} = M/F_{\pi} \sim 4$ chiral field generates $\bar{q}q$ pairs correlated at χ SB scale ρ !

... signature of chiral symmetry breaking! short-range correlations of q, \bar{q} pairs !!!

QCD vacuum structure (**"Dirac sea"** in model) PS, Strikman, Weiss 2013

$$\langle p_T^2 \rangle_{\rm val} \sim M^2$$

 $\langle p_T^2 \rangle_{\rm sea} \sim \rho^{-2}$
 $\rho = \frac{q_{\bar{q}}}{q_{\bar{q}}} \frac{q_{\bar{q}}}{q_{\bar{q}}} R_{hadron} \sim \frac{1}{M}$

$$\langle p_T^2 \rangle_{\rm val} / \langle p_T^2 \rangle_{\rm sea} \sim M^2 \rho^2 \sim M^2 / ({\rm cutoff})^2 \ll 1$$

('diluteness' of instanton medium) Diakonov, Petrov, Weiss 1996

transversity TMD (ongoing work)

• much different p_T -dependence:

$$h_1^q(x, p_T) \sim \frac{1}{(M^2 + p_T^2)^2}$$

vs. $f_1^q(x, p_T) \sim \frac{1}{(M^2 + p_T^2)}$ and $g_1^q(x, p_T) \sim \frac{1}{(M^2 + p_T^2)}$ for $M^2 \ll p_T^2 \ll \rho^{-2}$

• consequences:

 p_T of transversity "of valence type" $\langle p_T^2\rangle_{h_1}\ll \langle p_T^2\rangle_{f_1}$ or $\langle p_T^2\rangle_{g_1}$

clear: much different chiral mechanism

 $f_1^{ar q} \propto \sigma^* \sigma + \pi^* \pi \leftrightarrow {f V}$ ector current

 $g_1^{ar q} \propto \sigma^* \pi + \pi^* \sigma \leftrightarrow$ Axial vector current

 h_1^q and $h_1^{\bar{q}} \propto (\sigma \sigma^* \pi \pm \sigma \pi^* \pi \pm \pi \pi^* \pi) \mp$ c.c. \leftrightarrow "tensor current"

remarks

• sizable $f_1^{\bar{u}+\bar{d}}(x,p_T) \rightarrow$ sizable $f_1^{\bar{u}+\bar{d}}(x)$ (enhanced by chiral short range correlations)

- $f_1^{\bar{u}-\bar{d}}(x,p_T)$ suppressed by $1/N_c$ but the same chiral enhancement! So still large!
- sizable $g_1^{\bar{u}-\bar{d}}(x,p_T) \rightarrow$ sizable $g_1^{\bar{u}-\bar{d}}(x)$ feels chiral correlations & leading in large- N_c
- $g_1^{\bar{u}+\bar{d}}(x,p_T)$ also feels chiral short range correlations but suppressed by $1/N_c$
- $h_1^{\bar{q}}(x, p_T)$: higher order chiral dynamics, hence smallest flavor asymmetry

application for phenomenology:

CSS in b_T -space: $\tilde{f}_1^a(x, b_T) = \int d^2 p_T e^{i \vec{p}_T \vec{b}_T} f_1^a(x, p_T)$ large- b_T : long-distance, non-perturbative physics, fit usual assumption: universal Gaussian- b_T fall-off Landry et al 2003; Konychev, Nadolsky 2006 model: valence vs sea, exponential fall-off \rightarrow Collins, Rogers 2014

experimental tests: $(q = val + sea, \bar{q} = sea)$

SIDIS (HERMES, COMPASS, JLab; JLab12, EIC) kinematic leverage, explore fragmentation (challenge) e.g.: $K^+ = u\bar{s} \sim (\text{val.} + \text{sea}) \text{ vs } K^- = \bar{u}s \sim (\text{sea})$ $(\pi^+ + \pi^-) \text{ vs } (\pi^+ - \pi^-)$

correlations in current \leftrightarrow target fragmentation

when correlated $q\bar{q}$ pair "split up"! $Q^2 \sim \text{few GeV}^2$ not too large (to avoid loss of correlation due to gluon radiation) Kotzinian et al

hadron colliders

multi parton correlations (RHIC, Tevatron, LHC) \rightarrow L. Frankfurt, M. Strikman, C. Weiss Drell-Yan: pp vs $\bar{p}p$, RHIC, Fermilab, ...

large b_T -region

independent of UV-details (regularization) quasi model-independent \rightarrow chiral-dynamics

short-range correlations $\sim \rho \ll R$ "opposite asymmetries" in fracture functions (?)

conclusions

- $\chi {
 m SB}$ key feature of strong interactions, at $ho \sim 0.3~{
 m fm} \ll R_{
 m hadron}$
- realized in chiral quark soliton model (chiral, consistent, can do GPDs)
- predictions and good description of sea quark flavor asymmetries
- $(f_1^{\bar{d}} f_1^{\bar{u}})(x) \checkmark (g_1^{\bar{u}} g_1^{\bar{d}})(x) \checkmark (h_1^{\bar{u}} h_1^{\bar{d}})(x)$
- underlying mechanism: chiral symmetry breaking at scale $ho \ll R_{hadron}$
- more insight \rightarrow **TMDs:** $\langle p_T^2 \rangle_{sea} > \langle p_T^2 \rangle_{val}$ interplay of ρ and R_{hadron} encouraging, more work and tests needed
- chiral physics at $\mu_0 \sim \rho^{-1}$ of importance for non-perturbative parton properties

conclusions

- $\chi {
 m SB}$ key feature of strong interactions, at $ho \sim 0.3~{
 m fm} \ll R_{
 m hadron}$
- realized in chiral quark soliton model (chiral, consistent, can do GPDs)
- predictions and good description of sea quark flavor asymmetries
- $(f_1^{\bar{d}} f_1^{\bar{u}})(x) \checkmark (g_1^{\bar{u}} g_1^{\bar{d}})(x) \checkmark (h_1^{\bar{u}} h_1^{\bar{d}})(x)$
- underlying mechanism: chiral symmetry breaking at scale $ho \ll R_{hadron}$

Thank you.

- more insight \rightarrow **TMDs:** $\langle p_T^2 \rangle_{sea} > \langle p_T^2 \rangle_{val}$ interplay of ρ and R_{hadron} encouraging, more work and tests needed
- chiral physics at $\mu_0 \sim \rho^{-1}$ of importance for non-perturbative parton properties