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Motivation
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With limited number of observables and finite statistics,
need a robust analysis framework to extract meaningful
parton information from experiment

Over the first ~ 2-3 decades of global PDF analysis efforts,
     minimization (single-fit) analysis (with Hessian error propagation) 
has generally been sufficient to map out global characteristics
of partonic structure

�2

e.g. shapes of quark PDFs from DIS, where data are plentiful

A major challenge has been to characterize PDF uncertainties
— in a statistically meaningful way — in the presence of
tensions among data sets



Motivation
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utilize modern techniques based on Bayesian statistics!

Previous attempts sought to address tensions in data sets
by introducing

“neural net” parametrization (instead of polynomial
  parametrization),  together with MC techniques 

“tolerance” factors (artificially inflating PDF errors)

However,  to address the problem in a more statistically 
rigorous way, one requires going beyond the standard
     minimization paradigm�2



Motivation
In the near future,  standard      minimization techniques
will be unsuitable — even in the absence of tensions —
e.g. for

simultaneous analysis of collinear distributions
(unpolarized & polarized PDFs, fragmentation functions)

�2

“JAM17”:  Jake Ethier  (Tuesday)

new types of observables — TMDs or GPDs —
that will involve                data points, with            
parameters

> O(105) O(103)



Motivation

Need more reliable algorithms — “PDFs beyond the LHC”!
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Typically PDF parametrizations are nonlinear functions of
the PDF parameters, e.g.

Robust parameter estimation that thoroughly scans over a
realistic parameter space, including multiple local minima,
is only possible using MC methods!

have multiple local minima present in the      function�2

xf(x, µ) = Nx

↵(1� x)� P (x)

where P is a polynomial e.g.                                 ,
or Chebyshev, neural net, …

P (x) = 1 + �
p
x+ ⇥ x



Bayesian approach
to fitting
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Analysis of data requires estimating expectation values E
and variances V  of  “observables”     (= PDFs, FFs) which are
functions of parameters 

O

E[O] =

Z
dnaP(~a|data)O(~a)

V [O] =

Z
dnaP(~a|data) ⇥O(~a)� E[O]

⇤2
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Bayesian approach to fitting

“Bayesian master formulas"

Using Bayes’ theorem,  probability distribution      given byP

P(~a|data) = 1

Z
L(data|~a)⇡(~a)

in terms of the likelihood function L

~a



�2
(~a) =

X

i

✓
data i � theoryi(~a)

�(data)

◆2
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Bayesian approach to fitting

Likelihood function 

L(data|~a) = exp

✓
�1

2

�2
(~a)

◆

is a Gaussian form in the data, with      function�2

with priors          and  “evidence”⇡(~a) Z

Z =

Z
dnaL(data|~a)⇡(~a)

Z tests if e.g. an n-parameter fit is statistically different
from (n+1)-parameter fit
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)

Monte Carlo
�2
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

maximize probability distribution     by minimizing
for a set of best-fit parameters 

P �2

~a0

E [~a ] = ~a0
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

maximize probability distribution     by minimizing
for a set of best-fit parameters 

P �2

~a0

if     is     linear in the parameters, and if probability is
symmetric in all parameters
O ⇡

E [~a ] = ~a0

E [O(~a) ] ⇡ O(~a0)
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

variance computed by expanding          about 
e.g. in 1 dimension have “master formula”

~a0O(~a)

V [O] ⇡ 1

4

h
O(a+ �a)�O(a� �a)

i2

where 

�a2 = V [a]
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

Hij =
1

2

@2�2(~a)

@ai@aj

����
~a=~a0

find set of (orthogonal) contours in parameter space around 
such that      along each contour is parametrized by statistically 
independent parameters — directions of contours given by 
eigenvectors     of Hessian matrix H, with elements

~a0
L

êk

generalization to multiple dimensions via Hessian approach:

and contours parametrized as                                       , 
with     eigenvectors of H

