Advances in Lattice Calculations of Nucleon Structure Functions

and PDFs

G. Schierholz

Deutsches Elektronen-Synchrotron DESY

With

A. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. Rakow, A. Schiller, K. Somfleth, R. Young, J. Zanotti

QCDSF Collaboration

arXiv:1703.01153

Classical Approach

• Moments

Mellin transform

$$\mu_n(q^2) = f \int_0^1 dx \, x^n \, F_1(x, q^2) \qquad \qquad F_1(x, q^2) = \frac{1}{2\pi i f} \int_{c-i\infty}^{c+i\infty} ds \, x^{-s-1} \mu_s(q^2)$$

• OPE

$$\begin{split} \mu_1(q^2) &= c_2(q^2 a^2) \langle N | \mathcal{O}_2(a) | N \rangle + \frac{c_4(q^2 a^2)}{q^2} \langle N | \mathcal{O}_4(a) | N \rangle + \cdots \quad \text{Lattice: } q^2 \sim \frac{1}{a^2} \\ \mu_2(q^2) &= c_3(q^2 a^2) \langle N | \mathcal{O}_3(a) | N \rangle + \frac{c_5(q^2 a^2)}{q^2} \langle N | \mathcal{O}_5(a) | N \rangle + \cdots \\ &: \end{split}$$

• The computations are limited to a few lower moments, due to issues of operator mixing and renormalization. Even so, the uncertainties are at least comparable to the magnitude of the power corrections

Martinelli & Sachrajda

OPE without OPE

Compton amplitude: mother of all

$$\begin{aligned} T_{\mu\nu}(p,q) &= \int \mathrm{d}^4 x \, \mathrm{e}^{iqx} \langle p,s | T J_\mu(x) J_\nu(0) | p,s \rangle \\ &= \left(\delta_{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \right) \mathcal{F}_1(\omega,q^2) + \left(p_\mu - \frac{pq}{q^2} q_\mu \right) \left(p_\nu - \frac{pq}{q^2} q_\nu \right) \frac{1}{pq} \, \mathcal{F}_2(\omega,q^2) \\ &+ \epsilon_{\mu\nu\lambda\sigma} \, q_\lambda \, s_\sigma \frac{1}{pq} \, \mathcal{G}_1(\omega,q^2) + \epsilon_{\mu\nu\lambda\sigma} \, q_\lambda \left(pq \, s_\sigma - sq \, p_\sigma \right) \, \frac{1}{(pq)^2} \, \mathcal{G}_2(\omega,q^2) \end{aligned}$$

Crossing symmetry, $T_{\mu\nu}(p,q)=T_{\nu\mu}(p,-q)$, implies

$$\mathcal{F}_{1,2}(-\omega, q^2) = \pm \mathcal{F}_{1,2}(\omega, q^2), \quad \mathcal{G}_{1,2}(-\omega, q^2) = -\mathcal{G}_{1,2}(\omega, q^2) \qquad \omega = \frac{1}{x} = \frac{2pq}{q^2}$$

In the physical region $1 \leq |\omega| \leq \infty$

Im
$$\mathcal{F}_{1,2}(\omega, q^2) = 2\pi F_{1,2}(\omega, q^2)$$
, Im $\mathcal{G}_{1,2}(\omega, q^2) = 2\pi g_{1,2}(\omega, q^2)$

Dispersion relations

$$\begin{aligned} \mathcal{F}_{1}(\omega, q^{2}) &= 2\omega \int_{1}^{\infty} d\bar{\omega} \left[\frac{F_{1}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} - \omega)} - \frac{F_{1}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} + \omega)} \right] + \mathcal{F}_{1}(0, q^{2}) \\ \mathcal{F}_{2}(\omega, q^{2}) &= 2\omega \int_{1}^{\infty} d\bar{\omega} \left[\frac{F_{2}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} - \omega)} + \frac{F_{2}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} + \omega)} \right] \\ \mathcal{G}_{1}(\omega, q^{2}) &= 2\omega \int_{1}^{\infty} d\bar{\omega} \left[\frac{g_{1}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} - \omega)} + \frac{g_{1}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} + \omega)} \right] \\ \mathcal{G}_{2}(\omega, q^{2}) &= 2\omega \int_{1}^{\infty} d\bar{\omega} \left[\frac{g_{2}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} - \omega)} + \frac{g_{2}(\bar{\omega}, q^{2})}{\bar{\omega} (\bar{\omega} + \omega)} \right] \end{aligned}$$

