PDF Flavor Determination

Fred Olness SMU

. . .

Thanks to my xFitter colleagues V. Bertone, M. Botje, D. Britzger, S. Camarda, A. Cooper-Sarkar, F. Giuli, A. Glazov, A. Luszczak, R. Placakyte, V. Radescu, W. Slominksi, O. Zenaiev

my nCTEQ colleagues

B. Clark, E. Godat, T. Jezo, C. Keppel, A. Kusina, F. Lyonnet, J.G. Morfin, K. Kovarik, J.F. Owens, I. Schienbein, J.Y. Yu,

and also

C. Bertulani, A. Geiser, M. Guzzi, P. Nadolsky, Emanuele R. Nocera, Huey-Wen Lin, Kostas Orginos, Juan Rojo, J. Thomas

xFitter

The Flavor Structure of Nucleon Sea INT Workshop October 2-13, 2017

nuclear parton distribution functions

The Key to Understanding: The Parton Model and Factorization

Key Data Sets for Global PDF Fits

$$\begin{split} F_{2}^{\nu} &\sim \left[d + s + \bar{u} + \bar{c}\right] \\ F_{2}^{\bar{\nu}} &\sim \left[\bar{d} + \bar{s} + u + c\right] \\ F_{3}^{\nu} &= 2\left[d + s - \bar{u} - \bar{c}\right] \\ F_{3}^{\bar{\nu}} &= 2\left[u + c - \bar{d} - \bar{s}\right] \end{split}$$

 $F_2^{\ell^{\pm}} \sim \left(\frac{1}{3}\right)^2 \left[d+s\right] \\ + \left(\frac{2}{3}\right)^2 \left[u+c\right]$

In particular, the DIS combinations have historically been particularly useful

<u>Different</u> linear combinations – key for flavor differentiation

The v-DIS data typically use heavy targets, and this requires the application of *nuclear corrections*

Precise knowledge of the PDFs are essential for predictions

QCD factorization:

$$\sigma = \widehat{\sigma} \otimes PDF$$

Experimental Data:

→ requires a large variety of data from fixed-target and collider experiments

Theory:

→ intense theoretical developments

Tevatron + HERA essential complementary components

LHC alone cannot maximize PDF precision

nuclear dimension essential!!!

"PDF uncertainties are among the leading uncertainties in the first LHC precision measurements by CMS" *Jan Kretzschmar*

4

Frontier:

Precison,

Hi-x, Low-x,

Low-x Shadowing Recombination Resummation

5

INNOVATIVE IDEAS

Innovative Ideas

The Flavor Structure of Nucleon Sea, INT Workshop October 2-13, 2017

Why the nuclei are important

Impact of Nuclear Corrections on Proton PDF

"... for the time being it is still appears advantageous to retain nuclear target data in the global dataset for general-purpose PDF determination"

... the motivation for nCTEQ

Nuclear PDF

The Ingredients

Data sets & cuts for nPDF fits

proton vs nuclear: fewer data and more DOF ... impose assumptions on nPDFs

1) Multiplicative nuclear correction factors (HKN, EPPS, DSSZ)

$$f_i^{\mathbf{p}/\mathbf{A}}(x_N, Q_0) = R_i(x_N, Q_0, \mathbf{A}) f_i^{free \ proton}(x_N, Q_0)$$

... for example

HKN

$$R_i(x, Q_0, A) = 1 + \left(1 - \frac{1}{A^{\alpha}}\right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{\beta_i}}$$

Cf. talks by: Shunzo Kumano Rodolfo Sassot

2) Generalized A-parameterization (nCTEQ)

$$f_{i}^{p/A}(x_{N}, \mu_{0}) = f_{i}(x_{N}, A, \mu_{0})$$

$$f \sim \dots x^{c_{1}(A)}(1 - x)^{c_{2}(A)}\dots$$

$$c_{k} \sim c_{k,0} + c_{k,1}\left(1 - A^{-c_{k,2}}\right)$$
Nuclear

use proton as a Boundary Condition

Nuclear PDFs are more complex more DOF than Proton case more "issues" to consider more work to do ...

Down & Up

The Flavor Structure of Nucleon Sea, INT Workshop October 2-13, 2017

Fermilab E866/NuSea E906 SeaQuest

800 GeV p + p and $p + d \rightarrow \mu^+ \mu^- X$

The Flavor Structure of Nucleon Sea, INT Workshop October 2-13, 2017

"Thus, these results suggest on a purely phenomenological level that the nuclear corrections may well be very similar for the nu and nubar cross sections and that the overall magnitude of the corrections may well be smaller than in the model used in this analysis."

