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Motivation

B With limited number of observables and finite statistics,
need a robust analysis framework to extract meaningful
parton information from experiment

B Over the first ~ 2-3 decades of global PDF analysis efforts,
x> minimization (single-fit) analysis (with Hessian error propagation)
has generally been sufficient to map out global characteristics
of partonic structure

—> ¢.g. shapes of quark PDFs from DIS, where data are plentiful

B A major challenge has been to characterize PDF uncertainties
— in a statistically meaningful way — in the presence of

tensions among data sets



Motivation

B Previous attempts sought to address tensions in data sets
by introducing

—> “tolerance” factors (artificially inflating PDF errors)

— “neural net” parametrization (instead of polynomial
parametrization), together with MC techniques

B However, to address the problem in a more statistically
rigorous way, one requires going beyond the standard
yv? minimization paradigm

—> utilize modern techniques based on Bayesian statistics!



Motivation

B In the near future, standard y? minimization techniques
will be unsuitable — even in the absence of tensions —

e.g. for

— simultaneous analysis of collinear distributions
(unpolarized & polarized PDFs, fragmentation functions)

—> “JAMI17”: Jake Ethier (Tuesday)

—> new types of observables — TMDs or GPDs —
that will involve > O(10°) data points, with O(10%)
parameters



Motivation

B Typically PDF parametrizations are nonlinear functions of
the PDF parameters, e.g.

zf(z, p) = Na*(1 - 2)” P(x)

where P is a polynomial e.g. P(z) =1+ ez + 1z,
or Chebyshey, neural net, ...

— have multiple local minima present in the y* function

B Robust parameter estimation that thoroughly scans over a
realistic parameter space, including multiple local minima,
is only possible using MC methods!

B Need more reliable algorithms — “PDFs beyond the LHC™!



Bayesian approach
to fitting




Bayesian approach to fitting

@ Analysis of data requires estimating expectation values E
and variances V of “observables” O (= PDFs, FFs) which are
functions of parameters a

E|O] = /d”aP(&’|data)(9(EL’)

Vo] = / "a P(dldata) [0@) — E[0])°

“Bayesian master formulas”

@ Using Bayes’ theorem, probability distribution P given by

P(d|data) = % £(data|@) ()

in terms of the likelihood function [
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Bayesian approach to fitting

B Likelihood function

£(data|@) = exp (—%X2(5)>

is a Gaussian form in the data, with y* function

e ]

with priors (@) and “evidence” Z

7 - / d"a £(datald) (@)

— 7/ tests if e.g. an n-parameter fit is statistically different
from (n+1)-parameter fit



Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood Monte Carlo
(x* minimization)




Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(x* minimization)

— maximize probability distribution P by minimizing +?
for a set of best-fit parameters a

E[d] =



Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(x* minimization)

— maximize probability distribution P by minimizing +?
for a set of best-fit parameters a

E[d] =

— if O is ~ linear in the parameters, and if probability is
symmetric in all parameters

E10(@)] = Olao)



Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(x* minimization)

— variance computed by expanding O(a) about d
e.g.in 1 dimension have “master formula”

VO] =~ i O(a + da) — O(a — da) 2



Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(x* minimization)

— generalization to multiple dimensions via Hessian approach:

find set of (orthogonal) contours in parameter space around a
such that £ along each contour is parametrized by statistically
independent parameters — directions of contours given by
eigenvectors éj of Hessian matrix H, with elements

1 0°x*(a)
H,: =~
2 86@@6@ a=a,
and contours parametrized as Aa'®) = ¥ — g5 =1¢ é—k,
» a a ao k\/@

with v eigenvectors of H



Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(x* minimization)

— basic assumption: P factorizes along each eigendirection
P(Aa) ~ [ Pulte)
k

where

Pr(tr) = Ny exp [— %XQ (ao + tk\i—z_k)}

note: in quadratic approximation for X, this becomes a
normal distribution



Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(x* minimization)

— uncertainties on O along each eigendirection
(assuming linear approximation)

(AOL)? ~ % [O(ao+Tk\i%> —(’)(ao—Tk\/é?%)r

where T} is finite step size in 7 , with total variance

!