↑ polarizability For $p_3=q_3=q_0=0$, substituting $\bar{\omega}$ by 1/x

$$T_{33}(p,q) = \mathcal{F}_1(\omega, q^2) = 4\omega \int_0^1 dx \, \frac{\omega x}{1 - (\omega x)^2} F_1(x, q^2) + \mathcal{F}_1(0, q^2)$$
$$= \sum_{n=2,4,\dots}^\infty 4\omega^n \int_0^1 dx \, x^{n-1} F_1(x, q^2) + \mathcal{F}_1(0, q^2)$$

$$T_{03}(p,q) \stackrel{\vec{s}\parallel\vec{p}}{=} \frac{(\vec{q}\times\vec{s})_3}{pq} \mathcal{G}_1(\omega,q^2) = \frac{(\vec{q}\times\vec{s})_3}{pq} 4\omega \int_0^1 dx \frac{1}{1-(\omega x)^2} g_1(x,q^2)$$
$$= \frac{(\vec{q}\times\vec{s})_3}{pq} \sum_{n=1,3,\cdots}^\infty 4\omega^n \int_0^1 dx \, x^{n-1} g_1(x,q^2)$$

$$T_{03}(p,q) \stackrel{\vec{s} \parallel \vec{q}}{=} -\frac{(\vec{p} \times \vec{q})_3 \, \vec{s} \vec{q}}{(pq)^2} \, \mathcal{G}_2(\omega,q^2) = -\frac{(\vec{p} \times \vec{q})_3 \, \vec{s} \vec{q}}{(pq)^2} \, 4\omega \int_0^1 dx \, \frac{1}{1 - (\omega x)^2} \, g_2(x,q^2)$$
$$= -\frac{(\vec{p} \times \vec{q})_3 \, \vec{s} \vec{q}}{(pq)^2} \, \sum_{n=1,3,\cdots}^\infty 4\omega^n \int_0^1 dx \, x^{n-1} g_2(x,q^2)$$

includes power corrections

From T_{33} to μ_n and $F_1(x,q^2)$

The Compton amplitude can be computed most efficiently, including singlet (disconnected) matrix elements, by the Feynman-Hellmann technique. By introducing the perturbation to the Lagrangian

$$\mathcal{L}(x) \to \mathcal{L}(x) + \lambda \mathcal{J}_3(x), \quad \mathcal{J}_3(x) = Z_V \cos(\vec{q}\vec{x}) \ e_q \, \bar{q}(x) \gamma_3 q(x)$$

and taking the second derivative of $\langle N(\vec{p},t)\bar{N}(\vec{p},0)\rangle_{\lambda} \simeq C_{\lambda} e^{-E_{\lambda}(p,q)t}$ with respect to λ on both sides, we obtain

$$-2E_{\lambda}(p,q)\frac{\partial^2}{\partial\lambda^2}E_{\lambda}(p,q)\Big|_{\lambda=0}=T_{33}(p,q)$$

The amplitude encompasses the dominating 'handbag' diagram as well as the power-suppressed 'cats ears' diagram. Varying q^2 will allow to test the twist expansion. No further renormalization is needed

Implementation

All we need to compute are nucleon two-point functions, from which we derive the energy levels E_{λ} . If that has been done successfully, we can resort to continuum language

Valence quark distribution functions

- Computationally cheap. No extra background (vacuum) gauge field configurations have to be generated
- The electromagnetic current needs to be inserted in quark propagators of nucleon two-point function only
- Propagators can be used to compute a variety of other observables, including form factors and Compton amplitudes of all stable particles

Sea quark and gluon distribution functions

- Need to generate new background gauge field configurations with the electromagnetic current being attached to the sea quarks
- As before, the new configurations lend themselves to the calculation of many other observables, besides the nucleon Compton amplitude

