
Advances in Lattice Calculations of Nucleon Structure Functions

and PDFs

G. Schierholz

Deutsches Elektronen-Synchrotron DESY



With

A. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P. Rakow, A. Schiller,

K. Somfleth, R. Young, J. Zanotti

QCDSF Collaboration

arXiv:1703.01153



✓

✒

✏

✑
Classical Approach

• Moments Mellin transform
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• OPE
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...

• The computations are limited to a few lower moments, due to issues of operator mixing and

renormalization. Even so, the uncertainties are at least comparable to the magnitude of the

power corrections

Martinelli & Sachrajda
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OPE without OPE

Compton amplitude: mother of all
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Crossing symmetry, Tµν(p, q) = Tνµ(p,−q), implies
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In the physical region 1 ≤ |ω| ≤ ∞
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Dispersion relations
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polarizability



For p3 = q3 = q0 = 0, substituting ω̄ by 1/x

T33(p, q) = F1(ω, q
2
) = 4ω

∫ 1

0

dx
ωx

1− (ωx)2
F1(x, q

2
) + F1(0, q

2
)

=
∞
∑

n=2,4,···

4ω
n
∫ 1

0

dx x
n−1

F1(x, q
2
) + F1(0, q

2
)

T03(p, q)
~s‖~p

=
(~q×~s)3

pq
G1(ω, q

2
) =

(~q×~s)3

pq
4ω

∫ 1

0

dx
1

1− (ωx)2
g1(x, q

2
)

=
(~q×~s)3

pq

∞
∑

n=1,3,···

4ω
n
∫ 1

0

dx x
n−1

g1(x, q
2
)

T03(p, q)
~s‖~q

= −
(~p×~q)3 ~s~q

(pq)2
G2(ω, q

2
) = −

(~p×~q)3 ~s~q

(pq)2
4ω

∫ 1

0

dx
1

1− (ωx)2
g2(x, q

2
)

= −
(~p×~q)3 ~s~q

(pq)2

∞
∑

n=1,3,···

4ω
n
∫ 1

0

dx x
n−1

g2(x, q
2
)

includes power corrections
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From T33 to µn and F1(x, q

2)

The Compton amplitude can be computed most efficiently, including singlet (disconnected)

matrix elements, by the Feynman-Hellmann technique. By introducing the perturbation to the

Lagrangian

L(x)→ L(x) + λJ3(x) , J3(x) = ZV cos(~q~x) eq q̄(x)γ3q(x)

and taking the second derivative of 〈N(~p, t)N̄(~p, 0)〉λ ≃ Cλ e
−Eλ(p,q) t with respect to λ

on both sides, we obtain

−2Eλ(p, q)
∂2

∂λ2
Eλ(p, q)

∣

∣

λ=0
= T33(p, q)

The amplitude encompasses the dominating ‘handbag’

diagram as well as the power-suppressed ‘cats ears’

diagram. Varying q2 will allow to test the twist expan-

sion. No further renormalization is needed



Implementation

All we need to compute are nucleon two-point functions, from which we derive the energy levels

Eλ. If that has been done successfully, we can resort to continuum language

Valence quark distribution functions

• Computationally cheap. No extra background (vacuum) gauge field configurations have to

be generated

• The electromagnetic current needs to be inserted in quark propagators of nucleon two-point

function only

• Propagators can be used to compute a variety of other observables, including form factors

and Compton amplitudes of all stable particles

Sea quark and gluon distribution functions

• Need to generate new background gauge field configurations with the electromagnetic

current being attached to the sea quarks

• As before, the new configurations lend themselves to the calculation of many other

observables, besides the nucleon Compton amplitude



Example: Nucleon form factor at large q2

F1,2(q
2
) ∝ ∂Eλ(p, p

′
)/∂λ

∣

∣
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Moments

Task: Compute the lowest M moments
[

odd moments need 〈p, s|TJµ(x)J
5
ν(0)|p, s〉

]

µ2m−1 =

∫ 1

0

dx x
2m−1

F1(x)

from a finite number of sampled points

tn = T33(ωn) , n = 1, · · · , N

Compton amplitude and moments are connected by the set of equations
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Vandermonde M