�a(k) = a(k) � a0 = tk
êkp
vkvk
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

basic assumption:      factorizes along each eigendirection

note: in quadratic approximation for     , this becomes a
        normal distribution

P

P(�a) ⇡
Y

k

Pk(tk)

where 

Pk(tk) = Nk exp

h
� 1

2

�2
⇣
a0 + tk

êkp
vk

⌘i

�2
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)�2

uncertainties on     along each eigendirection
(assuming linear approximation) 

O

(�Ok)
2 ⇡ 1

4


O
⇣
a0 + Tk

êkp
vk

⌘
�O

⇣
a0 � Tk

êkp
vk

⌘�2

V [O] =
X

k

(�Ok)
2

where       is finite step size in     , with total varianceTk tk
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Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Monte Carlo

in practice, generally one has
so the maximal likelihood method will sometimes fail 

E[O(~a)] 6= O(E[~a])

Monte Carlo approach samples parameter space and
assigns weights      to each set of parameterswk ak

expectation value and variance are then weighted averages

,E[O(~a)] =
X

k

wk O(~ak) V [O(~a)] =
X

k

wk

�O(~ak)� E[O]
�2



18

Bayesian approach to fitting

Two methods generally used for computing Bayesian
master formulas:

Maximum Likelihood
(     minimization)

Monte Carlo
�2

fast

accurate

does not rely on
Gaussian assumptions

includes all possible 
solutions

assumes Gaussianity

no guarantee that global
minimum has been found

errors only characterize
local geometry of
     function�2

slow



Incompatible
data sets
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Incompatible data sets

Incompatible data sets can arise because of errors
in determining central values, or underestimation
of systematic experimental uncertainties

requires some sort of modification to standard statistics

Often one modifies the master formula by introducing
a “tolerance” factor T

V [O] =
T 2

4

h
O(a+ �a)�O(a� �a)

i2
e.g. for one dimension

effectively modifies the likelihood function

V [O] ! T 2 V [O]
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Incompatible data sets

Simple example:  consider observable     , and two measurements
(m1, �m1), (m2, �m2)

m

�2 =

✓
m�m1

�m1

◆2

+

✓
m�m2

�m2

◆2

E[m] =
m1�m2

2 +m2�m2
1

�m2
1 + �m2

2

V [m] = H�1 =
�m2

1 �m
2
2

�m2
1 + �m2

2

compute exactly the      function�2

and,  from Bayesian master formula,  the mean value

and variance does not
depend on
m1�m2 !
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�4 �2 0 2 4
m

0.0

0.5

1.0

1.5

L(
m

|m
1,

m
2)

�4 �2 0 2 4
m

0.0

0.5

1.0

1.5

total uncertainty remains independent of degree of 
(in)compatibility of data

Incompatible data sets

Simple example:  consider observable     , and two measurements
(m1, �m1), (m2, �m2)

m

Gaussian likelihood gives unrealistic representation 
of true uncertainty

same 
different  m2

�m2
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Realistic example:  recent CJ (CTEQ-JLab) global PDF analysis

24 parameters,
33 data sets
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Realistic example:  recent CJ (CTEQ-JLab) global PDF analysis

data sets not
compatible 
along this
e-direction

24 parameters,
33 data sets
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Realistic example:  recent CJ (CTEQ-JLab) global PDF analysis

24 parameters,
33 data sets
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standard Gaussian likelihood incapable of accounting for 
underestimated individual errors (leading to incompatible data sets)
— not designed for such scenarios!

data sets not
compatible 
along this
e-direction
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SLAC-PUB-16238

Comment on “New Limits on Intrinsic Charm in the Nucleon from Global Analysis of
Parton Distributions”

Stanley J. Brodsky1 and Susan Gardner2

1SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309
2Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055

A Comment on the Letter by P. Jimenez-Delgado, T. J. Hobbs, J. T. Londergan, and W. Mel-
nitchouk, Phys. Rev. Lett. 114, 082002 (2015).