Example: Nucleon form factor at large q^2

Powerful method

arXiv:1702.01513

Moments

Task: Compute the lowest M moments

 $\left[{
m odd\ moments\ need\ } \langle p,\ s | T J_{\mu}(x) J_{
u}^5(0) | p,\ s
angle
ight]$

$$\mu_{2m-1} = \int_0^1 dx \, x^{2m-1} F_1(x)$$

from a finite number of sampled points

$$t_n = T_{33}(\omega_n), \ n = 1, \cdots, N$$

Compton amplitude and moments are connected by the set of equations

$$\begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{pmatrix} = \begin{pmatrix} 4\omega_1^2 & 4\omega_1^4 & \cdots & 4\omega_1^{2M} \\ 4\omega_2^2 & 4\omega_2^4 & \cdots & 4\omega_2^{2M} \\ \vdots & \vdots & \vdots & \vdots \\ 4\omega_N^2 & 4\omega_N^4 & \cdots & 4\omega_N^{2M} \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_3 \\ \vdots \\ \mu_{2M-1} \end{pmatrix}$$
Vandermonde M

Solutions are well documented in the literature. Alternatively, we can fit the Compton amplitude by the interpolating polynomial

$$T_{33}(\omega) = 4 \left(\omega^2 \mu_1 + \omega^4 \mu_3 + \dots + \omega^{2M} \mu_{2M-1} \right)$$

Structure function

Ultimate goal: Compute $F_1(x)$ from $T_{33}(\omega)$. Therefor we discretize the integral

$$t_n = \epsilon \sum_{m=1}^M K_{nm} f_m, \quad n = 1, \cdots, N$$

[here: points equidistant with step size ϵ]

with

$$f_m = F_1(x_m), \quad K_{nm} = \frac{4 \omega_n^2 x_m}{1 - (\omega_n x_m)^2}, \quad N < M$$

The $N \times M$ matrix K is written

 $K = U \left[\operatorname{diag}(w_1, \cdots, w_N) \right] V^T$

where W is singular: $w_k \approx 0, K < k \leq N$. Solution by singular value decomposition (SVD)

$$f_m = \sum_{n=1}^{N} K_{mn}^{-1} \epsilon^{-1} t_n$$

with K^{-1} being the pseudoinverse

$$K^{-1} = V \left[\operatorname{diag}(1/w_1, \cdots, 1/w_K, 0, \cdots, 0) \right] U^T$$
 Mathematica

Conceivable alternative:

Educated fit

$$x q(x) = A_q x^{lpha} (1-x)^{eta}$$
 $q = u, d, S, \cdots$

$$\mu_n = f \int_0^1 dx \, x^{n-1} A_q \, x^\alpha (1-x)^\beta = f A_q \, \frac{\Gamma(\alpha+n)\Gamma(1+\beta)}{\Gamma(1+\alpha+\beta+n)}$$

$$T_{33}(\omega) = 4fA_q \Gamma(1+\beta) \sum_n \frac{\Gamma(\alpha+n)}{\Gamma(1+\alpha+\beta+n)} \,\omega^{n+1} \quad \leftarrow \text{Fit to data on } T_{33}(\omega)$$

3 Overview of theoretical framework

In this section we first give a brief overview of the standard theoretical formalism used, and then present a summary of the theoretical improvements and changes in methodology in the global analysis. A more detailed discussion of the various items is given later in separate sections.

We work within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\text{MS}}$ scheme, where structure functions in DIS, $F_i(x, Q^2)$, can be written as a convolution of coefficient functions, $C_{i,a}$, with PDFs of flavour *a* in a hadron of type *A*, $f_{a/A}(x, Q^2)$, i.e.

$$F_i(x, Q^2) = \sum_{a=q,g} C_{i,a} \otimes f_{a/A}(x, Q^2).$$
 (2)

Similarly, in hadron–hadron collisions, hadronic cross sections can be written as process-dependent partonic cross sections convoluted with the same universal PDFs, i.e.

$$\sigma_{AB} = \sum_{a,b=q,g} \hat{\sigma}_{ab} \otimes f_{a/A}(x_1, Q^2) \otimes f_{b/B}(x_2, Q^2). \tag{3}$$

The scale dependence of the PDFs is given by the DGLAP evolution equation in terms of the calculable splitting functions, $P_{aa'}$, i.e.

$$\frac{\partial f_{a/A}}{\partial \ln Q^2} = \sum_{a'=q,g} P_{aa'} \otimes f_{a'/A}.$$
(4)