Solutions are well documented in the literature. Alternatively, we can fit the Compton amplitude

by the interpolating polynomial

T33(ω) = 4
(

ω
2
µ1 + ω

4
µ3 + · · ·+ ω

2M
µ2M−1

)



Structure function

Ultimate goal: Compute F1(x) from T33(ω). Therefor we discretize the integral

tn = ǫ

M
∑

m=1

Knmfm , n = 1, · · · , N [here: points equidistant with step size ǫ]

with

fm = F1(xm) , Knm =
4ω2

nxm

1− (ωnxm)2
, N < M

The N ×M matrix K is written

K = U [diag(w1, · · · , wN)] V
T

where W is singular: wk ≈ 0, K < k ≤ N . Solution by singular value decomposition (SVD)

fm =

N
∑

n=1

K
−1
mnǫ

−1
tn

with K−1 being the pseudoinverse

K
−1

= V [diag(1/w1, · · · , 1/wK, 0, · · · , 0)] U
T

Mathematica



Conceivable alternative:

Educated fit

x q(x) = Aq x
α
(1− x)

β
q = u, d, S, · · ·

µn = f

∫ 1

0

dx x
n−1

Aq x
α
(1− x)

β
= fAq

Γ(α + n)Γ(1 + β)

Γ(1 + α + β + n)

T33(ω) = 4fAq Γ(1 + β)
∑

n

Γ(α + n)

Γ(1 + α + β + n)
ω

n+1
← Fit to data onT33(ω)



3 Overview of theoretical framework

In this section we first give a brief overview of the standard theoretical formalism used, and then
present a summary of the theoretical improvements and changes in methodology in the global
analysis. A more detailed discussion of the various items is given later in separate sections.

We work within the standard framework of leading-twist fixed-order collinear factorisation
in the MS scheme, where structure functions in DIS, Fi(x, Q2), can be written as a convolution
of coefficient functions, Ci,a, with PDFs of flavour a in a hadron of type A, fa/A(x, Q2), i.e.

Fi(x, Q2) =
∑

a=q,g

Ci,a ⊗ fa/A(x, Q2). (2)

Similarly, in hadron–hadron collisions, hadronic cross sections can be written as process-dependent
partonic cross sections convoluted with the same universal PDFs, i.e.

σAB =
∑

a,b=q,g

σ̂ab ⊗ fa/A(x1, Q
2)⊗ fb/B(x2, Q

2). (3)

The scale dependence of the PDFs is given by the DGLAP evolution equation in terms of
the calculable splitting functions, Paa′ , i.e.

∂fa/A

∂ ln Q2
=

∑

a′=q,g

Paa′ ⊗ fa′/A. (4)

The DIS coefficient functions, Ci,a, the partonic cross sections, σ̂ab, and the splitting functions,
Paa′ , can each be expanded as perturbative series in the running strong coupling, αS(Q2). The
strong coupling satisfies the renormalisation group equation, which up to NNLO reads

d

d ln Q2

(αS

4π

)

= −β0

(αS

4π

)2

− β1

(αS

4π

)3

− β2

(αS

4π

)4

− . . . . (5)

The input for the evolution equations, (4) and (5), fa/A(x, Q2
0) and αS(Q2

0), at a reference
input scale, taken to be Q2

0 = 1 GeV2, must be determined from a global analysis of data. In
the present study we use a slightly extended form, compared to previous MRST fits, of the
parameterisation of the parton distributions at the input scale Q2

0 = 1 GeV2:

xuv(x, Q2
0) = Au xη1(1− x)η2(1 + ǫu

√
x + γu x), (6)

xdv(x, Q2
0) = Ad xη3(1− x)η4(1 + ǫd

√
x + γd x), (7)

xS(x, Q2
0) = AS xδS(1− x)ηS(1 + ǫS

√
x + γS x), (8)

x∆(x, Q2
0) = A∆ xη∆(1− x)ηS+2(1 + γ∆ x + δ∆ x2), (9)

xg(x, Q2
0) = Ag xδg (1− x)ηg(1 + ǫg

√
x + γg x) + Ag′ x

δg′ (1− x)ηg′ , (10)

x(s + s̄)(x, Q2
0) = A+ xδS (1− x)η+(1 + ǫS

√
x + γS x), (11)

x(s− s̄)(x, Q2
0) = A

−
xδ−(1− x)η−(1− x/x0), (12)

