# Strange and non-strange quark distributions

S.Alekhin (Univ. of Hamburg & IHEP Protvino)

strange quarks: collider and fixed-target data

u- and d-quarks: collider and deuteron data

heavy quarks: FFN, VFN, and intrinsic charm

Univ. of Washington, Seattle, 2 Oct 2017

#### Theory reminder: factorization



NNLO Moch, Vermaseren Vogt NPB 688, 101 (2004); NPB 691, 129 (2004)

N3LO Moch et al. hep-ph/1707.08315; Velizhanin hep-ph/1411.1331; Baikov, Chetyrkin NPPS 160, 76 (2006)

#### **Global PDF fits**



NNPDF hep-ph/1706.00428

## The ABMP16 fit ingredients

QCD:

NNLO evolution NNLO massless DIS and DY coefficient functions NLO+ massive DIS coefficient functions (FFN scheme) - NLO + NNLO(approx.) corrections for NC - NNLO CC at Q>> m - running mass NNLO exclusive DY (FEWZ 3.1) NNLO inclusive ttbar production (pole / running mass) Relaxed form of (dbar-ubar) at small x DATA: DIS NC/CC inclusive (HERA I+II added) **DIS NC charm production (HERA)** DIS CC charm production (HERA, NOMAD, CHORUS, NuTeV/CCFR) fixed-target DY LHC DY distributions (ATLAS, CMS, LHCb) t-quark data from the LHC and Tevatron deuteron data are excluded Power corrections: sa, Blümlein, Moch, Plačakytė PRD 96, 014011 (2017) target mass effects . . . . . . dynamical twist-4 terms

#### Strange sea from the vN DIS



Two decay modes of **c**-quark are used: hadronic (emulsion experiments) and semi-leptonic (electronic experiments)





Fig. 4. The strange quark distribution  $xs(x, \mu^2 = 4.0 \text{ GeV}^2/c^2)$  determined at next-to-leading order (described in section 4.1) and leading order. The band around the NLO curve indicates the  $\pm 1\sigma$  uncertainty in the distribution CCFR ZPC 65, 189 (1995)

Primary source for the strange sea was for a long time neutrino-induced charm production measured by CCFR/NuTeV at Fermilab preferring a suppression of ~0.5 w.r.t. non-strange sea

## NuTeV/CCFR data in the PDF fit framework

· CTEO6

10



0.2

1

 $O^2 = 9 \text{ GeV}^2$ 10 0.1 0.2 0.3 0.4  $Q^2 (GeV^2)$ Х

x(s+s)/2

 $\kappa x(\dot{u}+\dot{d})/2$ 

#### NOMAD charm data



NOMAD NPB 876, 339 (2013)

- The data on ratio  $2\mu$ /incl. CC ratio with the  $2\mu$  statistics of 15000 events (much bigger than in earlier CCFR and NuTeV samples).
- Systematics, nuclear corrections, etc. cancel in the ratio
- Pull down strange quarks at x>0.1 with a sizable uncertainty reduction



7

#### Impact of NOMAD data



Evident room for the PDF improvement by adding NOMAD data to various PDF fits

• Big spread in the predictions  $\Rightarrow$  PDF4LHC averaging provides inefficient estimate

#### Comined Run I+II HERA data





•  $\sigma(DIS) \sim q_u^2 u(x) + q_d^2 d(x) + q_s^2 s(x) \Rightarrow poor$ separation of the quark species

 The deuteron fixed-target data (SLAC, BCDMS NMS) help to disentangle d- and u-distributions due to transmutation u⇔d

#### Forward DY kinematics at Tevatron and the LHC



• Fully differential kinematics; existing NNLO codes, DYNNLO and FEWZ requre huge computing resources to achieve the promille accuracy required

