The Flavor Structure of Nucleon Sea INT Workshop INT-17-68WSeattle, October 2-13, ²⁰¹⁷

Sea Quark Flavor Asymmetries from Chiral Symmetry Breaking

Peter Schweitzer

University of Connecticut

Overview:

- QCD and dynamical chiral symmetry breaking
- practical tool: chiral quark soliton model
- \bullet examples: $M_N(m_\pi)$, GPDs, q PDFs
- sea quark flavor asymmetries
- what gives rise to them?
- conclusions

motivation

• perturbative QCD powerful tool!
establish factorization, provide def

establish factorization, provide definitions of non-perturbative objects tells us how a non-perturbative object looks at $Q>\mu_0$ if it is known at μ_0

but how does ^a non-perturbative object look like at initial scale?how to compute it? Beyond pQCD.

• non-perturbative methods needed

lattice QCD: great!

gives us the correct answer (42!) but we do not not why (that's what QCD says)

models:

give an approximate result (41 . . .) but we know exactly why we got it (because we did $\int dy \frac{N_{c}(N_{c}+2)}{N_{c}+1+y} - 1 = 41$) can be insightful (if model well-motivated, can be insightful (if model well-motivated, and if it provides predictions we can test)

$$
\int_{1}^{10} dy \frac{N_c(N_c+2)}{N_c+1+y} - 1 = 41)
$$

global symmetries of QCD

• $\mathcal{L}_{\text{QCD}}=\mathcal{L}_{\text{QCD}}(\bar{\psi}_q,\psi_q, A_{\mu})$ with $m_q \ll M_{\text{\sf hadronic}}$ for $q=u,d,s$ $\;M_{\text{\sf hadronic}} \sim \mathcal{O}(M_\rho,M_N) \sim \text{(0.77–0.94)~GeV} \sim 1$ GeV

 \bullet chirality $\psi_{q,L}=\frac{1}{2}$ vector symmetry $V=L+R$, axial symmetry $V=L-R$ $\frac{1}{2}(1$ $\gamma_5)$ ψ_q and $\psi_{q,R}=\frac{1}{2}$ $\frac{1}{2}(1+\gamma_5)\,\psi_q$

global symmetry $U(3)_L$ \otimes $U(3)_R$ $=\underline{U(1)_V}$ \longrightarrow baryon number ⊗ $\frac{U(1)_A}{}$ \longrightarrow a_{t} anomaly \otimes $SU(3)_V$ \longrightarrow $\mathcal{S}_{U_{(n_{j})}}$ flavorsymmetry \otimes $SU(3)_A$ \longrightarrow spontanuous $J^{\pi} = \frac{1}{2}^{+} N(940)$ vs J^π $J^{\pi} = 1^+ \rho^+$ $\pi=\frac{1}{2}$ 2+ p, ⁿ $\pi = 1$ + \int μ $^+$, ρ 0 \degree , ρ $J^{\pi} = \frac{3}{5}^{+} \Delta^{++}$. Δ^{-} SU(3) octets and decupl $\pi=\frac{3}{2}$ 2+ \uparrow Δ^{++} , Δ^{+} , Δ^{0} , Δ^{-} SU(3) octets and decuplets small $m_q\neq 0\rightarrow$ mass splittings
JL ⇓ symmetry is realized in hadron spectrumπ $\pi=\frac{1}{2}$ J^π 2+[⊤] *N*(940) vs
− nucleon's chiral partner much heavier $\pi=\frac{1}{2}$ $\frac{1}{2}$ $N(1535)$ so ⇓ symmetry not realizedspontaneously broken

spontaneous chiral symmetry breaking

- $\bullet~N_{\rm \textit{c}}^2$ π, K, η with $m_h \ll 1$ GeV $f\overline{f}-1$ Goldstone bosons
- implemented in $\mathcal{L}_{\chi PT}$ with degrees of freedom N, Δ, π, \ldots
powerful effective field theory powerful effective field theory
- key feature of strong interaction fundamental for light hadron spectrumcrucial for structure of nucleon \in light hadron spectrum
- how to apply to parton structure of nucleon?
- dynamical microscopic theory needed which:
	- has partonic and Goldstone boson degrees of freedom
	- –provides insights in non-perturbative regime(!)
	- is well-motivated, founded on QCD
	- consistent, effective, reliable
	- solvable∗