Intrinsic heavy quarks in hadrons emerge from the non-perturbative structure of a hadron bound state [1] and are a
rigorous prediction of QCD [2, 3]. Lattice QCD calculations also indicate a significant intrinsic charm probability [4, 5].
Since the light-front momentum distribution of the Fock states is maximal at equal rapidity, intrinsic heavy quarks
carry significant fractions of the momentum. The presence of Fock states with intrinsic strange, charm, or bottom
quarks in hadrons lead to an array of novel physics phenomena [6]. Accurate determinations of the heavy-quark
distribution functions in the proton are needed to interpret LHC measurements as probes of physics beyond the
Standard Model [7, 8]. Determinations [7, 9, 10] of the momentum fraction carried by intrinsic charm quarks in the
proton typically limit ⟨x⟩IC ∼ O(1%) at 90% CL, consistent with the analysis of the EMC measurements of the charm
structure function [11] and the large rate for high-pT p̄p → cγX reactions at the Tevatron [12]; however, a precise
determination of ⟨x⟩IC has proved elusive. The letter by P. Jimenez-Delgado, T. J. Hobbs, J. T. Londergan, and
W. Melnitchouk (JDHLM) [13] is the most recent of such analyses, and it finds a much more severe limit on intrinsic
charm ⟨x⟩IC ∼ O(0.1%) than the previous such study [7]. JDHLM input different shapes for the intrinsic charm
contributions but allow the overall normalization to vary. They include low-energy data from the 1991 single-arm
ed (p) → e′X SLAC experiment [14] in their global fit. Ref. [7] did not use the SLAC data and came to much weaker
conclusions. Nevertheless, we believe the very stringent conclusions of JDHLM are in error.
JDHLM assess their PDF errors using a tolerance criteria of ∆χ2 = 1 at 1σ; however, the actual value of ∆χ2 to

be employed depends on the number of parameters to be simultaneously determined in the fit. This is illustrated in
Table 38.2 of Ref. [15] and is used broadly, noting, e.g., Refs. [16–19]. Ref. [7] employs the CT10 PDF analysis [20],
so that it contains 25 parameters, plus one for intrinsic charm. Figure 38.2 of Ref. [15] then shows that ∆χ2 ≈ 29 at
1σ (68% CL), whereas ∆χ2 ≈ 36 at 90% CL. Ref. [7] uses the criterion ∆χ2 > 100, determined on empirical grounds,
to indicate a poor fit. JDHLM employs the framework of Ref. [21] which contains 25 parameters for the PDFs and
12 for the higher-twist contributions, so that a much larger tolerance than ∆χ2 = 1 is warranted.
JDHLM find that the SLAC data (on d and p targets) give the strongest constraints on intrinsic charm, although,

by their count, only 157 of 1021 data points have W 2 in excess of the charm hadronic threshold: W 2
th

≈ 16GeV2.
[JDHLM mention the partonic threshold constraint W 2 > 4m2

c, but this is not relevant for the detection of intrinsic
charm — if x < 1, leptons can only scatter off charm quarks when the kinematics permit the formation of charmed
hadrons in the final state.] It is possible that JDHLM’s strong rejection of the intrinsic charm hypothesis is driven
by sharpened constraints on the non-charm PDFs. However, for the SLAC data set, the theoretical model which is
constrained is that of the intrinsic charm PDF combined with the treatment of uncertain higher-twist and threshold
corrections. Thus a global analysis cannot reject intrinsic charm per se, but rather only the particular model in which
it is embedded.
We also note that JDHLM exclude the EMC data — which indicate significant intrinsic charm — citing a “goodness

of fit” criterion. Statistical criteria alone cannot allow the exclusion of data sets, as here with the EMC data; additional
corrections, however, may exist through their use of an iron target [22, 23].
Finally, we note that the SLAC measurements of ed (p) → e′X , which only detects the scattered electron, has an

