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[Classical Approachj

e Moments Mellin transform
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e The computations are limited to a few lower moments, due to issues of operator mixing and
renormalization. Even so, the uncertainties are at least comparable to the magnitude of the
power corrections
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| OPE without OPE |

Compton amplitude: mother of all
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Dispersion relations
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For p; = g3 = qo = O, substituting @ by 1/x

Ty3(p,q) = Fi(w,q") = 4W/ d (w E Fy(z,q°) + F1(0,4%)
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[From T55 to p,, and Fl(x,q2)j

The Compton amplitude can be computed most efficiently, including singlet (disconnected)
matrix elements, by the Feynman-Hellmann technique. By introducing the perturbation to the
Lagrangian

L(z) = L(x) + AT5(x), T3(x) = Zy cos(q7) e, q(x)v3q(x)

and taking the second derivative of (N (5, t)N(5,0)), ~ Cye “APDT with respect to A
on both sides, we obtain
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—2FE,(p,q) Iz

E\(p, q) |A:0 = Ts3(p, q)
The amplitude encompasses the dominating ‘handbag’
diagram as well as the power-suppressed ‘cats ears’

diagram. Varying ¢ will allow to test the twist expan-
sion. No further renormalization is needed



Implementation

All we need to compute are nucleon two-point functions, from which we derive the energy levels
E . If that has been done successfully, we can resort to continuum language

Valence quark distribution functions

e Computationally cheap. No extra background (vacuum) gauge field configurations have to
be generated

e The electromagnetic current needs to be inserted in quark propagators of nucleon two-point
function only

e Propagators can be used to compute a variety of other observables, including form factors
and Compton amplitudes of all stable particles

Sea quark and gluon distribution functions

e Need to generate new background gauge field configurations with the electromagnetic
current being attached to the sea quarks

e As before, the new configurations lend themselves to the calculation of many other
observables, besides the nucleon Compton amplitude



Example: Nucleon form factor at large ¢°
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Powerful method
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Moments

Task: Compute the lowest M moments lodd moments need (p, s|TJM(x)JS(O)|p, s)]
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from a finite number of sampled points
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Compton amplitude and moments are connected by the set of equations
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Solutions are well documented in the literature. Alternatively, we can fit the Compton amplitude

by the interpolating polynomial
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Structure function

Ultimate goal: Compute F(x) from T55(w). Therefor we discretize the integral

t, = € Z K,.fm, n=1,--+- N [here: points equidistant with step size €]
with
4wiacm

1 — (w,x,,)?’
The N X M matrix K is written
K = U [diag(wy, - ,wy)] V'
where W is singular' wy, ~ 0, K < k < N. Solution by singular value decomposition (SVD)
Z K 1 g

with K~ belng the pseudoinverse

K '=V [diag(1/wy, -+ ,1/wg,0, ,0)] U Mathematica



Conceivable alternative:

Educated fit
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3 Overview of theoretical framework

In this section we first give a brief overview of the standard theoretical formalism used, and then
present a summary of the theoretical improvements and changes in methodology in the global
analysis. A more detailed discussion of the various items is given later in separate sections.

We work within the standard framework of leading-twist fixed-order collinear factorisation
in the MS scheme, where structure functions in DIS, F(x, Q?), can be written as a convolution
of coefficient functions, C;,, with PDFs of flavour a in a hadron of type A, f,/a(z, Q%), i.e.

Fi@,Q) =Y Cia® fuale, Q). (2)

a=q.g

7, in hadron-hadron collisions, hadronic cross sections can be written as process-dependent
partonic cross sections convoluted with the same universal PDFs; i.e.

oA = Z Gab @ fasa(zr, P e for(w2, Q). (3)

ab=q,9

The scale dependence of the PDFs is given by the DGLAP evolution equation in terms of
the calculable splitting functions, P, i.e.
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The DIS coefficient functions, C; ,. the partonic cross sections, 4, and the splitting functions,
P, can each be expanded as perturbative series in the running strong coupling, as(Q?). The
strong coupling satisfies the renormalisation group equation, which up to NNLO reads

%@(%),7%( ) ﬁl( ) — B2 (Zﬁ) - (5)

The input for the evolution equations, (4) and (5), fo/a(z, Q%) and as(Q3), at a reference
input scale, taken to be Q2 = 1 GeV?, must be determined from a global analysis of data. In
the present study we use a slightly extended form, compared to previous MRST fits, of the
parameterisation of the parton distributions at the input scale Q% = 1 GeV*:

wuy(,Q)) = Ay ™ (1= )P (1 + ey Vo + 7 2), (6)
wdy (2, Q%) = Aga™(1 — 2)" (1 + ea V& + 74 ) (7)
st Q2) = As (1= )5 (1 + €5 VT + 52 ®)

Q) = Apa"™ (1 — ) 5+2(1+’YAL+(SAL ) (9)

Tg(T Q2) = Ay (1 — 2)™ (1 + €, V@ + 7, @) + Ay 2% (1 — 2)7', (10)

(s + 5)(z, (2):A+L5‘(1—JL)”* 1+esvVa+7sa), (11)
£l — )@, @) = A o™ (1 - 2" (1 — n/a0), (12