DYNNLO-FEWZ difference not fully resolved

Salam ATLAS SM workshop 2014

Yannick Ulrich, Barchelor thesis, Univ. of Hamburg 2015

In the forward region  $x_2 >> x_1$   $\sigma(W^+) \sim u(x_2) \text{ dbar } (x_1)$   $\sigma(W^-) \sim d(x_2) \text{ ubar } (x_1)$   $\sigma(Z) \sim Q_0^{-2}u(x_2) \text{ ubar } (x_1) + Q_0^{-2}d(x_2) \text{ dbar}(x_1)$  $\sigma(DIS) \sim q_u^{-2}u(x_2) + q_d^{-2}d(x_2)$ 

Forward W&Z production probes small/large x and is complementary to the DIS ⇒ good quark disentangling



#### Most recent DY inputs





Filtering of the LHCb data has been performed:

a bump at 7 Tev and Y=3.275
(not confirmed by the LHCb data at 8 TeV)
and excess at 8 TeV and Y=2.125
(not confirmed by the CMS data at 8 TeV)

The CMS data at 8 TeV are much smoother than the ones at 7 TeV:  $\chi^2=17/22$  versus 22/11

### DY data selection in the ABMP16 fit

| Ext      | periment          | ΔΤΙ                       | AS                        | C                            | AN                           | D                            | Ø                         |                              | I HCb                    |                              |
|----------|-------------------|---------------------------|---------------------------|------------------------------|------------------------------|------------------------------|---------------------------|------------------------------|--------------------------|------------------------------|
| LA       | permient          |                           |                           | CI                           | 10                           | D                            |                           |                              | LIICO                    |                              |
|          | s (TeV)           | 7                         | 13                        | 7                            | 8                            | 1.                           | 96                        | 7                            | 8                        | 3                            |
| Fin      | al states         | $W^+ \rightarrow l^+ \nu$ | $W^+ \rightarrow l^+ \nu$ | $W^+ \rightarrow \mu^+ \nu$  | $W^+ \rightarrow \mu^+ \nu$  | $W^+ \rightarrow \mu^+ \nu$  | $W^+ \rightarrow e^+ \nu$ | $W^+ \rightarrow \mu^+ \nu$  | $Z \rightarrow e^+ e^-$  | $W^+ \rightarrow \mu^+ \nu$  |
|          |                   | $W^- \rightarrow l^- \nu$ | $W^- \rightarrow l^- \nu$ | $W^- \rightarrow \mu^- \nu$  | $W^- \rightarrow \mu^- \nu$  | $W^- \rightarrow \mu^- \nu$  | $W^- \rightarrow e^- v$   | $W^- \rightarrow \mu^- \nu$  |                          | $W^- \rightarrow \mu^- \nu$  |
|          |                   | $Z \rightarrow l^+ l^-$   | $Z \rightarrow l^+ l^-$   | (asym)                       |                              | (asym)                       | (asym)                    | $Z \rightarrow \mu^+ \mu^-$  |                          | $Z \rightarrow \mu^+ \mu^-$  |
| Cut on t | the lepton $P_T$  | $P_T^l > 20 \text{ GeV}$  | $P_T^e > 25 \text{ GeV}$  | $P_T^{\mu} > 25 \text{ GeV}$ | $P_T^{\mu} > 25 \text{ GeV}$ | $P_T^{\mu} > 25 \text{ GeV}$ | $P_T^e > 25 \text{ GeV}$  | $P_T^{\mu} > 20 \text{ GeV}$ | $P_T^e > 20 \text{ GeV}$ | $P_T^{\mu} > 20 \text{ GeV}$ |
| Lumin    | Luminosity (1/fb) |                           | 0.081                     | 4.7                          | 18.8                         | 7.3                          | 9.7                       | 1                            | 2                        | 2.9                          |
|          | NDP               |                           | 6                         | 11                           | 22                           | 10                           | 13                        | 31(33) <sup><i>a</i></sup>   | 17                       | 32(34)                       |
|          | ABMP16            | 31.0                      | 9.2                       | 22.4                         | 16.5                         | 17.6                         | 19.0                      | 45.1(54.4)                   | 21.7                     | 40.0(59.2)                   |
|          | CJ15              | -                         | -                         | _                            | -                            | 20                           | 29                        | _                            | -                        | -                            |
|          | CT14              | 42                        | -                         | - <sup>b</sup>               | -                            | -                            | 34.7                      | -                            | -                        | -                            |
|          | HERAFitter        | -                         | -                         | _                            | _                            | 13                           | 19                        | -                            | -                        | _                            |
|          | MMHT16            | 39 <sup>c</sup>           | -                         | -                            | 21                           | 21 <sup>c</sup>              | 26                        | (43)                         | 29                       | (59)                         |
|          | NNPDF3.1          | 29                        | -                         | 19                           | -                            | 16                           | 35                        | (59)                         | 19                       | (47)                         |