overall normalization (systematic) error of ± 1.7 (2.1)%, and a relative normalization error of typically ±1.1% [14].
The SLAC data points in the W 2 > 16 GeV2 and x > 0.1 regime where intrinsic charm could be directly relevant
have even larger statistical uncertainties. Thus it seems implausible that the SLAC data can yield the severe contraint
claimed.
JDHLM claim that the momentum fraction carried by intrinsic charm is ⟨x⟩IC < 0.1% at the 5σ level, and they

note in their final summary that ⟨x⟩IC ≤ 0.5% at 4σ. We find neither conclusion is warranted.
We thank B. Plaster for a cross-check of Fig. 38.2 in Ref. [15] and B. Plaster, A. Deur, P. Hoyer, C. Lorcé,

J. Pumplin, and R. Vogt for helpful remarks. We acknowledge support from the U.S. Department of Energy under
contracts DE–AC02–76SF00515 and DE–FG02–96ER40989.

CTEQ “tolerance criteria” 
(variations adopted by other groups, e.g., MMHT, CJ)

scaling of         with number of parameters 
(or number of degrees of freedom)

Two ways in which tolerance factors usually implemented

Incompatible data sets

Pumplin, Stump, Huston, Lai, Nadolsky, Tung
JHEP 07 (2002) 012

��2

e.g. Brodsky, Gardner
PRL (Comment) 116, 019101 (2016)
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Incompatible data sets

CTEQ tolerance criteria

for each experiment, find minimum      along given e-direction�2

from     distribution determine 90% CL for each experiment  �2

along each side of e-direction, determine maximum range
allowed by the most constraining experiment
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Incompatible data sets

CTEQ tolerance criteria
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This approach is not consistent with Gaussian likelihood

no clear Bayesian interpretation of uncertainties
(ultimately, a prescription…)
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Scaling of        with # of parameters:  “       paradox”��2 ��2

Incompatible data sets

Simple example:  two parameters                  
with mean values      and standard deviation 

✓i (i = 1, 2)
µi �i

joint probability distribution

P(✓1, ✓2) =
Y

i=1,2

1p
2⇡�2

i

exp

"
�1

2

✓
✓i � µi

�i

◆2
#

change variables                                    and use
polar coordinates r2 = t21 + t22, � = tan�1(t2/t1)

✓i ! ti = (✓i � µi)/�i

d✓1d✓2 P(✓1, ✓2) =
d�

2⇡
rdr exp


�1

2

r2
�
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Scaling of        with # of parameters:  “       paradox”��2 ��2

Incompatible data sets

confidence volume

= 68% for R = 2.279

CV ⌘
Z

d✓1d✓2 P(✓1, ✓2) =

Z R

0
dr r exp


�1

2

r2
�

note that                          , so that confidence
region for parameters

R2 = t21 + t22 ⌘ �2

max [ti] = R

implies that                     , which contradicts✓i = µi ± �i R

original premise that                   !✓i = µi ± �i

t2

t1

R
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Scaling of        with # of parameters:  “       paradox”��2 ��2

Incompatible data sets

to resolve paradox, use Bayesian master formulas

E[✓i] =

Z 2⇡

0

d�

2⇡

Z 1

0
drP(r,�) ✓i

=

Z 2⇡

0

d�

2⇡

Z 1

0
dr r e�r2/2 (µi + ti �i) = µi X
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Scaling of        with # of parameters:  “       paradox”��2 ��2

Incompatible data sets

to resolve paradox, use Bayesian master formulas

E[✓i] =

Z 2⇡

0

d�

2⇡

Z 1

0
drP(r,�) ✓i

=

Z 2⇡

0

d�

2⇡

Z 1

0
dr r e�r2/2 (µi + ti �i) = µi

V [✓i] =

Z 2⇡

0

d�

2⇡

Z 1

0
drP(r,�) (✓i � µi)

2

=

Z 2⇡

0

d�

2⇡

Z 1

0
dr r e�r2/2 (ti �i)

