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motivation and direction

● a thorough, quantitative grasp of the nucleon sea (here, broadly defined 
to include various non-valence contributions) is vital to tomography

→   charm in the proton wave function; ‘Intrinsic charm’ and the
             nucleon’s HQ sigma term

● recent calculations in several flavor sectors highlight the usefulness of 
light-front dynamics

→   strange in DIS and elastic form factors

(crucial to BSM searches – e.g., WIMP direct detection)

● in a somewhat different area, light-front constituent quark models can 
guide lattice calculations 

→   the valence quasi-PDF of the pion may be relatively cleanly
             measured on the lattice 



1. Background

charm in perturbative QCD (pQCD)

·c(x,Q2 ≤ m2
c) = c̄(x,Q2 ≤ m2

c) = 0

F. M. Steffens, W. Melnitchouk and A. W. Thomas,
Eur. Phys. J. C 11, 673 (1999) [hep-ph/9903441].

→

·intermediate Q2:
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·high Q2:

massless DGLAP (i.e., variable flavor-number schemes)



1. Background

simplest nonperturbative model calculations

→ original models possessed scalar vertices...·Brodsky et al. (1980):
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→ produces intrinsic PDF, cIC(x) = c̄IC(x)

·Blümlein (2015):
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→ comparison constrains x−Q2 space over which IC is observable



2. meson-baryon models nonperturbative charm

charm in the nucleon

·tune universal cutoff Λ = Λ̂ to fit ISR pp → ΛcX collider data

multiplicities, momentum sum:

hni(charm)
MB = 2.40% +2.47

−1.36; Pc
..= hxiIC = 1.34% +1.35
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→ evolve to EMC scale, Q2 = 60 GeV2

low-x H1/ZEUS data check massless DGLAP evolution



3. QCD global analysis

systematics of global QCD analysis

extract/constrain quark densities:

F γ
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·Cγf
i : pQCD Wilson coefficients

·φf/h(ξ, µ
2
F , µ

2): universal parton distributions

(...here, µ2
F = 4m2

c +Q2)

=⇒ exploit properties of QCD to constrain models:
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2), fg(x,Q

2)



3. QCD global analysis

constraints from global fits...

P. Jimenez-Delgado, TJH, J. T. Londergan and W. Melnitchouk; PRL 114, no. 8, 082002 (2015).

26 sets:
Ndat = 4296

Q2 ≥ 1 GeV2

W 2 ≥ 3.5 GeV2
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3. QCD global analysis

...and constrained by EMC
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EMC alone: hxiIC = 0.3− 0.4%

+ SLAC/‘REST’: hxiIC = 0.13± 0.04%

...but F cc̄
2 poorly fit — χ2 ∼ 4.3 per datum!



4. recent developments

in progress: charm sigma term and DM?

· heavy-particle EFT: after integrating away WIMP scale,
σc = mchp|c̄c|pi dominant DM cross section contribution

Hill and Solon, Phys. Rev. Lett. 112, 211602 (2014).

· what might F cc̄
2 (x,Q2 = m2

c) imply for σc ??



… need models for both the charm PDF and σ
cc

 

        light-front wave functions (LFWFs) are one such approach

        they deliver a frame-independent description of 
          hadronic bound state structure

        

        
        with them, many matrix elements (GPDs, TMDs) are calculable 
          via the same universal objects:

       

        in fact, have already developed this technology for
          nucleon strangeness!

● the light front represents physics tangent to the light cone:

TJH, M. Alberg, and G. A. Miller; PRC91, 035205 (2015).



DIS and elastic strangeness·predict inelastic and elastic observables?
→ requires knowledge of quark-level proton wave function

eN → e′X eN → e′N ′
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hadronic light-front wave functions (LFWFs)·S. J. Brodsky, D. S. Hwang, B. Q. Ma and I. Schmidt; Nucl. Phys. B 593, 311 (2001).
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electromagnetic form factors·the quark q contribution from any 5-quark state is then:
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·for strangeness, q → s; total strange: s+ s̄
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strangeness wave functions·require a proton → quark + scalar tetraquark LFWF:

p
k I. C. Cloët and G. A. Miller; Phys. Rev. C 86, 015208 (2012).