The DIS coefficient functions, $C_{i,a}$, the partonic cross sections, $\hat{\sigma}_{ab}$, and the splitting functions, $P_{aa'}$, can each be expanded as perturbative series in the running strong coupling, $\alpha_S(Q^2)$. The strong coupling satisfies the renormalisation group equation, which up to NNLO reads

$$\frac{\mathrm{d}}{\mathrm{d}\ln Q^2} \left(\frac{\alpha_S}{4\pi}\right) = -\beta_0 \left(\frac{\alpha_S}{4\pi}\right)^2 - \beta_1 \left(\frac{\alpha_S}{4\pi}\right)^3 - \beta_2 \left(\frac{\alpha_S}{4\pi}\right)^4 - \dots$$
(5)

The input for the evolution equations, (4) and (5), $f_{a/A}(x, Q_0^2)$ and $\alpha_S(Q_0^2)$, at a reference input scale, taken to be $Q_0^2 = 1 \text{ GeV}^2$, must be determined from a global analysis of data. In the present study we use a slightly extended form, compared to previous MRST fits, of the parameterisation of the parton distributions at the input scale $Q_0^2 = 1 \text{ GeV}^2$:

$$\begin{aligned} xu_v(x,Q_0^2) &= A_u x^{\eta_1} (1-x)^{\eta_2} (1+\epsilon_u \sqrt{x}+\gamma_u x), \quad (6) \\ xd_v(x,Q_0^2) &= A_d x^{\eta_3} (1-x)^{\eta_4} (1+\epsilon_d \sqrt{x}+\gamma_d x), \quad (7) \\ xS(x,Q_0^2) &= A_S x^{\delta_S} (1-x)^{\eta_S} (1+\epsilon_S \sqrt{x}+\gamma_S x), \quad (8) \\ x\Delta(x,Q_0^2) &= A_\Delta x^{\eta_\Delta} (1-x)^{\eta_S} (1+\epsilon_g \sqrt{x}+\lambda_{\Delta} x^2), \quad (9) \\ xg(x,Q_0^2) &= A_g x^{\delta_g} (1-x)^{\eta_g} (1+\epsilon_g \sqrt{x}+\gamma_g x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}}, \quad (10) \\ x(s+\bar{s})(x,Q_0^2) &= A_+ x^{\delta_S} (1-x)^{\eta_+} (1+\epsilon_S \sqrt{x}+\gamma_S x), \quad (11) \\ x(s-\bar{s})(x,Q_0^2) &= A_- x^{\delta_-} (1-x)^{\eta_-} (1-x/x_0), \quad (12) \end{aligned}$$