 χ =7453/5062 Reference Fit χ =6606/5062 Mod Nuclear Fit

Owens, Huston, Keppel, Kuhlmann, Morfin, Olness, Pumplin, Stump. Phys.Rev.D75:054030,2007. Could nuclear corrections be different for CC (W) or NC (γ ,Z) processes???

"Thus, these results suggest on a purely phenomenological level that the nuclear corrections may well be very similar for the nu and nubar cross sections and that the overall magnitude of the corrections may well be smaller than in the model used in this analysis."

 χ =7453/5062 Reference Fit χ =6606/5062 Mod Nuclear Fit

Owens, Huston, Keppel, Kuhlmann, Morfin, Olness, Pumplin, Stump. Phys.Rev.D75:054030,2007.

More interesting things, particularly at large-x

Isospin Symmetry used to relate PDFs

Isospin terms are comparable to NNLO QCD

QCD & EW Corrections do NOT factorize

A Review of Target Mass Corrections. Ingo Schienbein et al, J.Phys.G35:053101,2008.

Hi-x Issues: Isospin Symmetry Violation, Higher Twist, ...

FIG. 1: Kinematic coverage of the BONuS data. The solid lines denote the fixed- W^2 thresholds for the four final state mass regions in Eq. (2), from $W^2 = 1.3$ to 4.0 GeV².

Phys.Rev. C91 (2015) no.5, 055206, (BONUS) Direct observation of quark-hadron duality in the free neutron F 2 structure function. I. Niculescu, et al., 22

GLUON

The Flavor Structure of Nucleon Sea, INT Workshop October 2-13, 2017

24

Progress on strange PDF

Cf. talk by Sergey Alekhin

Di-muon production \Rightarrow Extract s(x) Parton Distribution

& Nuclear Corrections

... at DIS2017 we heard ...

João Guimarães da Costa IHEP, Chinese Academy of Sciences

Birmingham, 3 April 2017

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}} = 1.13 \pm 0.05 \,(\text{exp}) \pm 0.02 \,(\text{mod}) \stackrel{+0.01}{_{-0.06}} \,(\text{par})$$

Do it yourself!!! Try **xFitter**

W/Z Production at LHC and the strange PDF

... do we know what the strange PDF is ???

... yes, details depend on $\{x, Q^2\}$

31

Could $p Pb \rightarrow W/Z$ Help???

$p Pb \rightarrow W/Z$: Impact of {s,c,b} PDF

A. Kusina, et al., Eur.Phys.J. C77 (2017) no.7, 488

Charm & Bottom

Intrinsic Charm PDFs

Charm: Variety of Recent Developments

Table 3 The charm momentum fraction $C(Q^2)$ at a low scale Q = 1.65 GeV with perturbative charm, and with fitted charm with and without the EMC data included. The momentum fractions for several CT14IC PDF sets are also given for comparison (see text)

C(Q = 1.65 GeV)
$(0.239 \pm 0.003)\%$
$(0.7 \pm 0.3)\%$
$(1.6 \pm 1.2)\%$
1.3%
2.6%
1.3%
2.2%

"Turn on" heavy quarks (c,b) at an arbitrary scale $\mu_{c,b}$

O Scale

APFEL has a new feature

included in xFitter

We can adjust the matching scale for the heavy quark PDF transition

What are the benefits?

- 1) avoid discontinuities in the middle of data sets
- 2) avoid delicate matching in region $\mu \sim m_{c,b}$

Impact of the heavy quark matching scales in PDF fits The xFitter Developers Team: V. Bertone, et al., arXiv:1707.05343

The matching conditions are non-trivial, especially at NNLO

The xFitter Developers Team: V. Bertone, et al., arXiv:1707.05343

The matching conditions are non-trivial, especially at NNLO

A proposal: Consider N_F dependent PDF

Provides some of the benefits & flexibility of flexible matching,

Advantages:

- * avoid discontinuities in data
 * avoid delicate cancellations
- * minimal set of PDF grids

... for example, simultaneously

1) analyze HERA in $N_F = 4$

2) analyze LHC in $N_F = 5$

Impact of the heavy quark matching scales in PDF fits The xFitter Developers Team: V. Bertone, et al., arXiv:1707.05343

TOP

Top Quark Production at LHC

Observation of top quark production in proton-nucleus collisions

The CMS Collaboration arXiv:1709.07411

Figure 3: Total tĒ cross sections measured in the e+jets, μ +jets, and combined ℓ +jets channels in pPb collisions at $\sqrt{s_{_{NN}}} = 8.16$ TeV, compared to theoretical NNLO+NNLL predictions, and to scaled $\sqrt{s} = 8$ TeV pp results [38, 39]. The total experimental error bars (theoretical error bands) include statistical and systematic (PDF and scale) uncertainties added in quadrature.