ψλ
λs
(k, p) = ūλs
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ss̄ distribution functions·s quark distribution ≡ x-unintegrated F s
1 (Q

2 = 0) form factor
(up to es!):
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(Ns, Λs, ms, and mSp

... AND anti-strange)



limits from DIS measurements·DIS measurements have placed limits on the PDF-level total
strange momentum xS+ and asymmetry xS−

CTEQ6.5S:

0.018 ≤ xS+ ≤ 0.040 −0.001 ≤ xS− ≤ 0.005

·SCAN the available parameter space subject to the DIS limits;
SEARCH for extremal values of µs, ρ
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constraints on elastic form factors
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we build an analogous model for charm… first the PDF

● use a similar scalar spectator picture; details generalize:

use a power-law ( =3) covariant vertex function,γ

invariant mass

covariant k2

arXiv:1707.06711



then, a covariant formalism gives the sigma term:

…we determine probability distribution functions (p.d.f.s) for this quantity

● IF the LFWFs can be constrained with information from the  DIS 
sector, we may evaluate σ

cc

● this formalism is required because the LFWFs contain noncovariant parts:

 it remains to determine the (free) parameters of the light-front model,



(input data normalizations are inspired by the just-described global analysis)

[ upper limit tolerated by the full fit/dataset ]

[ central value preferred by EMC data alone ]

● rather than traditional χ2 minimization, the model space is instead explored using 
Bayesian methods

● we constrain the model with hypothetical pseudo-data (taken from the 
`confining’ MBM) of a given 



model simulations with markov chain monte carlo (MCMC)

● specifically, use a Delayed-Rejection Adaptive Metropolis (DRAM) algorithm

construct a Markov chain consisting of n
sim

 ≈ 105 – 106 simulations, sampling the 
joint posterior distribution

BROAD gaussian priors

likelihood function

:  input data

:  parameters

● asymptotically, the MCMC chain fully explores the joint posterior 
distribution

from this, we extract probability distribution functions (p.d.f.s) for the model 
    parameters and derived quantities, including ¾

cc

✔.

Haario et al., Stat. Comput. (2006) 16: 339–354.
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(χQCD)1

● we find better concordance cf. existing lattice determinations, for 
somewhat larger IC magnitudes; also, close correlation with the DIS sector – 

(MILC)2

1Gong et al., Phys. Rev. D88, 014503 (2013).

2Freeman and Toussaint, Phys. Rev. D88, 054503 (2013).

3Abdel-Rehim et al., Phys. Rev. Lett. 116, 252001 (2016). pQCD is similar… 

(AR)3



EIC Whitepaper, Eur. Phys. J. A (2016) 52: 268

NLO DGLAP

● e.g., MEIC-like scenario:

● a definitive measurement would 
simply reprise the EMC 

observation of Fcc
2

● still, considerable precision will 
be needed to be sensitive at 

the necessary level

a future, unified description of the 
proton wave function may have the 
potential to provide the charm PDF 
and sigma term within a more 
comprehensive tomography 



epilogue: LaMET and the pion structure function

● knowledge of the pion structure function is crucial to unraveling the nucleon’s light 
quark sea  (e.g.,             ); LaMET techniques may open this quantity to Lattice QCD  

TJH, arXiv: 1708.05463 [hep-ph].

…while matrix elements for lightlike correlations are not accessible on a Euclidean Lattice, 
quasi-PDFs are:

these differ from the exact PDFs by power-suppressed corrections of order

can these effects be 
estimated / controlled ?

Ji, PRL110, 262002 (2013).

( nucleon: Gamberg et al, PLB743 (2015) 112. )



the “exact” pion light-front PDF via a constituent quark model

● take a covariant vertex factor for the quark-pion 
interaction inspired by power counting (n

s
 = 1),

● first evaluate the LF pion valence PDF using a minimal model that couples the pion 
to its constituent quarks



determining the pion SF model parameters

● for the pion, masses can be fixed to physical or constituent values:

● the overall strength is set by a normalization condition 
such that the model is then completely determined 

*LQCD 1st moment calculation: Best et al., PRD56, 2743 (1997).

*



the corresponding pion quasi-PDF may then be found:

● now, integrating delta functions introduces explicit dependence on

( the main result for the pion quasi-PDF )



● we observe the expected behavior: at infinite 
boost, meson quasi-PDFs match onto the exact 

result,

● away from this limit, we compute the LaMET 
deviations from the LF PDF:

 → compare π quasi-/PDFs for several  pz

   → even at fairly modest  pz these corrections can be               !



conclusions

● we have established a close connection between 

  →  to exploit this connection, more experimental information is
         required, but diverse channels are/will be available (e.g., at EIC)

● LaMET techniques hold promise for computing the valence quasi-
distributions of the pion, 

→   invaluable for studies of light sea flavor asymmetries!