9

Parameter LO NLO NNLO
αS(Q2

0) 0.68183 0.49128 0.45077
αS(M2

Z) 0.13939 0.12018 0.11707
Au 1.4335 0.25871 0.22250
η1 0.45232 +0.022

−0.018 0.29065 +0.019
−0.013 0.27871 +0.018

−0.014

η2 3.0409 +0.079
−0.067 3.2432 +0.062

−0.039 3.3627 +0.061
−0.044

ǫu −2.3737 +0.54
−0.48 4.0603 +1.6

−2.3 4.4343 +2.4
−2.7

γu 8.9924 30.687 38.599
Ad 5.0903 12.288 17.938
η3 0.71978 +0.057

−0.082 0.96809 +0.11
−0.11 1.0839 +0.12

−0.11

η4 − η2 2.0835 +0.32
−0.45 2.7003 +0.50

−0.52 2.7865 +0.50
−0.44

ǫd −4.3654 +0.28
−0.22 −3.8911 +0.31

−0.29 −3.6387 +0.27
−0.28

γd 7.4730 6.0542 5.2577

AS 0.59964 +0.036
−0.030 0.31620 +0.030

−0.021 0.64942 +0.047
−0.041

δS −0.16276 −0.21515 −0.11912
ηS 8.8801 +0.33

−0.33 9.2726 +0.23
−0.33 9.4189 +0.25

−0.33

ǫS −2.9012 +0.33
−0.37 −2.6022 +0.71

−0.96 −2.6287 +0.49
−0.51

γS 16.865 30.785 18.065
∫ 1

0
dx ∆(x, Q2

0) 0.091031 +0.012
−0.009 0.087673 +0.013

−0.011 0.078167 +0.012
−0.0091

A∆ 8.9413 8.1084 16.244
η∆ 1.8760 +0.24

−0.30 1.8691 +0.23
−0.32 2.0741 +0.18

−0.35

γ∆ 8.4703 +2.0
−0.3 13.609 +1.1

−0.6 6.7640 +0.77
−0.41

δ∆ −36.507 −59.289 −36.090
Ag 0.0012216 1.0805 3.4055
δg −0.83657 +0.15

−0.14 −0.42848 +0.066
−0.057 −0.12178 +0.23

−0.16

ηg 2.3882 +0.51
−0.50 3.0225 +0.43

−0.36 2.9278 +0.68
−0.41

ǫg −38.997 +36
−35 −2.2922 −2.3210

γg 1445.5 +880
−750 3.4894 1.9233

Ag′ — −1.1168 −1.6189
δg′ — −0.42776 +0.053

−0.047 −0.23999 +0.14
−0.10

ηg′ — 32.869 +6.5
−5.9 24.792 +6.5

−5.2

A+ 0.10302 +0.029
−0.017 0.047915 +0.0095

−0.0076 0.10455 +0.019
−0.016

η+ 13.242 +2.9
−1.4 9.7466 +1.0

−0.8 9.8689 +1.0
−0.6

A
−

−0.011523 +0.009
−0.018 −0.011629 +0.009

−0.023 −0.0093692 +0.006
−0.024

η
−

10.285 +16
−6 11.261 +22

−6 9.5783 +26
−5

x0 0.017414 0.016050 0.018556
r1 −0.39484 −0.57631 −0.80834
r2 −1.0719 0.81878 1.2669
r3 −0.28973 −0.083208 0.15098

Table 4: The optimal values of αS and the input PDF parameters at Q2
0 = 1 GeV2 determined

from the global analysis. The one-sigma errors are calculated using (51) and (52) using the 68%
C.L. tolerance discussed in Section 6, and are shown only for the 20 parameters allowed to go free
when determining the eigenvector PDF sets. The parameters Au, Ad, Ag and x0 are determined

from sum rules and are not fitted parameters. Similarly, A∆ is determined from
∫ 1