VO] = > (AO)’

k



Bayesian approach to fitting

B Two methods generally used for computing Bayesian
master formulas:

Monte Carlo

— in practice, generally one has E[0O(d)] # O(FE|a))
so the maximal likelihood method will sometimes fail

—> Monte Carlo approach samples parameter space and
assigns weights Wy to each set of parameters ay,

—> expectation value and variance are then weighted averages

El0@)] =Y we0@), V(0@ =Y w (0@ - El0])’
k k



Bayesian approach to fitting

B Two methods generally used for computing Bayesian

master formulas:

Maximum Likelihood
(x* minimization)

O fast

@ assumes Gaussianity

@ no guarantee that global
minimum has been found

@ errors only characterize
local geometry of
y? function

Monte Carlo

@ slow

@ does not rely on
Gaussian assumptions

@ includes all possible
solutions

© accurate



Incompatible
data sets




Incompatible data sets

B Incompatible data sets can arise because of errors
in determining central values, or underestimation
of systematic experimental uncertainties

— requires some sort of modification to standard statistics

@ Often one modifies the master formula by introducing

a “‘tolerance’” factor T
VO] — T% V]O]

e.g. for one dimension
T2
T4

2

4[@) [O(a + da) — O(a — da)

— effectively modifies the likelihood function

20



Incompatible data sets

@ Simple example: consider observable m, and two measurements

(m17 5m1)7 (m27 5m2)

— compute exactly the x* function

2 2
2 m — 1M m — 1Mo
X _< 5m1 > _|_< 5m2 >

and, from Bayesian master formula, the mean value

mi1dms + modms?
om? + dm3

Elm| =

and variance does not
Vim] = H-! = om3i doms ,_—"| depend on

= e |
om3 + om3 my—nea
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Incompatible data sets

@ Simple example: consider observable m, and two measurements

(m17 5m1)7 (m27 5m2)

. same 0mo
o~ | ] 1y .
215 L5 X «+ different mo
g 1.0 1.0 ;'l |'.
E s 0.5 f
Q P

0.0 0.0 p—

4 9 0 2 4 -4 -2 0 2 4

—> total uncertainty remains independent of degree of
(in)compatibility of data

—> Gaussian likelihood gives unrealistic representation
of true uncertainty

22



@ Realistic example:

Likelihood

Likelihood

Projection

Incompatible data sets

recent CJ (CTEQ-JLab) global PDF analysis
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—> 24 parameters,
33 data sets

—> data sets
compatible
along this
e-direction



Incompatible data sets

@ Realistic example: recent CJ (CTEQ-JLab) global PDF analysis

Projection
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Incompatible data sets

@ Realistic example: recent CJ (CTEQ-JLab) global PDF analysis

Likelihood

Likelihood
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—> 24 parameters,
33 data sets

—> data sets not
compatible
along this
e-direction

—> standard Gaussian likelihood incapable of accounting for
underestimated individual errors (leading to incompatible data sets)
— not designed for such scenarios!



Incompatible data sets

@ Two ways in which tolerance factors usually implemented

—> CTEQ “tolerance criteria”
(variations adopted by other groups, e¢.g., MMHT, CJ)

Pumplin, Stump, Huston, Lai, Nadolsky, Tung
JHEP 07 (2002) 012

— scaling of Ax? with number of parameters

(or number of degrees of freedom)

e.g. Brodsky, Gardner
PRL (Comment) 116, 019101 (2016)

JDHLM assess their PDF errors using a tolerance criteria of Ax? = 1 at 1o; however, the actual value of Ax? to
be employed depends on the number of parameters to be simultaneously determined in the fit. This is illustrated in
Table 38.2 of Ref. [15] and is used broadly, noting, e.g., Refs. [16-19]. Ref. [7] employs the CT10 PDF analysis [20],
so that it contains 25 parameters, plus one for intrinsic charm. Figure 38.2 of Ref. [15] then shows that Ax? ~ 29 at
lo (68% CL), whereas Ax? ~ 36 at 90% CL. Ref. [7] uses the criterion Ax? > 100, determined on empirical grounds,
to indicate a poor fit. JDHLM employs the framework of Ref. [21] which contains 25 parameters for the PDFs and
12 for the higher-twist contributions, so that a much larger tolerance than Ayx? = 1 is warranted.