<sup>*a*</sup> The values of NDP and  $\chi^2$  correspond to the unfiltered samples.

<sup>b</sup> For the statistically less significant data with the cut of  $P_T^{\mu} > 35$  GeV the value of  $\chi^2 = 12.1$  was obtained.

<sup>c</sup> The value obtained in MMHT14 fit.

## Many early low-statistical Tevatron and LHC data are not included into the fit

• The D0 sample for the charge-lepton asymmetry is preferred as compared to the W-asymmetry: smaller sensitivity to the modeling details; might even introduce a bias due to data sets' discrepancy



sa, Blümlein, Moch, Plačakytė PRD 94, 114038 (2016)  $\eta_{W}$ 

#### Comparison of various PDF fits



• Relaxed form of the sea iso-spin asymmetry I(x) at small x; Regge-like behaviour is recovered only at x~10<sup>-6</sup>; at large x it is still defined by the phase-space constraint

- Big spread between different PDF sets, up to factor of 30 at large x → poor control of the BSM effects without constraints from the DY data
- Good constraint on the d/u ratio w/o deuteron data → independent extraction of the deuteron corrections
   Accardi, Brady, Melnitchouk, Owens, Sato PRD 93, 114017 (2016)

### Impact of fixed-target deuteron data



sa, Kulagin, Petti PRD 96, 054005 (2017)

Nuclear corrections extracted from the deuteron data are in good agreement with the results obtained from the heavy-target ones  $\Rightarrow$  universality of the off-shell function is justified  $\Rightarrow$  application to the nucleon-nucleon collisions

Kulagin, Petti NPA 765, 126 (2006) Kulagin, Petti PRD 94, 113013 (2016)

At large x the deuteron data further disentangle d- and u-distributions

#### CJ15 results on the d/u ratio

Accardi, Brady, Melnitchouk, Owens, Sato PRD 93, 114017 (2016)

NLO PDF fit including Tevatron data on W-asymmetry

• value of  $d/u \sim 0.07$  at large x is obtained

 NLO FEWZ predictions with CJ15 PDFs miss data (limitation of the K-factor approach used by CJ15?)



#### Impact of the W-, Z-data in ABMP16 fit



W-, Z-data really control quark disentangling at small x



The epWZ16 strange-sea determined from analysis of the combined HERA-ATLAS data is enhanced as compared to other (earlier) determinations

ABM strange sea determination is in particular based on the dimuon neutrino-nucleon DIS production (NuTeV/CCFR and NOMAD) that gives a strange sea suppression  $\sim 0.5$  at  $x \sim 0.2$ 

- Disentangling d- and s- contribution?
- Impact of the nuclear corrections?
- ....?