[∗]more easily than lattice QCD, otherwise just do lattice QCD

dynamical chiral symmetry breaking

Shuryak; Diakonov, Petrov (1980s)

- perturb. interactions preserve quark chirality non-perturbative gluon fields can flip it topological gauge fields, instantons
- I, \bar{I} form dilute strongly-interacting medium which stabilizes at $\rho \sim 0.3$ fm and $R \sim 1$ fm
non-trivial small parameter $\sim c_2 \left(\frac{a}{R} \right)^4/N$. rameter $\sim c_0$ (a/R) $7/N_a$ non-trivial small parameter $\sim c_0\,(\rho/R)^4/N_c\sim\frac{1}{20}$ instanton liquid model of QCD vacuum20
- light quarks acquire momentum-dependent mass QCD vacuum structure (quark condensate) $\langle 0 | \bar{\psi}\psi | 0 \rangle = \langle 0 | \bar{\psi}$ $L\psi_R+\bar{\psi}_R\psi_L|0\rangle\neq 0$
symmetry breaking order parameter of symmetry breaking
- Goldstone boson π **Goldstone** boson π collective excitation
 $m^2 \, t^2 = -m_a \langle 0 | \bar{\psi}\psi | 0 \rangle$ Gell-Mann-Oakes-Renn $^2_\pi\!^2_\pi$ $m_\pi^2=-m_q\langle 0|\bar\psi\psi|0\rangle$ Gell-Mann–Oakes–Renner
- effective ("constituent") $q,~\bar{q}$ with dynamical mass $M(0)\sim 0.35\,\text{GeV}$ for $p\ll\Lambda_{\text{cut}}=\rho^{-1}\sim$ 0. ~ 0.6 GeV
- chiral symmetry breaking occurs at scale $\rho∼0.3 fm$

tool: chiral quark soliton model

Diakonov, Eides 1983; Diakonov, Petrov ¹⁹⁸⁶

 ${\cal L}_{\rm eff} = \overline{\Psi} \bigl(i \not \! \partial + M \, U^{\gamma_5} \bigr)$ e constituent e $\bar{\varepsilon}$ degrees • constituent q, \bar{q} degrees of freedom $\big)\Psi$ with **dynamical mass** $M \sim 350$ MeV
at energies ≤ $\mathbf{s}^{-1} \approx \mathbf{600} \, \mathrm{MeV}$ (cutofl at energies $\lesssim \rho^{-1} \simeq 600 \, {\rm MeV}$ (cutoff)

- \bullet coupled to chiral field $U^{\gamma_5} = \exp(i \gamma_5 \tau^a \pi^a / F_{\pi})$ coupling constant $g_{\pi q \bar{q}} = M/F_\pi \sim$ 4 is large!
- $\bullet \,\, \langle N' | \ldots | N \rangle = \int {\cal D}{\bar \Psi} \, {\cal D}{\Psi} \, {\cal D}{U} \,\, \langle 0 | J_N (\frac{T}{2}$ |solve limit $T \to \infty$ on paper, integration over $\bar{\Psi}$,
nath integral over U non-perturbatively in $1/N$. $\frac{T}{2})\ldots J_{N}^{\dagger}(-\frac{T}{2}% ,\frac{T}{2})\ldots J_{N}^{\dagger}$ $\frac{T}{2})|0\rangle\, e^{-iS_{\sf eff}}$ solve limit $T\rightarrow\infty$ on paper, integration over $\bar{\Psi}$, Ψ exact
path integral over U non-perturbatively in $1/N_c$ expansion
Measure E (H) meating are noted (hour Measure))((the 1978) $M_N = \mathop{{\rm min}}_U\, E_{\mathop{\rm sol}}[U]$, quantize zero modes (large N_c picture, Witten 1979)
- **chiral quark-soliton model** (no free parameters!) Diakonov, Petrov, Pobylitsa 1986; Kahana, Ripka ¹⁹⁸⁴
- full Dirac sea, no Fock space truncation: consistent, theoretically appealing! (completeness, locality, analyticity)
- **successful phenomenology!** useful accuracy (10-30)% systematic $1/N_c$ expansion: mass spectrum, form factors, PDFs, GPDs TMDs (Goeke et al, Diakonov et al, Reinhardt et al, Wakamatsu et al)