Incompatible data sets

CTEQ tolerance criteria

40 |
30 |
9
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o for each experiment, find minimum y? along given e-direction
o from y? distribution determine 90% CL for each experiment

o along each side of e-direction, determine maximum range d;-
allowed by the most constraining experiment

O I' computed by averaging over all df (typically T ~ 5 — 10)
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Incompatible data sets

B CTEQ tolerance criteria
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@ This approach is not consistent with Gaussian likelihood

—> no clear Bayesian interpretation of uncertainties
(ultimately, a prescription...)
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Incompatible data sets

@ Scaling of Ax? with # of parameters: “Ax? paradox”

@ Simple example: two parameters 0; (i =1,2)
with mean values pu; and standard deviation o;

—> joint probability distribution

1 /0; — 1 2
POo) = [] oo [5( - ) }

212

— change variables 6, — ¢, = (0; — 1;)/o; and use
polar coordinates r° =t +t3, ¢ = tan '(t2/t1)

1
d01d02 P(01,02) = g—¢ rdr exp [—57“2]

7
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Incompatible data sets
B Scaling of Ax” with # of parameters: “Ax? paradox”

—> confidence volume

R
1
CV = /d91d92 73(91,(92) — / drr exp [—27“2]
0

= 68% for R = 2.279

— note that R® =t +t2 = x°, so that confidence Aty

region for parameters max [t;] = R /\
R
NV

— implies that 6, = u; £ 0; R, which contradicts

original premise that 0, = j; 0, !
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Incompatible data sets
Scaling of Ax® with # of parameters: “Ax” paradox”
— to resolve paradox, use Bayesian master formulas

27 00

2T 0

/%CM T 2 (i +tioy) =
- o rre Hi T1;05) = [
: ve

2T 0
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Incompatible data sets
B Scaling of Ax” with # of parameters: “Ax? paradox”

— to resolve paradox, use Bayesian master formulas

27 00

2T 0

/%CM T 2 (i +tioy) =
- o rre Hi T1;05) = [
: ve

2T 0

V16 :/O k= Oodrp(f"‘, 6) (0; — pi)*

27 0

2m 00
d 2
:/ —¢ drre " /2 (tiO'i)2 — 01'2 J
0

2T 0
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Incompatible data sets

@ Scaling of Ax? with # of parameters: “Ax? paradox”

— no paradox if use Ax® =1 for any number of parameters
to characterize the 10 CL

— only consistent tolerance for Gaussian likelihood is T =1

33



To summarize standard maximum likelihood method...

B Gradient search (in parameter space) depends how “good” the

starting point is

—> for ~30 parameters trying different starting points is
impractical, if do not have some information about shape

B Common to free parameters initially, then freeze those
not sensitive to data (y* flat locally)

— introduces bias, does not guarantee that flat ,? globally

H Cannot guarantee solution is unique

@ Error propagation characterized by quadratic 2 near minimum

—> no guarantee this is quadratic globally (e.g. Student -distribution?)

B Introduction of tolerance modifies Gaussian statistics

34



Monte Carlo
methods




Monte Carlo

B Designed to faithfully compute Bayesian master formulas

B Do not assume a single minimum, include all possible solutions
(with appropriate weightings)

B Do not assume likelihood is Gaussian in parameters

B Allows likelihood analysis to be extended to address tensions
among data sets via Bayesian inference

B More computationally demanding compared with Hessian method

36



Monte Carlo

First group to use MC for global PDF analysis was NNPDF,
using neural network to parametrize P(x) in

f(z) = Na2%(1 —z)” P(x)

— «, (3 are fitted “preprocessing coefficients”

Iterative Monte Carlo (IMC), developed by JAM Collaboration,
variant of NNPDF, tailored to non-neutral net parametrizations

—> J. Ethier

Markov Chain MC (MCMC) / Hybid MC (HMC)

— recent “proof of principle” analysis, ideas from lattice QCD

Gbedo, Mangin-Brinet,
PRD 96, 014015 (2017)

Nested sampling (NS) — computes integrals in Bayesian master
formulas (for E, V, Z) explicitly Skilling (2004)

37



Iterative Monte Carlo (IMC)

B Use traditional functional form for input distribution shape,
but sample significantly larger parameter space than possible

in single-fit analyses

Iterative Monte Carlo (IMC)

(sampler)—)[ priors

T

as initial
guess
parameters from

minimization steps

posterior

— no assumptions for exponents

38

cross-validation to avoid
overfitting

iterate until convergence
criteria satisfied



Iterative Monte Carlo (IMC)

I e.g. of convergence (for fragmentation functions) in IMC
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Nested Sampling