● understanding the nucleon’s non-valence structure remains a challenge 
for the field, but light-front methods can help 

→   can construct interpolating models that access the flavor structure
        of the proton wave function

→   we thereby quantify the relationship between strangeness in the
        nucleon’s elastic form factors and structure function

→   this can be extended to charm!

(searches for strange in                            have some distance to go)



– THANKS – 



2. meson-baryon models nonperturbative charm

meson-baryon models (MBMs)

· we implement a framework which conserves spin/parity

· nonperturbative mechanisms are needed to break
c(x,Q2 ≤ m2

c) = c̄(x,Q2 ≤ m2
c) = 0!

We build an EFT which connects IC to properties of the hadronic
spectrum: [TJH, J. T. Londergan and W. Melnitchouk, Phys. Rev. D89, 074008 (2014).]
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√
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2. meson-baryon models nonperturbative charm

amplitudes from hadronic EFT

·e.g., for the dominant contribution to c(x), i.e., ΛcD
∗ :

c(x) =
� 1
x

dȳ
ȳ fΛD∗(ȳ) · cΛ
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x
ȳ

�

:

LD∗ΛN = g ψ̄Nγµ ψΛ θµD∗ + f
4M ψ̄NσµνψΛ Fµν

D∗ + h.c.

Lc[qq]Λ = g ψ̄Λ ψc φ[qq] + h.c. quark model → had. g, f

→ evaluate forward-moving TOPT diagrams



2. meson-baryon models nonperturbative charm

hadron/parton distributions

fBD∗(ȳ) = TB
1

16π2

�

dk2⊥
|F(sBM )|2

(sBM−M2)2
1
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2. meson-baryon models nonperturbative charm

production asymmetries?

AΛc(xF ) =
σΛc (xF )−σΛ̄c(xF )

σΛc (xF )+σΛ̄c(xF )
(σΛc(xF ) ≡ dσΛc/dxF )
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3. QCD global analysis

...without EMC F
cc̄
2 ...

SLAC ep, ed data!

hQ2i ∼ 15 GeV2

0.06 ≤ x ≤ 0.9

(χ2/Ndat ∼ 1.25)
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‘SLAC + REST’ =⇒ hxiIC < 0.1%; at 5σ !

‘REST’ only =⇒ hxiIC < 0.1%; at 1σ

cf., hxiIC ∼ 2− 3%
e.g., [S. Dulat et al., Phys. Rev. D 89, 073004 (2014).]

N.B.: different tolerances: Δχ2 = 1 vs. Δχ2
CT = 100



3. QCD global analysis

data comparisons:

...full fits, constrained by EMC F cc̄
2 measurements:
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· EMC: low-x/low-Q2 tension with HERA σc
r

· τlife
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= 5 → for Q2 = 170 GeV2, EMC sensitive to IC at
x � 0.01

→ more F cc̄
2 data are needed!



4. recent developments

new/ongoing global analyses

· NNPDF3: not anchored to specific parametrizations/models
see: Ball et al. Eur. Phys. J. C76 (2016) no.11, 647

· included EMC:
hxiIC = 0.7± 0.3% at Q ∼ 1.5
GeV
→ drove a very hard c(x) = c̄(x)
distribution· peaked at x ∼ 0.5· AND, required a negative IC

component to describe EMC F cc̄
2 !

· complementary analyses for possible intrinsic bottom
see: Lyonnet et al. JHEP07 (2015) 141.

→ would be negligible based on the analysis presented here...



4. recent developments

future experimental prospects?

· jet hadroproduction: pp → (Zc) +X at LHCb
e.g., Boettcher, Ilten, Williams, PRD93, 074008 (2016).

→ a “direct” measure in the forward region, 2 < η < 5
. . . sensitive to c(x), x ∼ 1 for one colliding proton

→ can discriminate hxiIC � 0.3% (“valencelike”), 1% (“sealike”)

· prompt atmospheric neutrinos?
see: Laha & Brodsky, 1607.08240 (2016).

→ IceCube ν spectra may constrain IC normalization

· possible impact upon hidden charm pentaquark, P+
c ?

e.g., Schmidt & Siddikov, PRD93, 094005 (2016).

· AFTER@LHC? . . . fixed-target pp at
√
s = 115 GeV

Brodsky et al. Adv. High Energy Phys. 2015, 231547 (2015). [Signori]