 $H\psi_n=E_n\psi_n$

 $\langle N'|\overline{\Psi}\dots\Psi|N$. . . $\ket{\Psi|N}=A\sum \bar{\psi}_n\ldots\psi_n$ $\it n$ n

applications of effective theory

• vacuum sector: $\langle\bm{F}% _{0}\vert\bm{F}_{1}\vert$ $\frac{\langle F^2\rangle}{32\pi^2}$ \simeq $(200\,\mathrm{MeV})^4$ gluon condensate QCD sum rules $=$ instanton density $\Rightarrow R \sim 1$ fm $\langle\bar \Psi\Psi\rangle \simeq - (250\,\text{MeV})^3$ quark condensate $=$ const $N_c/(\rho R^2$ $^2) \Rightarrow \rho \sim \frac{1}{3}$ $\frac{1}{3}$ fm

• meson sector: chiral Lagrangian integrate out \int $\mathcal{D}\bar{\Psi}$ DΨe $-iS_{\mathsf{eff}}=$ $\mathcal{L}_{\pi}(% \mathcal{M})$ $\bm{U})$ =1 4 f_π^2 $\frac{d^2\partial^{\mu}U\partial_{\mu}U^{\dagger}}{d\sigma^2}+$ Gasser-Leutwyler-terms $+\dots$ \int 2 π= $\int \frac{d}{2}$ 4 $\frac{q}{(2\pi)^4}$ low energy coefficients predicted, consistent 4 $\frac{N_c}{\sqrt{2}}$ $\,M$ 2 $\frac{4N_cM}{(p^2+M^2)^2} = (93 \text{ MeV})^2$ α ⇒ Λ_{cut}

Schüren, Ruiz Arriola, Goeke 1991

• baryon sector: parameter-free results/predictions, no tuning! $M = 350$ MeV and $\Lambda_{\rm cut} \sim \rho^{-1}$
determined in vacuum + me determined in vacuum + meson sector $\frac{1}{2}$ ∼ 600 MeV examples: M_N , GPDs, PDFs of q
main tonic: asymmetries of \bar{z} main topic: asymmetries of \bar{q}

nucleon mass $\; M_N^{} = N_c^{}\sum_{\rm occ}^{}(E_n\;$ occ $\big(n - E_n^{(0)} \big)_{\!\!\!\!\!\! \rm reg} \,\,\, + \,\,\, {\cal O}(N_c^0)$

- at physical point: about 25% too large, spurious soliton center of mass motion $\sqrt{}$ N_c^0 -correction \sim −300 MeV Pobylitsa et al. 1992 \hookrightarrow model accuracy $\sim (10\text{--}30)\%$
- \bullet in chiral limit: M_N $\zeta_N(m_\pi) = M_N(0) + A\, m_\pi^2 + k\times\frac{3\,g_A^2}{32\pi f_\pi^2}\, m_\pi^3 + \text{higher orders}\,\,\bm{\sqrt{2}}\, ,$ $\zeta_N(m_\pi) = M_N(0) + A\, m_\pi^2 + k\times\frac{3\,g_A^2}{32\pi f_\pi^2}\, m_\pi^3 + \text{higher orders}\,\,\bm{\sqrt{2}}\,$

 $k=1$ at finite N_c $k=3$ large– N_c limit limits do not commute the role of ∆-resonanceleading non-analytic terms

 $m_{\pi} \rightarrow M_{\Delta} - M_N \rightarrow 0$ in large- N_c Cohen, Broniowski ¹⁹⁹²

• heavy quark limit: $\lim_{m\to\Lambda}$

 $m_a \rightarrow M_Q$ $M_N = N_c M_Q \;$ formal proof $\bigvee \;$ Goeke et al, EPJA27 (2006) 77

GPDsmost demanding for models!