The Flavor Structure of Nucleon Sea, INT Workshop October 2-13, 2017

xfitter

NEW xFitter release xfitter-2.0.0

Sample data files: LHC: ATLAS, CMS, LHCb Tevatron: CDF, D0 HERA: H1, ZEUS, Combined Fixed Target: ... User Supplied: ...

Features & Recent Updates: Photon PDF & QED Pole & MS-bar masses

Profiling and Re-Weighting

Heavy Quark Variable Treshold Improvements in χ^2 and correlations TMD PDFs (uPDFs) ... and many other

NEW xFitter release xfitter-2.0.0

www.xFitter.org

Future Facilities

Workshop on the LHeC

24 June 2015 CERN 25-26 June 2015 Chavannes-de-Bogis, Switzerland

International Advisory Committee

Guido Altarelli (Rome) Sergio Bertolucci (CERN) Nicola Bianchi (INFN) Frederick Bordry (CERN) Stan Brodsky (SLAC) Hesheng Chen (IHEP Beijing) Andrew Hutton (Jefferson Lab) Young-Kee Kim (Chicago and Fermilab) Victor A. Matveev (JINR Dubna) Shin-Ichi Kurokawa (Tsukuba) Leandro Nisati (Rome) Leonid Rivkin (EPF Lausanne) Herwig Schopper (CERN) - Chair Jürgen Schukraft (CERN) Achille Stocchi (LAL Orsay) John Womersley (STFC)

Coordination Group

Gianluigi Arduini (CERN) Nestor Armesto (Santiago de Compostela) Oliver Brüning (CERN) Stefano Forte (Milano) Andrea Gaddi (CERN) Erk Jensen (CERN) Max Klein (Liverpool) Peter Kostka (Liverpool) Bruce Mellado (Wits) Paul Newman (Birmingham) Voica Radescu (Heidelberg) Daniel Schulte (CERN) Alessandra Valloni (CERN) Frank Zimmermann (CERN)

Organizing Committee

Sergio Bertolucci (CERN) Frederick Bordry (CERN) Oliver Brüning (CERN) Laurie Hemery (CERN) Max Klein (Liverpool)

EUCARD

Electron Ion Collider: The Next QCD Frontier

01v3 [nucl-ex]

Understanding the glue that binds us all

SECOND EDITION

Electron Ion Collider

The Flavor Structure of Nucleon Sea, INT Workshop October 2-13, 2017

The Physics Programme of the LHeC

arXiv:1206.2913 (CDR) 1211.4831 and 5102

QCD Discoveries	$\alpha_s < 0.12, q_{sea} \neq \overline{q}$, instanton, odderon, low x: (n0) saturation, $\overline{u} \neq \overline{d}$
Higgs	WW and ZZ production, $H \to b\overline{b}$, $H \to 4l$, CP eigenstate
Substructure	electromagnetic quark radius, e^* , ν^* , W ?, Z ?, top?, H ?
New and BSM Physics	leptoquarks, RPV SUSY, Higgs CP, contact interactions, GUT through α_s
Top Quark	top PDF, $xt = x\overline{t}$?, single top in DIS, anomalous top
Relations to LHC	SUSY, high x partons and high mass SUSY, Higgs, LQs, QCD, precision PDFs
Gluon Distribution	saturation, $x \approx 1, J/\psi, \Upsilon$, Pomeron, local spots?, F_L, F_2^c
Precision DIS	$\delta \alpha_s \simeq 0.1 \%, \delta M_c \simeq 3 \text{MeV}, v_{u,d}, a_{u,d} \text{ to } 2 - 3 \%, \sin^2 \Theta(\mu), F_L, F_2^b$
Parton Structure	Proton, Deuteron, Neutron, Ions, Photon
Quark Distributions	valence $10^{-4} \leq x \leq 1$, light sea, d/u , $s = \overline{s}$?, charm, beauty, top
QCD	N ³ LO, factorisation, resummation, emission, AdS/CFT, BFKL evolution
Deuteron	singlet evolution, light sea, hidden colour, neutron, diffraction-shadowing
Heavy Ions	initial QGP, nPDFs, hadronization inside media, black limit, saturation
Modified Partons	PDFs "independent" of fits, unintegrated, generalised, photonic, diffractive
HERA continuation	$F_L, xF_3, F_2^{\gamma Z}$, high x partons, α_s , nuclear structure,

Thanks to my xFitter & nCTEQ colleagues

xFitter

A special thanks to former xFitter conveners: Ringaile Placakyte & Voica Radescu

The Future Frontier: Pushing Kinematic Boundaries + Innovative Ideas⁵¹

Low-x Shadowing Recombination Resummation