#### Test fit (the PDF shape comparison)



The data used in test fit: collider data discarded and replaced by the deuteron ones (fit is consistent with the nominal ABMP16 at x>0.01) sa, Kulagin, Petti hep-ph/1704.00204

The strange sea is enhanced for the epWZ shape despite the ATLAS data are not used. However, the dimuon data description is not deteriorated:  $\chi^2$ =167 versus 161 for the ABMP shape  $\Rightarrow$  enhancement is achieved by the price of the d-quark sea suppression

> sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Plačakytė PRD 91, 094002 (2015)

E866 data in the test fit



The E866 data on p/d DY cross sections are sensitive to the iso-spin sea asymmetry

The epWZ shape does not allow to accommodate E866 data:  $\chi^2$ /NDP=96/39 versus 49/39 for the ABMP shape; the errors in epWZ predictions are suppressed at small x, evidently due to over-constrained PDF shape at small x

#### SeaQuest (FNAL-E906) prospects



• E906 confirms the E866 results at  $x \sim 0.1$  and continues the positive trend in the sea iso-spin asymmetry at bigger x

The existing PDF sets can be consolidated with the E906 data

HERMES/COMPASS data confirm the strangeness suppression



Borsa, Sassot, Stratmann hep-ph/1708.01630

## Impact of ATLAS data with flexible PDF shape



- For the flexible PDF shape the strangeness is in a broad agreement with the one extracted from the dimuon data
- The E866 data are consistent with the ATLAS(2016) set:  $\chi^2$ /NDP=48/39 and 40/34, respectively.

## Heavy-quark electro-production with FFN and VFN

- Only 3 light flavors appear in the initial state
- The dominant mechanism is photon-gluon fusion
- The coefficient functions are known up to the NLO Witten NPB 104, 445 (1976) Laenen, Riemersma, Smith, van Neerven NPB 392, 162 (1993)
- Involved high-order calculations:
  - NNLO terms due to threshold resummation

Laenen, Moch PRD 59, 034027 (1999) Lo Presti, Kawamura, Lo Presti, Moch, Vogt NPB 864, 399 (2012) sa, Moch, Blümlein PRD 96, 014011 (2017)

- limited set of the NNLO Mellin moments

Ablinger at al. NPB 844, 26 (2011) Bierenbaum, Blümlein, Klein NPB 829, 417 (2009) Ablinger et al. NPB 890, 48 (2014)

• At large Q the leading-order coefficient  $\rightarrow ln(Q/m_{h'})$ and may be quite big despite the suppression by factor of  $\alpha_{s}$  and should be resummed shiftman Vainstein Zakharov NPB 136 157 (1978)

Shifman, Vainstein, Zakharov NPB 136, 157 (1978)

→ a motivation to derive the VFN scheme matched to the FFNS (ACOT...., RT..., FONLL....)



### FFN and VFN schemes



- The VFN scheme works well at  $\mu \gg m_{h}$  (W,Z,t-quark production,....)
- Problematic for DIS  $\Rightarrow$  additional modeling of power-like terms required (ACOT, BMSN, FONLL, RT....)

## Modeling NNLO massive coefficients



Combination of the threshold corrections (small s), high-energy limit (small x), and the NNLO massive OMEs (large Q<sup>2</sup>) Kawamura, Lo Presti, Moch, Vogt NPB 864, 399 (2012)

#### Recent progress in massive DIS coefficients



Update with the pure singlet massive OMEs  $\rightarrow$  improved theoretical uncertainties

sa, Moch, Blümlein PRD 96, 014011 (2017)

### Factorization scheme benchmarking



 Data allow to discriminate factorization schemes

• FFN scheme works very well in case of correct setting (running mass definition and correct value of  $m_c$ )  $\rightarrow$  no traces of big logs due to resummation