(i) **forward limit**
$$
H^q(x,\xi,t) \to f_1^q(x) \bigvee
$$
 all models

(ii) **form factors**
$$
\rightarrow \int dx H^{q}(x,\xi,t) = F_{1}^{q}(t) \neq F(\xi,t)\sqrt{\text{not all models!}}
$$

(i)**positivity** $\rightarrow f_1^{\bar{q}}(x) > 0$, Soffer bound \checkmark certain models

(iii)**polynomiality** Lorentz inv. + time-reversal, even N (if odd, highest power ξ^{N-1})

$$
\int dx \, x^{N-1} \, H^q(x,\xi,t) = h_0^{q(N)}(t) + h_2^{q(N)}(t) \, \xi^2 + \dots + h_N^{q(N)}(t) \, \xi^N \quad \sqrt{\int} dx \, x^{N-1} \, E^q(x,\xi,t) = e_0^{q(N)}(t) + e_2^{q(N)}(t) \, \xi^2 + \dots + e_N^{q(N)}(t) \, \xi^N \sqrt{\int} - e_N^{q(N)}(t) = h_N^{q(N)}(t) \sqrt{\int} \text{only ChQSM! (rigorous analytical proof)}
$$

(iv)) D -term → even N highest powers ("Polyakov-Weiss terms") $\sqrt{ }$ "discovered"

$$
\begin{array}{ll}\n\text{(v)} & \text{form factors of EMT} \\
\text{gravitational FFs, } N = 2 \\
T_{00}(r) \rightarrow \int d^3x \, T_{00}(r) = M_N \quad \text{with} \\
\varepsilon^{ijk} x_j T_{0k}(r) \rightarrow \text{Ji sum rule } J_N = \frac{1}{2} \quad \text{with} \\
T_{ij}(r) \rightarrow \int d^r r^2 p(r) = 0 \quad \text{forces} \\
 & \text{forces} \\
 & \text{in } \text{fin } \text{m}\n\end{array}
$$

side remark:

insight from parton densities: **how** are the quarks distributed?
here dynamics: why so distribut here dynamics: **why** so distributed? mechanical response functiongrain of salt: \sim 3% rel. corr. proton

PDFs

What can we expect in effective theory?

- $xN_c = \mathcal{O}(1)$ applicable \rightarrow "non-exceptional x " (no $x \rightarrow 0$, no $x \rightarrow 1$)
- small $x \leq (M \rho)^2/N_c \sim 0.1$ sensitive to $\textsf{UV}\text{-}$ details of theory
- to leading order model quark $=$ QCD quark $+$ $\mathcal{O}(M^2 \rho^2)$ at low scale $\mu \sim \rho^{-1}$

- gluons not ignored, but (twist-2 gluons) suppressed by $\widetilde{\mathcal{O}(M^2 \rho^2)}$ ${\cal O}(M^2 \rho^2) \sim 30 \, \%$ at $\mu \sim \rho^{-1}$
- solve $\int {\cal D} U$... in large- N_c : ${\sf PDF}(x) = N_c^2 a_{\rm LO}(xN_c) + N_c a_{\rm NLO}(xN_c) + \ldots$
- compare to meson-cloud models which "expand" to 1st order in $g_{\pi NN} = g_A M_N / f_\pi \sim 12.7$
in ChOSM all orders included in soliton field (non-perturbative method) in ChQSM <mark>all orders</mark> included in soliton field (non-perturbative method)

instanton

vacuum
Kacuum suppressed in
Inton Laculin
I

• flavor structure: $u \pm d$ leading vs $u \mp d$ subleading (general large N_c)

f₁: $u + d \gg u - d$

- g₁: $u-d \gg u+d$
- $h_1: u-d$ ≫ $u+d$ analog for \bar{q}
- ⇒ focus on "non-exceptional x "
expect "precision" of 30% or expect "precision" of ³⁰ % or so

results for quarkshistorical plots (GRV, GRSV, . . .)

