Taming the pion cloud

Gerald A. Miller, UW Mary Alberg, Seattle U, UW

VS

Arrington arXiv:1208.4047

Taming the pion cloud

Gerald A. Miller, UW Mary Alberg, Seattle U, UW

Arrington arXiv:1208.4047

Fundamental Question: meson cloud or $4q \overline{q}$

Hidden color

Important implications for nuclear force and nuclear structure if meson cloud picture is shown to fail

Experimental Progress Drell-Yan

- NMC measured integral quantity for Gottfried sum
- E866 FermiLab measured x-dependence

J. C. PENG et al. PHYSICAL REVIEW D 58 092004

FIG. 1. Comparison of the E866 $\overline{d} - \overline{u}$ results at Q = 7.35 GeV with the predictions of various models as described in the text.

 $\bar{d}(x) > \bar{u}(x)$ what about \bar{d}/\bar{u} ?

Expect large ratio at large x

Hawker et al PRL 80, 3715

More data- E866 (1999)

Drell-Yan Measured $\bar{d} - \bar{u}$ and $\frac{\bar{d}}{\bar{u}}$

Alberg, Henley and Miller PLB 471, 396 (2000)

Without ω

0.1

With pions get too large a ratio $\frac{d}{\bar{u}}$

3.5

2.5

1.5

0.5

0.

Ο.

0.2

0.05

0.1

0.15 0.2

0.25

0.3

 $\overline{d} - \overline{u}$

Form factor

$$G_M(t,u) = \exp\left(\frac{t-m_M^2}{2\Lambda_M^2}\right)\exp\left(\frac{u-m_B^2}{2\Lambda_M^2}\right),$$

J. Speth, A.W. Thomas, Advances in Nuclear Physics, vol. 24, J.W. Negele, E.W. Vogt (Eds.), Plenum Press, New

Is there an isoscalar non-perturbative sea (omega meson)?

The omega represents any non-perturbative isoscalar sea

What's going on at high x?

SeaQuest aims at better measurement, so we try to improve

0.4

0.5

0.3

x

With ω

0.2

Theory problems

- Results depend on form factor parameter Λ
- form factors enter as three dimensional functions even though expressed in terms of t and u
- how to derive ????
- Why do we need form factors? Form factors oppose chiral perturbation theory

Why do we need form factors?

Using form factors opposes chiral perturbation theory

$$\mathcal{L}_{N}^{(1)} = \bar{\psi}(i\gamma \cdot \partial - M)\psi - \frac{g_{A}}{2f_{\pi}}\bar{\psi}\gamma_{\mu}\gamma_{5}\tau^{a}\psi\,\partial_{\mu}\pi^{a} - \frac{1}{f_{\pi}^{2}}\bar{\psi}\gamma_{\mu}\tau^{a}\psi\,\epsilon^{abc}\pi^{b}\partial_{\mu}\pi^{c}$$

Non-renormalizable \mathcal{L} , expand in powers of momentum add counter terms order-by order -LECs. results **INDEPENDENT OF CUTOFF** Not sufficient for DIS, IMHO because momenta $\mathcal{O} \sim m_N$

Form factor relates the LECs in a very specific way

different philosophy

Comment talk last week titled " \cdots with chiral perturbation theory"

is **NOT** – no LEC's, but yes to cutoff dependence

pion-nucleon Form factor takes composite nature of pion and nucleon into account

$$q_{\mu}\langle p(P')|A_{+}^{\mu}(0)|n(P)\rangle = 2\bar{u}_{p}(P') \left[MG^{\sigma(\nu n \to \mu \bar{\nu}p)} \right]_{[10^{-38} \text{cm}^{2}] 0.8}^{I} \xrightarrow{\phi \text{ ANL}}_{[10^{-38} \text{cm}^{2}] 0.8}^{I} \xrightarrow{\phi \text{ ANL}}_{I} \xrightarrow{\phi \text{$$

$$MG_A(Q^2) = f_\pi g_{\pi NN}(Q^2).$$

At $Q^2 = 0$ this is known as the Goldberger-Treiman relation and it is satisfied at the level of 3 % (with $g_A = G_A(0) = 1.267 \pm 0.004$, $g_{\pi NN} = g_{\pi NN}(0) = 13.2 \pm 0.1$ and M =

	C (0)		~
$C (O^2) \searrow$	$G_A(0)$	Exp.	M_A [GeV]
$G_A(\mathcal{Q}) \leftarrow$	$\frac{1}{2}$	BNL	1.07 ± 0.06
₹	$(1 \cup Q^2)^{-1}$	ZGS	1.00 ± 0.05
\backslash		Fermilab	$1.05 \ \frac{+0.12}{-0.16}$
	$1 \dots NF A J_{\pi}$	Average:	1.03 ± 0.04

9 πΝΝ Pion-Nucleon form factor determined for on-mass-shell nucleons, off shell pion $g_{\pi N...}$

Taming I -Alberg & Miller
PRL 108 (2012) 172001
$$g_{\pi NN}(Q^2) \propto G_A(Q^2) = \frac{G_A(0)}{(1+\frac{Q^2}{M_A^2})^2}$$

Pion-Nucleon form factor determined for on-mass-shell nucleons, off shell pion

Nucleon self energy -intermediate nucleon and Delta

$$D \equiv \int_0^1 [\bar{d}(x) - \bar{u}(x)] dx = 0.118 \pm 0.012.$$

Ours 0.109

Parameter free calculation! So what's the problem?