0
dx ∆(x, Q2

0).
The three parameters ri, defined in (73), are associated with the nuclear corrections to the
neutrino data; see Section 7.3. The parameter values are given to five significant figures solely
for accuracy in the case of reproduction of the PDFs.
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Proof of Concept
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F1(x) at very small x: needs ω > 1 Not accessible via moments

In

T33(ω) = 4ω P

∫ 1

0
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1

3
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Note that intermediate states of the (semi-)elastic Compton amplitude Tµν(ω, q2) can go

on-shell for ω ≥ 1

p p

±q ∓q

p±q

For example: nucleon pole

p
2
= −E

2
+ ~p

2
= −m

2
N

(p± q)
2
= p

2
± 2pq + q

2
= −m

2
N + q

2
(1± ω)

= −m
2
N for ω = ∓1

However, this contribution is power suppressed by the product of nucleon form factors,

(F1(q
2))2. In our example (see next slide) q2 ≈ 9GeV2, which leads to a suppression factor

of ≈ 1/10.000
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✑
Lattice Study

SU(3) symmetric point

V Mπ MK a [fm] q2 [GeV2]

323 × 64 420 420 0.075 9.2

J3(x) = ZV cos(~q~x) ed d̄(x)γ3d(x)



∆Eλ = Eλ−E0 ∝ λ2 ω = 0.3
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✑
From T03 to g1(x, q

2) and g2(x, q
2)

The Compton amplitude T03(ω, q2) needs to be antisymmetric in the Lorentz indices,

T03(ω, q2) = −T30(ω, q2), in this case. That can be achieved by introducing the perturbation

to the Lagrangian

L(x)→ L(x) + λJ0+3(x) , J0+3(x) = ZV eq q̄(x)(γ0 cos(~q~x) + γ3 sin(~q~x))q(x)

and taking the second derivative of 〈N(~p, t)N̄(~p, 0)〉λ ≃ Cλ e
−Eλ(p,q) t with respect to λ as

before, giving

−2Eλ(p, q)
∂2

∂λ2
Eλ(p, q)

∣

∣

λ=0
= T03(p, q)− T30(p, q)

T00, T33 drop out
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PDFs

F1(x) =
∑

i=u,d,··· ,g

∫ 1

x

dy

y
c1,i(x/y, µ

2
) fi(y, µ

2
)

g1(x) =
∑

i=u,d,··· ,g

∫ 1

x

dy

y
e1,i(x/y, µ

2
)∆fi(y, µ

2
)

fu(x) = u(x) ∆fu(x) = ∆u(x)

fd(x) = d(x) ∆fd(x) = ∆d(x)

fū(x) = ū(x) ∆fū(x) = ∆ū(x)

fd̄(x) = d̄(x) ∆fd̄(x) = ∆d̄(x)

↑

perturbatively known

Solely need to replace

Knm =
4ω2

nxm

1− (ωnxm)2
→ Knm = 2ω

2
n

∫ 1

0

dy y xm

c1(y, µ
2)

1− (y ωn xm)2

Check factorization
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✌
Flavor Structure of the Nucleon Sea

Need to consider QCD + QED

∆M QCD+QED QED

M
π+
−M

π0
4.60(20) 4.60(20)

M
K0 −M

K+ 4.09(10) −1.66(6)

0

2

4

6

8

∆
M

[M
eV

]

π K N Σ Ξ
0

2

4

6

8

∆
M

[M
eV

]
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Requires

L(x)→ LQCD+QED(x) + λJ3(x)

in simulations of background field configurations



Diagrams contributing to the pseudoscalar meson masses, which determine the up, down

and strange quark masses
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✍
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✌
Outlook

• Computations can be improved in many

respects

– Apply Bayesian regression with SVD to

alleviate overfitting

– Employ momentum smearing techniques

for larger values of ω

• With gradual improvements, we should be able to compute the structure functions

F1(x, q
2) and F2(x, q

2), as well as g1(x, q
2) and g2(x, q

2), including contributions

of higher twist, from the Compton amplitude with unprecedented accuracy

• This is possible, because the calculation skirts the issue of renormalization and operator

mixing

• The method can easily be generalized to generalized parton distribution functions (GPDs)

H(x, ξ, q2) and E(x, ξ, q2)