• unpolarized Diakonov et al, NPB ¹⁹⁹⁶Pobylitsa et al, PRD ¹⁹⁹⁸

0.5 X

0.5 X

• helicity Diakonov et al, NPB ¹⁹⁹⁶Goeke et al, ²⁰⁰¹

• transversityPS, Urbano et al, PRD ²⁰⁰¹

sea quarks

• model results:

flavor asymmetries in all twist-2 PDFs:

helicity Diakonov et al, NPB 1996 unpolarized Pobylitsa et al, PRD ¹⁹⁹⁸ **transversity** PS et al, PRD 2001

$$
(g_1^{\bar u}-g_1^{\bar d})(x)\sim N_c^2\\(f_1^{\bar d}-f_1^{\bar u})(x)\sim N_c\\(h_1^{\bar u}-h_1^{\bar d})(x)\sim N_c^2
$$

unpolarized sea: $\bar{d}-\bar{u}$

Gottfried sum: $I_G = \frac{1}{3} + \frac{2}{3} \int dx (f_1^{\bar{u}} - f_1^{\bar{d}})(x) = 0.219$

• why?

expand model expression in ∂U ⇔ Sullivan process (→ Wally)
(no small parameter to iustify (no small parameter to justifybut gives ^a feeling about involved quantum numbers)

helicity sea: $\bar u$ –

• model result Diakonov et al, NPB ¹⁹⁹⁶predictions for W^\pm in pp Dressler et al EPJC ²⁰⁰¹(thanks to Werner)

L. Adamczyk et al. (STAR Collaboration), PRL 113, (2014) ⁰⁷²³⁰¹ \rightarrow talks by Bernd Surrow
and Elke Aschanauer and Elke Aschenauer

• why?

expand model expression in ∂U $\Leftrightarrow \sigma$ - π interference ⇔ **σ-π interference**
(no small parameter (no small parameter to justifybut gives ^a feeling about involved quantum numbers)

transversity sea: $\bar u$ – $-\bar{d}$

• model result PS et al, PRD ²⁰⁰¹ waiting for experimental test meanwhile compare to latticeChen et al, NPB ⁹¹¹ (2016) ²⁴⁶(→ Huey-Wen Lin's talk)
(⊥ Kang, Prokudin, Sun (+ Kang, Prokudin, Sun, Yuan PRD93)

• why?

expand model expression in ∂U ⇔ **higher order chiral dynamics!**
(no small parameter to iustify) (no small parameter to justify)

emerging picture:

do we understand?

- $(g_1^{\bar u}-g_1^{\bar d})(x)$ sizable, perhaps larger than $(f_1^{\bar d}-f_1^{\bar u})(x)$. Why? Explanation: large- N_c
- but why should $(g_1^{\bar{u}}-g_1^{\bar{d}})(x)$ and $(f_1^{\bar{d}}-f_1^{\bar{u}})(x)$ be sizable in first place?
- and why should $(h_1^{\bar u} h_1^{\bar d})(x)$ be less sizable?

 \hookrightarrow go beyond 1-D for new insights:
look at TMDs $f_3^{\bar q}(x, p_T)$, $g_4^{\bar q}(x, p_T)$, h look at TMDs $f_1^{\bar q}(x, p_T)$, $g_1^{\bar q}(x, p_T)$, $h_1^{\bar q}(x, p_T)$

TMDs in ChQSM:

• valence quarks $\equiv (u+d) - (\bar{u} + \bar{d})$

 $\langle p_T^2 \rangle_{\rm val}$ ∼ 0.15GeV 2 $\sim \mathcal{O}(M^2)$

 \rightarrow bound state (similar: bag, spectator, LFCM)

TMDs in ChQSM:

• valence quarks $\equiv (u+d) - (\bar{u} + \bar{d})$ $\langle p_T^2 \rangle_{\rm val}$ ∼ 0.15GeV 2 $\sim \mathcal{O}(M^2)$

 \rightarrow bound state (similar: bag, spectator, LFCM)

• sea quarks $\equiv \bar{q} \equiv (\bar{u} + \bar{d})$.