| $x_{\min}$        | $x_{\mathrm{max}}$ | $Q_{\min}^2$ (GeV) | $Q_{\rm max}^2 ~({\rm GeV})$ | $\Delta \chi^2$ (DIS) | $N_{\rm dat}^{\rm DIS}$ | $\Delta \chi^2$ (HERA-I) | $N_{\rm dat}^{\rm hera-1}$ |
|-------------------|--------------------|--------------------|------------------------------|-----------------------|-------------------------|--------------------------|----------------------------|
| $4 \cdot 10^{-5}$ | 1                  | 3                  | $10^{6}$                     | 72.2                  | 2936                    | 77.1                     | 592                        |
| $4 \cdot 10^{-5}$ | 0.1                | 3                  | $10^{6}$                     | 87.1                  | 1055                    | 67.8                     | 405                        |
| $4 \cdot 10^{-5}$ | 0.01               | 3                  | $10^{6}$                     | 40.9                  | 422                     | 17.8                     | 202                        |
| $4 \cdot 10^{-5}$ | 1                  | 10                 | $10^{6}$                     | 53.6                  | 2109                    | 76.4                     | 537                        |
| $4 \cdot 10^{-5}$ | 1                  | 100                | $10^{6}$                     | 91.4                  | 620                     | 97.7                     | 412                        |
| $4 \cdot 10^{-5}$ | 0.1                | 10                 | $10^{6}$                     | 84.9                  | 583                     | 67.4                     | 350                        |
| $4 \cdot 10^{-5}$ | 0.1                | 100                | $10^{6}$                     | 87.7                  | 321                     | 87.1                     | 227                        |

"We conclude that the FFN fit is actually based on a less precise theory, in that it does not include full resummation of the contribution of heavy quarks to perturbative PDF evolution, and thus provides a less accurate description of the data" NNPDF PLB 723, 330(2013)

## Running mass in DIS

The pole mass is defined for the free (*unobserved*) quarks as a the QCD Lagrangian parameter and is commonly used in the QCD calculations



#### c-quark mass in the CMVFN schemes

The values of pole mass  $m_c$  used by different groups and preferred by the PDF fits are systematically lower than the PDG value



Wide spread of the  $m_c$  obtained in different version of the GMVFN schemes  $\rightarrow$  quantitative illustration of the GMVFNS uncertainties

# HERA charm data and $m_{c}(m_{c})$



#### Intrinsic charm: pitfalls

- No mass singularities for massive partons  $\Rightarrow$  collinear QCD evolution does not work
- The mass singularities  $\sim \ln(\mu/m_h)$  appear at  $\mu \gg m_h$  and the evolution restores. New charm(bottom) quark distribution may be introduced, however, extrapolation to smaller scales is still problematic
- Intrinsic charm is often introduced within the VFN framework ⇒ interplay with the "standard" VFN modeling of power-like terms
- Original formulation of the intrinsic charm implies its power-like behavior;



Brodsky, Peterson, Sakai PRD 23, 2745 (1981)

FIG. 7. (a) Example with contribution to the deepinelastic structure functions from an extrinsic quark q; (b) from an intrinsic quark q.

# strong constraint on such terms was obtained from analysis of the EMC data on charm production Jimenez-Delgado, Hobbs, Londergan, Melnitchouk PRL 114, 082002 (2015)

## Intrinsic charm in the CT and NNPDF fits



- The intrinsic-charm (IC) component is evolved starting from the small scale with the collinear DGLAP
- The value of m (pole)=1.31 (CT) and 1.51(NNPDF) GeV is used
- Several IC shapes are considered by CT: BHPS, SEA,...; free form by NNPDF
- An agreement with the Z+charm LHC data might be improved

NNPDF hep-ph/1706.00428

### Summary

We have steady improvement in the quark PDFs' determination

- disentangling d- and u-quark distributions at small x: impact of the LHC DY data in combination with the DIS ones
- improvement in the large-x d- and u-quark distributions: impact of the forward LHC and Tevatron data; deuteron data provided further constraints
- somewhat enhanced strange distribution at small x, however, the large-x enhancement reported by ATLAS seems to be an artefact of the PDF shape used

The HERA inclusive and semi-inclusive data allow to distinguish between the FFN and VFN factorization schemes in DIS. The FFN scheme provides nice agreement with existing data and

 $m_c(m_c)=1.252\pm0.018(exp.)-0.01(th.)$  GeV,

in a good agreement with other determinations.