Parameter	LO		NLO		NNLO	
$\alpha_S(Q_0^2)$	0.68183		0.49128		0.45077	
$\alpha_S(M_Z^2)$	0.13939		0.12018		0.11707	
A_u	1.4335		0.25871		0.22250	
η_1	0.45232	+0.022 -0.018	0.29065	+0.019 -0.013	0.27871	+0.018 -0.014
η_2	3.0409	+0.079 -0.067	3.2432	+0.062 -0.039	3.3627	+0.061 -0.044
ϵ_n	-2.3737	+0.54 -0.48	4.0603	$^{+1.6}_{-2.3}$	4.4343	$^{+2.4}_{-2.7}$
γ_u	8.9924	0.40	30.687	2.0	38.599	2.1
A_d	5.0903		12.288		17.938	
η_3	0.71978	+0.057 -0.082	0.96809	+0.11 -0.11	1.0839	+0.12 -0.11
$\eta_4 - \eta_2$	2.0835	+0.32 -0.45	2.7003	+0.50 -0.52	2.7865	+0.50 -0.44
ϵ_d	-4.3654	+0.28 -0.22	-3.8911	+0.31 -0.29	-3.6387	+0.27 -0.28
γ_d	7.4730	-0.22	6.0542	-0.25	5.2577	-0.28
A_S	0.59964	+0.036	0.31620	+0.030 0.021	0.64942	+0.047
δ_S	-0.16276	-0.030	-0.21515	-0.021	-0.11912	-0.041
η_S	8.8801	+0.33	9.2726	+0.23	9.4189	+0.25
ϵ_S	-2.9012	+0.33 +0.33	-2.6022	+0.71	-2.6287	+0.49
γ_S	16.865	-0.37	30.785	-0.50	18.065	-0.51
$\int_{0}^{1} dx \Delta(x, Q_0^2)$	0.091031	+0.012 -0.009	0.087673	+0.013 -0.011	0.078167	+0.012 -0.0091
A_{Δ}	8.9413	0.005	8.1084	0.011	16.244	0.0001
η_{Δ}	1.8760	+0.24 -0.30	1.8691	+0.23 -0.32	2.0741	+0.18 -0.35
γ_{Δ}	8.4703	+2.0 -0.3	13.609	+1.1 -0.6	6.7640	+0.77 -0.41
δ_{Δ}	-36.507	0.0	-59.289	0.0	-36.090	0.41
A_q	0.0012216		1.0805		3.4055	
δ_{q}	-0.83657	+0.15 -0.14	-0.42848	+0.066 -0.057	-0.12178	+0.23 -0.16
η_q	2.3882	+0.51 -0.50	3.0225	+0.43 -0.36	2.9278	+0.68 -0.41
ϵ_q	-38.997	+36 -35	-2.2922	0.00	-2.3210	0.41
γ_{g}	1445.5	$+880 \\ -750$	3.4894		1.9233	
$A_{q'}$			-1.1168		-1.6189	
$\delta_{a'}$			-0.42776	+0.053 -0.047	-0.23999	+0.14 -0.10
$\eta_{g'}$			32.869	+6.5 -5.9	24.792	$^{+6.5}_{-5.2}$
A_+	0.10302	+0.029 -0.017	0.047915	+0.0095 -0.0076	0.10455	+0.019 -0.016
η_+	13.242	$^{+2.9}_{-1.4}$	9.7466	$^{+1.0}_{-0.8}$	9.8689	$^{+1.0}_{-0.6}$
A_{-}	-0.011523	$^{+0.009}_{-0.018}$	-0.011629	+0.009 -0.023	-0.0093692	$+0.006 \\ -0.024$
η_{-}	10.285	$^{+16}_{-6}$	11.261	$+22^{-6}$	9.5783	$+26^{-5}$
x_0	0.017414		0.016050		0.018556	
r_1	-0.39484		-0.57631		-0.80834	
r_2	-1.0719		0.81878		1.2669	
r_3	-0.28973		-0.083208		0.15098	

Table 4: The optimal values of α_S and the input PDF parameters at $Q_0^2 = 1 \text{ GeV}^2$ determined from the global analysis. The one-sigma errors are calculated using (51) and (52) using the 68% C.L. tolerance discussed in Section 6, and are shown only for the 20 parameters allowed to go free when determining the eigenvector PDF sets. The parameters A_u , A_d , A_g and x_0 are determined from sum rules and are not fitted parameters. Similarly, A_Δ is determined from $\int_0^1 dx \ \Delta(x, Q_0^2)$. The three parameters r_i , defined in (73), are associated with the nuclear corrections to the neutrino data; see Section 7.3. The parameter values are given to five significant figures solely for accuracy in the case of reproduction of the PDFs.

$$F_1(x)$$
 at very small x: needs $\omega > 1$

Not accessible via moments

 $\omega \in [0,2]$

Out

Note that intermediate states of the (semi-)elastic Compton amplitude $T_{\mu\nu}(\omega,q^2)$ can go on-shell for $\omega \ge 1$

However, this contribution is power suppressed by the product of nucleon form factors, $(F_1(q^2))^2$. In our example (see next slide) $q^2 \approx 9 \text{ GeV}^2$, which leads to a suppression factor of $\approx 1/10.000$

Lattice Study

SU(3) symmetric point

V

$$M_{\pi}$$
 M_{K}
 a [fm]
 q^2 [GeV²]

 $32^3 \times 64$
 420
 420
 0.075
 9.2

 $\mathcal{J}_3(x) = Z_V \cos(\vec{q}\vec{x}) \ e_d \ \bar{d}(x) \gamma_3 d(x)$

$$\Delta E_{\lambda} = E_{\lambda} - E_0 \propto \lambda^2 \qquad \qquad \omega = 0.3$$