 $p_T \sim 1/\rho$ power-like behavior quasi model-independent:

$$
f_1^{\bar{q}}(x, p_T) \approx f_1^{\bar{q}}(x) \frac{C_1 M^2}{M^2 + p_T^2}
$$

$$
C_1 = \frac{2N_c}{(2\pi)^3 F_\pi^2} \quad \leftarrow \text{chiral dynamics!}
$$

• valence vs sea: qualitatively different!! quantitatively different $\langle p_T^2 \rangle_{\rm sea} \sim 3 \, \langle p_T^2 \rangle_{\rm val}$!!

 $\bullet \ g^{\rm val}_{1}(x,p_T)$ vs. $g^{\rm sea}_{1}(x,p_T)$ similar behavior \blacksquare . here: val $\equiv (u-d)-({\bar u} - {\bar d})$, sea $\equiv ({\bar u} - {\bar d})$

remarkable: $g_1^{\bar q}(x,p_T) \approx g_1^{\bar q}(x)\; \frac{C_1\,M^2}{M^2+p}$ p_T^2 same coefficient $C_1 \leftarrow$ chiral dynamics!!

Why is that ...?

valence quark picture

realized in quark models: whether ChQSM, spectator (Jakob et al), LFCM (Pasquini et al), bag (Avakian et al), NJL-jet (Matevosyan et al), details differ, but **bound-state** is bound-state

 $\braket{p_T^2}_{\rm val}\sim M^2$

but what binds these valence quarks? it's the soliton field due to χ SB, strong coupling $f_{\pi q \overline{q}} = M/F_\pi \sim 4$ chiral field generates $\bar{q}q$ pairs correlated at $\chi{\sf SB}$ scale $\boldsymbol{\rho}$!

. . . signature of chiral symmetry breaking! short-range correlations of q,\bar{q} pairs !!!

QCD vacuum structure("Dirac sea" in model) PS, Strikman, Weiss ²⁰¹³

$$
\langle p_T^2 \rangle_{\text{val}} \sim M^2
$$
\n
$$
\langle p_T^2 \rangle_{\text{sea}} \sim \rho^{-2}
$$
\n
$$
\rho \sqrt{\frac{q}{\bar{q}}}
$$

 $\langle p_T^2\rangle_{\rm val}/\langle p_T^2\rangle_{\rm sea}\sim M^2\rho^2\sim M^2/({\rm cutoff})^2\ll 1$

('diluteness' of instanton medium) Diakonov, Petrov, Weiss ¹⁹⁹⁶

transversity TMD (ongoing work)

 \bullet much different p_T -dependence:

$$
h_1^q(x, p_T) \sim \frac{1}{(M^2 + p_T^2)^2}
$$

vs. $f_1^q(x, p_T) \sim \frac{1}{(M^2 + p_T^2)}$ and $g_1^q(x, p_T) \sim \frac{1}{(M^2 + p_T^2)}$ for $M^2 \ll p_T^2 \ll \rho^{-2}$

• consequences:

 p_T of transversity "of valence type" $\braket{p_T^2}_{h_1} \ll \braket{p_T^2}_{f_1}$ or $\braket{p_T^2}_{g_1}$

clear: much different chiral mechanism

 $f_1^{\bar q} \propto \sigma^* \sigma + \pi^* \pi \leftrightarrow \text{Vector current}$

 $g_1^{\bar q} \propto \sigma^* \pi + \pi^* \sigma \leftrightarrow$ Axial vector current

 h_1^q and $h_1^{\bar q} \propto (\sigma\,\sigma^*\pi \pm \sigma\,\pi^*\pi \pm \pi\,\pi^*\pi)$ \mp C.C. \leftrightarrow "tensor current"

remarks

- sizable $f_1^{\bar u+\bar d}(x,p_T)\to$ sizable $f_1^{\bar u+\bar d}(x)$ (enhanced by chiral short range correlations)
- •• $f_1^{\bar u-\bar d}(x,p_T)$ suppressed by $1/N_c$ but the same chiral enhancement! So still large!
- sizable $g_1^{\bar u- \bar d}(x, p_T) \to$ sizable $g_1^{\bar u- \bar d}(x)$ feels chiral correlations & leading in large- N_c
- • $\bullet \; g_1^{\bar u + \bar d}(x, p_T)$ also feels chiral short range correlations but suppressed by $1/N_c$
- • \bullet $h_1^{\bar q}(x, p_T)$: higher order chiral dynamics, hence smallest flavor asymmetry

application for phenomenology:

CSS in b_T -space: $\tilde{f}_1^a(x,b_T) = \int d^2p_T~e^{i\vec{p}_T\vec{b}_T}f_1^a(x,p_T)$ large- b_T : long-distance, non-perturbative physics, fit usual assumption: universal Gaussian- b_T fall-off Landry et al 2003; Konychev, Nadolsky ²⁰⁰⁶model: valence vs sea, exponential fall-off \rightarrow Collins, Rogers 2014

experimental tests: $(q = val + sea, \ \bar{q} = sea)$

SIDIS (HERMES, COMPASS, JLab; JLab12, EIC)
... kinematic leverage, explore fragmentation (challenge) e.g.: $K^+=u\bar{s}\, \sim$ (val. $+$ sea) vs $\,K^-=\bar{u}s\sim$ (sea) $(\pi^+ + \pi^-)$ vs $(\pi^+ - \pi^-)$

correlations in current \leftrightarrow target fragmentation
when correlated gg pair "split up" l

when correlated $q\bar{q}$ pair "split up"! Q^2 ~ few GeV² not too large (to avoid loss of correlationdue to gluon radiation) Kotzinian et al

hadron colliders

 multi parton correlations (RHIC, Tevatron, LHC) → L. Frankfurt, M. Strikman, C. Weiss
Drell Yan: en VS ब्लू BHIC, Eermilab Drell-Yan: pp vs $\bar pp$, RHIC, Fermilab, \ldots

large b_T -region

 independent of UV-details (regularization) quasi model-independent \longrightarrow chiral-dynamics

short-range correlations $\sim \rho \ll R$ "opposite asymmetries" in fracture functions (?)

conclusions

- χ SB key feature of strong interactions, at $\rho \sim 0.3$ fm $\ll R_{\rm hadron}$
- realized in chiral quark soliton model (chiral, consistent, can do GPDs)
- predictions and good description of sea quark flavor asymmetries
- • \bullet $(f_1^{\bar{d}} - f_1^{\bar{u}})(x) \sqrt{(g_1^{\bar{u}} - g_1^{\bar{d}})}(x)$ √ $(h_1^{\bar{u}} - h_1^{\bar{d}})(x)$
- underlying mechanism: chiral symmetry breaking at scale $\rho \ll R_{\mathsf{hadron}}$
- more insight \rightarrow TMDs: $\langle p_T^2 \rangle_{\rm sea} > \langle p_T^2 \rangle_{\rm val}$ interplay of ρ and $R_{\rm hadron}$ encouraging, more work and tests needed
- chiral physics at $\mu_0 \sim \rho^{-1}$ of importance for
non-norturbative parton proportios non-perturbative parton properties

conclusions

- χ SB key feature of strong interactions, at $\rho \sim 0.3$ fm $\ll R_{\rm hadron}$
- realized in chiral quark soliton model (chiral, consistent, can do GPDs)
- predictions and good description of sea quark flavor asymmetries
- • \bullet $(f_1^{\bar{d}} - f_1^{\bar{u}})(x) \sqrt{(g_1^{\bar{u}} - g_1^{\bar{d}})}(x)$ √ $(h_1^{\bar{u}} - h_1^{\bar{d}})(x)$
- underlying mechanism: chiral symmetry breaking at scale $\rho \ll R_{\mathsf{hadron}}$
- more insight \rightarrow TMDs: $\langle p_T^2 \rangle_{\rm sea} > \langle p_T^2 \rangle_{\rm val}$ interplay of ρ and $R_{\rm hadron}$ encouraging, more work and tests needed
- chiral physics at $\mu_0 \sim \rho^{-1}$ of importance for
non-norturbative parton proportios non-perturbative parton properties $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ you importance for $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$