2 = �2
i

X

X
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Scaling of        with # of parameters:  “       paradox”��2 ��2

Incompatible data sets

no paradox if use              for any number of parameters 
to characterize the      CL

��2 = 1

1�

only consistent tolerance for Gaussian likelihood is T = 1
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To summarize standard maximum likelihood method…

for ~30 parameters trying different starting points is
impractical, if do not have some information about shape

Gradient search (in parameter space) depends how “good” the
starting point is

Cannot guarantee solution is unique

Introduction of tolerance modifies Gaussian statistics

Common to free parameters initially, then freeze those
not sensitive to data (     flat locally)�2

introduces bias,  does not guarantee that flat      globally�2

Error propagation characterized by quadratic      near minimum�2

no guarantee this is quadratic globally (e.g. Student t-distribution?)



Monte Carlo 
methods

35
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Monte Carlo

Designed to faithfully compute Bayesian master formulas

Do not assume a single minimum, include all possible solutions
(with appropriate weightings)

Do not assume likelihood is Gaussian in parameters

Allows likelihood analysis to be extended to address tensions
among data sets via Bayesian inference

More computationally demanding compared with Hessian method
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Monte Carlo

First group to use MC for global PDF analysis was NNPDF,
using neural network to parametrize         in P (x)

f(x) = N x

↵(1� x)� P (x)

Iterative Monte Carlo (IMC), developed by JAM Collaboration,
variant of NNPDF, tailored to non-neutral net parametrizations

J. Ethier 

Markov Chain MC (MCMC) / Hybid MC (HMC)
— recent “proof of principle” analysis, ideas from lattice QCD

Gbedo, Mangin-Brinet,
PRD 96, 014015 (2017)

Nested sampling (NS) — computes integrals in Bayesian master
formulas (for E,  V,  Z) explicitly Skilling (2004)

—        are fitted “preprocessing coefficients”↵,�



no assumptions for exponents 

Use traditional functional form for input distribution shape,
but sample significantly larger parameter space than possible
in single-fit analyses

cross-validation to avoid
overfitting

iterate until convergence
criteria satisfied
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sampler

priors

fit

fit

fit

posteriors

original data

pseudo

data

training

data

fit

parameters from

minimization steps

validation

data

validation

posterior

as initial

guess

prior

Iterative Monte Carlo (IMC)

Iterative Monte Carlo (IMC)
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Iterative Monte Carlo (IMC)

  ~ 20
iterations

Sato et al.
PRD 94, 114004
(2016)
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Nested Sampling

Basic idea:  transform n-dimensional integral to 1-D integral 

Z =

Z
dnaL(data|~a)⇡(~a) =

Z 1

0
dX L(X)

where prior volume dX = ⇡(~a) dna

such that 0 < · · · < X2 < X1 < X0 = 1
Feroz et al.
arXiv:1306.2144 [astro-ph]
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Nested Sampling

Approximate evidence by a weighted sum

Z ⇡
X

i

Li wi wi =
1

2
(Xi�1 �Xi+1)with weights

Algorithm:

repeat until entire prior volume has been traversed

can be parallelized

randomly select samples from full prior s.t. initial volume X0 = 1

for each iteration, remove point with lowest     , replacing it
with point from prior with constraint that its

Li

L > Li

increasingly used in fields outside of (nuclear) analysis

performs better than VEGAS for large dimensions
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Nested Sampling
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Recent application
in global analysis of 
transversity TMD PDF

 H.-W. Lin
�u

�d

gT = �u� �dLin, WM, Prokudin,
Sato, Shows (2017)
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Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

MC Error Analysis

analysis of pseudodata, generated using Gaussian distribution

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.5

1.0

1.5

2.0

2.5

N
g(

x
;b

)