Parameter LO NLO NNLO
as(Q2) 0.68183 0.49128 0.45077
as(M3) 0.13939 0.12018 0.11707
A, 1.4335 0.25871 0.22250
m 0.45232 0022 0.29065 0019 0.27871 0018
7 3.0409 000 3.2432  T088 3.3627 0901
u —2.3737 9% 40603 *3% 44343 *24
Yu 8.9924 30.687 38.599
Ay 5.0903 12.288 17.938
73 0.71978  F0:0%7 0.96809 1011 1.0839
I 2.0835 1032 2.7003  Tp20 2.7865
€ 43654 9% | 38911 f0) ~3.6387
Ya 7.4730 6.0542 5.2577
As 059964 T00% | 0.31620 1000 061942 F00T
bs —0.16276 —0.21515 —0.11912
s 8.8801 *033 9.2726  +0:% 9.4180 0%
€s -2.9012 032 -2.6022 OO -2.6287 08
s 16.865 30.785 18.065
Jode A, Q2) || 0.091031 G952 | 0.087673 o0 0.078167 +900%)
An 8.9413 8.1084 16.244
na 1.8760 028 1.8691 0% 2.0741 018
A 8.4703 121 13.609 T4 6.7640 077
da —36.507 —59.289 —36.090
A, 0.0012216 1.0805 3.4055
5 —0.83657 1017 | —pad2s48  FO0% | _pa2178 0%
Ny 2.3882 1030 3.0225 033 2.9278 00
€ —38.997 tg‘éﬂ —2.2922 —2.3210
7g 14455 3% 3.4894 1.9233
Ay — ~1.1168 ~1.6189
Sy —0.42776  *Y: 3‘23 —0.23999
g — 32.869 +C 24.792
A 0.10302 00 0.047915 tg 333,) 0.10455
' 13.242 29 9.7466  *§ ) 9.8689
A —0.011523  T00%% | —0.011629 tg,gg; —0.0093692
7 10.285 *+i6 11261 3 9.5783
o 0.017414 0.016050 0.018556
n —0.39484 —0.57631 —0.80834
s ~1.0719 0.81878 1.2669
3 —0.28973 —0.083208 0.15098

Table 4: The optimal values of ag and the input PDF parameters at Q2 = 1 GeV? determined
from the global analysis. The one-sigma errors are calculated using (51) and (52) using the 68%
C.L. tolerance discussed in Section 6, and are shown only for the 20 parameters allowed to go free
when determining the eigenvector PDF sets. The parameters A,, A4, Ay and x, are determined
from sum rules and are not fitted parameters. Similarly, A is determined from [0 dz Az, Q3).
The three parameters 7;, defined in (73), are associated with the nuclear corrections to the
neutrino data; see Section 7.3. The parameter values are given to five significant figures solely
for accuracy in the case of reproduction of the PDF's.
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[Proof of Conceptj
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F(x) at very small x: needs w > 1

Ths(w) = 4w P/Olda: u(;a: 2 FUT95 (1)

2z Iy (@) = - w[U(w) + d(z) + S(z)]
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Note that intermediate states of the (semi-)elastic Compton amplitude T, (w, ¢?) can go
on-shell for w > 1

+q ¥q For example: nucleon pole

p’=—-E'+p = —my

(pEtq)’ =p°E£2pq+q¢ = —miy +¢°(1+w)

= —m?v forw = F1

However, this contribution is power suppressed by the product of nucleon form factors,
(F1(¢*))?. In our example (see next slide) ¢ ~ 9 GeV?, which leads to a suppression factor
of =~ 1/10.000



SU(3) symmetric point

[Lattice Study]
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[From Tos to gl(aj,qz) and 92(337(]2)]

The Compton amplitude Tjs(w, q2) needs to be antisymmetric in the Lorentz indices,
Tos(w, ¢°) = —Ts(w, g*), in this case. That can be achieved by introducing the perturbation
to the Lagrangian

L(x) — L(x) + >\~70+3(5’3) 3 ~70+3(5’7) = Zy €q q(x)(vo cos(gx) + ~v3 sin(q7))q(x)

and taking the second derivative of (N (P, )N (P, 0))y =~ Cy e “APD? \ith respect to A as
before, giving

2

—2E,(p, q) Iz

E\(p, q) |A:0 = Tos3(p, q) — T30(p; q)

Tho, T35 drop out
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perturbatively known

Solely need to replace

Check factorization



Need to consider QCD + QED

[Flavor Structure of the Nucleon Seaj

AM | QCD + QED | QED
M_ — MWO 4.60(20) 4.60(20)
Mg — Mg 4 4.09(10) —1.66(6)
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QCD

QCD+QED: = 0.5

Requires

L(x) = Lqocpiqep(T) + AT3(x)

in simulations of background field configurations



Diagrams contributing to the pseudoscalar meson masses, which determine the up, down
and strange quark masses

M?(ab) = Mi4a (m,+8my)+85" (e24-ei+e2)+Br (e24e)+85™ (eg—ep) >+ - -
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Computations can be improved in many — Apply Bayesian regression with SVD to
respects alleviate overfitting

— Employ momentum smearing techniques
for larger values of w

With gradual improvements, we should be able to compute the structure functions
Fy(x,q?) and Fy(x, q¢%), as well as g;(x, ¢*) and g,(x, ¢*), including contributions
of higher twist, from the Compton amplitude with unprecedented accuracy

This is possible, because the calculation skirts the issue of renormalization and operator
mixing

The method can easily be generalized to generalized parton distribution functions (GPDs)
H(z, &, q%) and E(z, €, q°)