@ Basic idea: transform n-dimensional integral to 1-D integral
1
7 = /d”aﬁ(data\c?)w(c?) :/ dX L(X)
0

n

where prior volume dX = w(ad)d"a

L, 7,

Feroz et al.

suchthat 0<--- < Xo< X; < Xy=1 arXiv:1306.2144 [astro-ph]
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Nested Sampling

H Approximate evidence by a weighted sum

1
7 =~ Zﬁi w; with weights w; = §(X¢_1 — Xit1)

H Algorithm:

— randomly select samples from full prior s.t. initial volume X, =1

— for each iteration, remove point with lowest £, replacing it
with point from prior with constraint that its £ > £;

—> repeat until entire prior volume has been traversed

@ can be parallelized
@ performs better than VEGAS for large dimensions

@ increasingly used in fields outside of (nuclear) analysis

41



B Recent application
in global analysis of
transversity TMD PDF

— H.-W. Lin

Lin, WM, Prokudin,
Sato, Shows (2017)

Nested Sampling
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MC Error Analysis
B Assuming a single minimum, a Hessian or MC analysis must give

same results, if using same likelihood function

— analysis of pseudodata, generated using Gaussian distribution
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MC Error Analysis

B Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

— also for discrepant data
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—> almost identical uncertainty bands for Hessian and for MC!

44



MC Error Analysis

B Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

I Approaches that use Hessian + tolerance factor not consistent
with Gaussian likelihood function

B NNPDF group claim that within their neural net MC methodology,
no need for a tolerance factor, since uncertainties similar to
other groups who use Hessian + tolerance

— how can this be?

B Assuming sufficient observables to determine PDFs, then
PDF uncertainties cannot depend on parametrization!
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Non-Gaussian
likelthood




Incompatible data sets

@ Rigorous (Bayesian) way to address incompatible data sets
is to use generalization of Gaussian likelihood

@ joint vs. disjoint distributions

@ empirical Bayes

@ hierarchical Bayes

@ others, used in different fields

47



Disjoint distributions

@ Instead of using total likelihood that is a product (“and”)
of individual likelihoods, e.g. for simple example of two
measurements

L(mima|m;dmidms) = L(mq|m;dmy) X L(ma|m;dms)

use instead sum (“or”) of individual likelihoods

1
L(mims|m;dmidms) = 5 L(mq|m;omq) + L(ma|m; dmo)

— gives rather different expectation value and variance

T~ depends on

separation!

48



Disjoint distributions

B Symmetric uncertainties dm; = dms

T joint
1.5 o
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B Asymmetric uncertainties dm; # dmeo

Disjoint distributions

0 0 -g}———&cf"—""f‘""“ “““““““““
—4 —2 0 2 4 —4 —2 0 2
m m

— disjoint likelihood gives broader overall uncertainty,
overlapping individual (discrepant) data
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Empirical Bayes

Shortcoming of conventional Bayesian — still assume
prior distribution follows specific form (e.g. Gaussian)

Extend approach to more fully represent prior uncertainties,
with final uncertainties that do not depend on initial choices

In generalized approach, data uncertainties modified by
distortion parameters, whose probability distributions given
in terms of “hyperparameters” (or “nuisance parameters”)

Hyperparameters determined from data
— give posteriors for both PDF and hyperparameters
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Empirical Bayes
B Standard mean and variance that characterize data
O=p+o ——> f(u)+g(o)
where f(1),9(c) are unknown functions that account for

faulty measurements

@ Simple choice is

(n,0) = (C1 pp+ G2, C30)

where (; 23 are distortion parameters, with prob. dists.
described by hyperparameters ¢12 3

B Likelihood function is then

£(data|d’, C1’2,3> ~ exp [; Z (dl - 22Z@2§3C1,2))) ] 771((1|¢1)7T2(C1|¢2)7T3(C1|¢3)

)
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Empirical Bayes

Simple example of EB for symmetric & asymmetric errors
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Outlook

New paradigm needed in global QCD analysis
— simultaneous determination of collinear distributions
(also TMDs) using Monte Carlo sampling of parameter space

Treatment of discrepant data sets needs serious attention
— Bayesian perspective has clear merits

Necessary to benchmark MC extractions (not just NNPDF)

I”

Near—-term future: “universal” QCD analysis of all observables
sensitive to collinear (unpolarized & polarized) PDFs and FFs

Longer—term: apply MC technology to global QCD analysis
of transverse momentum dependent (TMD) PDFs and FFs
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