HESS

IMC

NS

HMC

0.0 0.2 0.4 0.6 0.8 1.0

x

0.96

0.98

1.00

1.02

1.04

R
at

io
to

he
ss

0.0 0.2 0.4 0.6 0.8 1.0

x

0.96

0.98

1.00

1.02

1.04

R
at

io
to

he
ss

0.0 0.2 0.4 0.6 0.8 1.0

x

0.96

0.98

1.00

1.02

1.04
R

at
io

to
he

ss

IMC

Nested HMC



44

Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

MC Error Analysis

also for discrepant data

almost identical uncertainty bands for Hessian and for MC!
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Assuming a single minimum, a Hessian or MC analysis must give
same results, if using same likelihood function

MC Error Analysis

Approaches that use Hessian + tolerance factor not consistent
with Gaussian likelihood function

Assuming sufficient observables to determine PDFs, then
PDF uncertainties cannot depend on parametrization!

NNPDF group claim that within their neural net MC methodology, 
no need for a tolerance factor, since uncertainties similar to
other groups who use Hessian + tolerance

how can this be?



Non-Gaussian 
likelihood

46



Rigorous (Bayesian) way to address incompatible data sets
is to use generalization of Gaussian likelihood

47

Incompatible data sets

joint vs. disjoint distributions

empirical Bayes

hierarchical Bayes

others, used in different fields
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Disjoint distributions

Instead of using total likelihood that is a product (“and”)
of individual likelihoods,  e.g. for simple example of two 
measurements

L(m1m2|m; �m1�m2) = L(m1|m; �m1)⇥ L(m2|m; �m2)

use instead sum (“or”) of individual likelihoods

L(m1m2|m; �m1�m2) =
1

2

h
L(m1|m; �m1) + L(m2|m; �m2)

i

gives rather different expectation value and variance

E[m] =
1

2
(m1 +m2)

V [m] =
1

2
(�m2

1 + �m2
2) +

✓
m1 �m2

2

◆2

depends on
separation!
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Disjoint distributions
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V [m] =
�m2

1 �m2
2

�m2
1 + �m2

2

Symmetric uncertainties �m1 = �m2
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Disjoint distributions
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Asymmetric uncertainties �m1 6= �m2

disjoint likelihood gives broader overall uncertainty,
overlapping individual (discrepant) data
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Shortcoming of conventional Bayesian — still assume
prior distribution follows specific form (e.g. Gaussian)

Empirical Bayes

Extend approach to more fully represent prior uncertainties,
with final uncertainties that do not depend on initial choices

In generalized approach, data uncertainties modified by
distortion parameters, whose probability distributions given
in terms of “hyperparameters” (or “nuisance parameters”)

Hyperparameters determined from data
give posteriors for both PDF and hyperparameters
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Empirical Bayes

Standard mean and variance that characterize data
✓ = µ+ � f(µ) + g(�)

where                are unknown functions that account for
faulty measurements

f(µ), g(�)

Simple choice is

(µ,�) ! (⇣1 µ+ ⇣2, ⇣3 �)

where          are distortion parameters, with prob. dists.
described by hyperparameters 

⇣1,2,3
�1,2,3

Likelihood function is then

L(data|~a, ⇣1,2,3) ⇠ exp

"
�1

2

X

i

✓
d1 � f(µi(~a, ⇣1,2))

g(�, ⇣3)

◆2
#
⇡1(⇣1|�1)⇡2(⇣1|�2)⇡3(⇣1|�3)
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Empirical Bayes
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Simple example of EB for symmetric & asymmetric errors



Outlook
New paradigm needed in global QCD analysis
—  simultaneous determination of collinear distributions
     (also TMDs) using Monte Carlo sampling of parameter space 

Near-term future:  “universal” QCD analysis of all observables 
sensitive to collinear (unpolarized & polarized) PDFs and FFs

Longer-term:  apply MC technology to global QCD analysis
of transverse momentum dependent (TMD) PDFs and FFs
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Treatment of discrepant data sets needs serious attention
— Bayesian perspective has clear merits

Necessary to benchmark MC extractions (not just NNPDF) 