$\partial^2 E_{\lambda} / \partial \lambda^2 \big|_{\lambda=0}$

$$\omega = 0.3$$

From T_{03} to $g_1(x,q^2)$ and $g_2(x,q^2)$

The Compton amplitude $T_{03}(\omega, q^2)$ needs to be antisymmetric in the Lorentz indices, $T_{03}(\omega, q^2) = -T_{30}(\omega, q^2)$, in this case. That can be achieved by introducing the perturbation to the Lagrangian

$$\mathcal{L}(x) \to \mathcal{L}(x) + \lambda \mathcal{J}_{0+3}(x) , \ \mathcal{J}_{0+3}(x) = Z_V e_q \bar{q}(x) (\gamma_0 \cos(\vec{q}\vec{x}) + \gamma_3 \sin(\vec{q}\vec{x})) q(x)$$

and taking the second derivative of $\langle N(\vec{p},t)\bar{N}(\vec{p},0)\rangle_{\lambda} \simeq C_{\lambda} e^{-E_{\lambda}(p,q)t}$ with respect to λ as before, giving

$$-2E_{\lambda}(p,q)\frac{\partial^2}{\partial\lambda^2}E_{\lambda}(p,q)\Big|_{\lambda=0} = T_{03}(p,q) - T_{30}(p,q)$$

 T_{00}, T_{33} drop out

(PDFs)

$$\begin{split} F_1(x) &= \sum_{i=u,d,\cdots,g} \int_x^1 \frac{dy}{y} c_{1,i}(x/y,\mu^2) f_i(y,\mu^2) & f_u(x) = u(x) & \Delta f_u(x) = \Delta u(x) \\ f_d(x) &= u(x) & \Delta f_d(x) = \Delta u(x) \\ f_d(x) &= d(x) & \Delta f_d(x) = \Delta d(x) \\ g_1(x) &= \sum_{i=u,d,\cdots,g} \int_x^1 \frac{dy}{y} e_{1,i}(x/y,\mu^2) \Delta f_i(y,\mu^2) & f_{\bar{u}}(x) = \bar{u}(x) & \Delta f_{\bar{u}}(x) = \Delta \bar{u}(x) \\ &\uparrow \\ perturbatively known \end{split}$$

Solely need to replace

$$K_{nm} = \frac{4\,\omega_n^2 x_m}{1 - (\omega_n x_m)^2} \quad \to \quad K_{nm} = 2\,\omega_n^2 \int_0^1 dy \, y \, x_m \, \frac{c_1(y,\mu^2)}{1 - (y\,\omega_n \, x_m)^2}$$

Check factorization

Flavor Structure of the Nucleon Sea

Need to consider QCD + QED

ΔM	QCD + QED	QED
$M_{\pi^+} - M_{\pi^0}$	4.60(20)	4.60(20)
$M_{K^0}^{''} - M_{K^+}^{''}$	4.09(10)	-1.66(6)

$$\frac{m_u}{m_d} = \frac{2M_{\pi^0}^2 - M_{\pi^+}^2 + M_{K^+}^2 - M_{K^0}^2}{M_{\pi^+}^2 - M_{K^+}^2 + M_{K^0}^2} \bigg|_{\text{QCD}} \approx 1.1$$

QCD+QED: ≈ 0.5

QCDSF

Requires

$$\mathcal{L}(x) \to \mathcal{L}_{\text{QCD+QED}}(x) + \lambda \mathcal{J}_3(x)$$

in simulations of background field configurations

Diagrams contributing to the pseudoscalar meson masses, which determine the up, down and strange quark masses

$$M^{2}(a\bar{b}) = M_{0}^{2} + \alpha \left(\delta m_{a} + \delta m_{b}\right) + \beta_{0}^{\text{EM}} \left(e_{u}^{2} + e_{d}^{2} + e_{s}^{2}\right) + \beta_{1}^{\text{EM}} \left(e_{a}^{2} + e_{b}^{2}\right) + \beta_{2}^{\text{EM}} \left(e_{a} - e_{b}\right)^{2} + \cdots$$

- Computations can be improved in many respects
- Apply Bayesian regression with SVD to alleviate overfitting
- Employ momentum smearing techniques for larger values of ω
- With gradual improvements, we should be able to compute the structure functions $F_1(x,q^2)$ and $F_2(x,q^2)$, as well as $g_1(x,q^2)$ and $g_2(x,q^2)$, including contributions of higher twist, from the Compton amplitude with unprecedented accuracy
- This is possible, because the calculation skirts the issue of renormalization and operator mixing
- The method can easily be generalized to generalized parton distribution functions (GPDs) $H(x,\xi,q^2)$ and $E(x,\xi,q^2)$