Taming II- recent

To get \bar{u} and d need to calculate the graphs:

Both pion and nucleon are off-shell in the Feynman graphs need to reconsider the formalism

$$q_N^f(x) = Z_2 q_{N0}^f(x) + \sum_{B,M} \int_x^1 \frac{dy}{y} f_{MB}(y) q_M^f(\frac{x}{y}) + \sum_{B,M} \int_x^1 \frac{dy}{y} f_{BM}(y) q_B^f(\frac{x}{y})$$
$$Z_2^{-1} - 1 = \sum_{B,M} \int dy f_{BM}(y),$$

Brodsky-Lepage Fock space representation:

$$\begin{aligned} |\pi N\rangle \propto \int_0^1 \frac{dy}{\sqrt{y}} d^2 k_{\perp \pi} \int_0^1 \frac{dy_N}{\sqrt{y_N}} d^2 k_{\perp N} \delta(1 - y - y_N) \delta(\vec{k}_{\perp \pi} + \vec{k}_{\perp N}) \psi_{\pi N}(y, \vec{k}_{\perp \pi}; y_N, \vec{k}_{\perp N}) |\cdots \rangle \\ f_{\pi N}(y) &= \int d^2 k_{\perp \pi} \left| \psi_{\pi N}(y, \vec{k}_{\perp \pi}; 1 - y, -\vec{k}_{\perp \pi}) \right|^2 = f_{N\pi}(1 - y) \end{aligned}$$

Taming II- recent

To get \bar{u} and d need to calculate the graphs:

Both pion and nucleon are off-shell in the Feynman graphs need to reconsider the formalism

$$q_N^f(x) = Z_2 q_{N0}^f(x) + \sum_{B,M} \int_x^1 \frac{dy}{y} f_{MB}(y) q_M^f(\frac{x}{y}) + \sum_{B,M} \int_x^1 \frac{dy}{y} f_{BM}(y) q_B^f(\frac{x}{y})$$
$$Z_2^{-1} - 1 = \sum_{B,M} \int dy f_{BM}(y),$$

If f_{MB} has $\delta(y)$ Z_2 would change, but **NO** delta functions here!

Brodsky-Lepage Fock space representation:

$$|\pi N\rangle \propto \int_0^1 \frac{dy}{\sqrt{y}} d^2 k_{\perp \pi} \int_0^1 \frac{dy_N}{\sqrt{y_N}} d^2 k_{\perp N} \delta(1 - y - y_N) \delta(\vec{k}_{\perp \pi} + \vec{k}_{\perp N}) \psi_{\pi N}(y, \vec{k}_{\perp \pi}; y_N, \vec{k}_{\perp N}) |\cdots \rangle$$

$$f_{\pi N}(y) = \int d^2 k_{\perp \pi} \left| \psi_{\pi N}(y, \vec{k}_{\perp \pi}; 1 - y, -\vec{k}_{\perp \pi}) \right|^2 = f_{N\pi}(1 - y)$$

Light front perturbation theory for chiral lagrangian G A Miller PR C56, 2789 **1997**

 \hat{P}^- is Hamiltonian operator, construct from energy-momentum tensor $T^{+-}=$ free particle kinetic energy M_0^2 plus interactions V =VSchroedinger eq: $(\hat{P}^-\hat{P}^- - \hat{P}_{\perp}^2)|p\rangle = M_p^2|p\rangle = (M_0^2 + V)|p\rangle$ $|p\rangle \approx Z_{2} \left(|p\rangle_{0} + \frac{1}{M^{2} - M_{0}^{2}} V|p\rangle_{0}\right)$ $|\pi N\rangle$ component $\mathcal{L}_{N}^{(1)} = \bar{\psi}(i\gamma \cdot \partial - M)\psi - \frac{g_{A}}{2f_{\pi}}\bar{\psi}\gamma_{\mu}\gamma_{5}\tau^{a}\psi\,\partial_{\mu}\pi^{a} - \frac{1}{f_{\pi}^{2}}\bar{\psi}\gamma_{\mu}\tau^{a}\psi\,\epsilon^{abc}\pi^{b}\partial_{\mu}\pi^{c}$

Form factors absent

Form factors

- Including form factors goes beyond usual LF treatment
- Need form factors in frame independent manner (4-space)
- Maintain momentum conservation, unique LF wave function Keep experimental input
- For use in light front wave function-virtual N, π

 Γ contains form factor.

Integrate over UH k^- plane = integrate over LH k^- plane w. stated form factor n = 1 gives form factor very close to dipole, maintain experimental input!

Summary

- Have formalism to get light front wave functions and meson distribution functions needed for light flavor nucleon sea
- Meson-nucleon coupling constants are known
- Form factors included in frame independent manner that incorporates experimental input
- Given the meson cloud model can make calculations with reasonably-well understood uncertainties
- True test of meson cloud model!
- See Alberg's talk