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Ancient History

NN force

H. Yukawa

Longest range component Pion cloud

Fundamental Question: meson cloud or 4q q

“ Hidden color

Important implications for nuclear force and nuclear structure if
meson cloud picture is shown to fail
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H. Yukawa

Longest range component Pion cloud
AW Thomas PLB 126, 97 (1983)

Wandmolders et al PRL 66,2712 (1991)
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Ancient History

NN force
......... H. Yukawa
Must be tamed
Longest range component Pion cloud
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Experimental Progress
Drell-Yan

NMC measured integral quantity for Gottfried sum

E866 FermiLab measured x-dependence

J. C. PENG er ai. PHYSICAL REVIEW D 58 092004
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FIG. 1. Comparison of the E866 d —u results at Q =7.35 GeV
with the predictions of various models as described in the text.

d(z) > @(x) what about d/u?

Expect large ratio at large x

Hawker et al PRL 80, 3715
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More data- E866 (1999)

Form factor

Drell-Yan Measured d — © and %
r— m2 u— m2
Gy, (t,u) =exp 2A2M exp WE a )
Alberg, Henley and Miller PLB 471, 396 (2000) M M
J. Speth, A.W. Thomas, Advances in Nuclear Physics, vol.
24, JW. Negele, EW. Vogt (Eds.), Plenum Press, New

With pions get too large a ratio %_
Is there an isoscalar non-perturbative sea (omega meson)?

4 T | The omega represents any
| non-perturbative isoscalar sea

35 Without/ a/J

What’s going on at high x?

SeaQuest aims at better measurement, so we try
to improve



Theory problems

- Results depend on form factor parameter A

- form factors enter as three dimensional functions even though expressed in
terms of t and u

- how to derive 7?7?77

- Why do we need form factors? Form factors oppose chiral perturbation theory



Why do we need form factors”

Using form factors opposes chiral perturbation theory

1 I s ga - a a 1 - a abc C
['g\[) — ¢(W | (9 o MW o i¢7u757_ w (9“77' o F@D%ﬂ- ¢ € ’ Wba/ﬂ"-
Non-renormalizable £, expand in powers of momentum
add counter terms order-by order -LECs.
results INDEPENDENT OF CUTOFF Not sufficient for DIS, IMHO be-

cause momenta O ~ my

Form factor relates the LECs in a very specific way
different philosophy

Comment talk last week titled “--- with chiral perturbation theory”
is NOT — no LEC’s, but yes to cutoff dependence
; N
a pion-nucleon
P - = Form factor takes composite

nature of pion and nucleon

| i%i i Into account
9 L o TH




Taming | -Alberg & Miller
PRL 108 (2012) 172001

Constrain form factor using experimental input info from Thomas and Weise book

Q% frg=nN(Q?)
Q-+ m?

0 (p(P)) | A (0)|n(P)) = 21, (P [MGA<Q2> - ] A5t (P).

Thus the matrix element of the divergence of the axial current vanishes as m2 — 0if G 4 (Q?)
and the pion-nucleon form factor g,y (Q?) are related by

MGA(Q?) = fagrnn(Q?). (3.10)

At Q? = 0 this is known as the Goldberger-Treiman relation and it is satisfied at the level
of 3 % (with g4 = GA(0) = 1.267 + 0.004, g.nN = gxnn(0) = 13.2+ 0.1 and M =

G 2\ GA ( O ) Exp. M [GeV]
A (Q ) - 29 BNL 1.07 & 0.06
(1 —|— QQ ) 7GS 1.00 £ 0.05

EW 2l Fermilab  1.05 £332

MA Average: 1.03£0.04

Pion-Nucleon form factor determined for on-mass-shell nucleons, off shell pion



Taming | -Alberg & Miller
PRL 108 (2012) 172001

2 2y . Ga(0
ngN(Q ) X GA(Q ) — C§2) 2
(1+M—%)
Pion-Nucleon form factor determined for on-mass-shell nucleons, off shell pion

Nucleon self energy -intermediate nucleon and Delta

wcey, Dashed line chiral PT
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1 Parameter free calculation!
D = j [d(x) — a(x)]dx = 0.118 = 0.012. Ours 0.109 So what’s the problem?
0



Taming ll- recent

To get 4 and d need to calculate the graphs:

Both pion and nucleon are off-shell in the Feynman graphs
need to reconsider the formalism

(@) = Zaqloo(®) + X par Jo Lhus@)al (D) + Xpar [y Lfau(y)ah(2)
ZQ_ _1_ZB,MfdnyM Y),

Brodsky-Lepage Fock space representation:

TN 1 a4y ko fl N koJ_Na(l—y_yN)é(EJ_w‘FEJ_N)wwN(yaEJJT?ZUNJEJ_N”"'>

2

le'N fd2kJ_7r wwN(ya kJ_T('? 1 — Y, kJ_’]T) — fNT('(l _ y)




Taming ll- recent

To get 4 and d need to calculate the graphs:

Both pion and nucleon are off-shell in the Feynman graphs
need to reconsider the formalism

(@) = Zaqloo(®) + X par Jo Lhus@)al (D) + Xpar [y Lfau(y)ah(2)
ZQ_ _1_ZB,MfdnyM Y),

It fMB has 5(y)
Zo would change,

but NO delta functions here!

Brodsky-Lepage Fock space representation:

TNY o< [y Ldkix [y BN (1—y—yn)S(kin+E LN )Uan (Y, ks yn, kin)| -

2

f7TN fd2kJ_7r wwN(ya kJ_T('? 1 — Y, kJ_’]T) — fN7T<1 _ y)




Light front perturbation theory for chiral lagrangian G A Miller PR C56, 2789 1997

A

P~ is Hamiltonian operator, construct from energy-momentum tensor 7'+~ =

free particle kinetic energy Mg plus interactions V

Schroedinger eq: (}5_}5_ — PE)]p) — Mg\m = (MZ +V)|p)
p) ~ ZZ(WO =+ )

|mIN) component

LY = @iy 0= MY — S5y On” - ST et n

f2

Form factors absent



Form factors

e Including form factors goes beyond usual LF treatment
e Need form factors in frame independent manner ( 4-space)
e Maintain momentum conservation, unique LF wave function

Keep experimental input
e For use in light front wave tunction-virtual N, 7

e Product of pion and nucleon form factors: ~Pauli-Villars reg.
B 1 1 n = Integer
F(k,p,y) = | BEemZy T k2 emE
[ A2 ] [1_ 1_y A2 ] k

wLF X ffooo dk—wBethe—Salpeter(kap)

77bBe‘l:he—Salpete]r (k, p) —

wLF X fdk—r(pa k) k2—7r17,72r—|—7le (p—k)Qi

I' contains form factor.

2 .
mN—I—ze

Integrate over UH k™~ plane = integrate over LH £~ plane w. stated form factor

n = 1 gives form factor very close to dipole, maintain experimental input!



summary

- Have formalism to get light front wave functions and meson distribution
functions needed for light flavor nucleon sea

- Meson-nucleon coupling constants are known

- Form factors included in frame independent manner that incorporates
experimental input

- Given the meson cloud model can make calculations with reasonably-well
understood uncertainties

- True test of meson cloud model!

- See Alberg’s talk