Intrinsic charm provides a new window for phenomenology, however, solid theoretical footing is still needed.

# EXTRAS

# HERA bottom data and $m_{b}(m_{b})$



## NNLO DY corrections in the fit

The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming  $\rightarrow$  fast tools are employed (FASTNLO, Applgrid,.....)

- the corrections for certain basis of PDFs are stored in the grid
- the fitted PDFs are expanded over the basis
- the NNLO c.s. in the PDF fit is calculated as a combination of expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained by the data, which do not require involved computations  $\rightarrow$  use as a PDF basis the eigenvalue PDF sets obtained in the earlier version of the fit

- $\mathbf{P}_{0} \pm \Delta \mathbf{P}_{0}$  vector of PDF parameters with errors obtained in the earlier fit
- **E** error matrix
- ${\bf P}$  current value of the PDF parameters in the fit
- store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of E
- the variation of the fitted PDF parameters  $(\mathbf{P} \mathbf{P}_0)$  is transformed into this eigenvector basis
- the NNLO c.s. in the PDF fit is calculated as a combination of transformed ( $\mathbf{P} \mathbf{P}_0$ ) with the stored eigenvector values

#### DY at large rapidity



The data can be evidently used for consolidation of the PDFs, however, unification of the theoretical accuracy is also needed

| ABM                                                   | СТ            | MMHT                   | NNPDF                                                 |
|-------------------------------------------------------|---------------|------------------------|-------------------------------------------------------|
| Interpolation of accurate<br>NNLO grid (a la FASTNLO) | NNLL (ResBos) | NLO +<br>NNLO K-factor | NLO +<br>NNLO C-factors<br>(y-dependent<br>K-factors) |

| PDF sets                          | <i>m</i> <sub>c</sub> [GeV]                          | <i>m<sub>c</sub></i> renorm. scheme        | theory method $(F_2^c \text{ scheme})$           | theory accuracy<br>for heavy quark<br>DIS Wilson coeff. | $\chi^2$ /NDP for<br>HERA data<br>xFitter [12 | 127] with<br>8, 129] |
|-----------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|----------------------|
| ABM12 [2] a                       | $1.24 \begin{array}{c} + 0.05 \\ - 0.03 \end{array}$ | $\overline{\text{MS}} \ m_c(m_c)$          | FFNS $(n_f = 3)$                                 | NNLO <sub>approx</sub>                                  | 65/52                                         | 66/52                |
| СЛ5 [1]                           | 1.3                                                  | $m_c^{\text{pole}}$                        | SACOT [122]                                      | NLO                                                     | 117/52                                        | 117/52               |
| CT14 [3] <sup>b</sup>             |                                                      |                                            |                                                  |                                                         |                                               |                      |
| (NLO)                             | 1.3                                                  | $m_c^{\text{pole}}$                        | SACOT(x) [123]                                   | NLO                                                     | 51/47                                         | 70/47                |
| (NNLO)                            | 1.3                                                  | $m_c^{\text{pole}}$                        | SACOT(x) [123]                                   | NLO                                                     | 64/47                                         | 130/47               |
| HERAPDF2.0 [4]<br>(NLO)<br>(NNLO) | 1.47                                                 | $m_c^{\text{pole}}$<br>$m^{\text{pole}}$   | RT optimal [125]<br>RT optimal [125]             | NLO<br>NLO                                              | 67/52                                         | 67/52                |
| JR14 [5] <sup>c</sup>             | 1.3                                                  | $\overline{\text{MS}} m_c(m_c)$            | FFNS $(n_f = 3)$                                 | NNLO <sub>approx</sub>                                  | 62/52                                         | 62/52                |
| MMHT14 [6]<br>(NLO)<br>(NNLO)     | 1.4<br>1.4                                           | $m_c^{ m pole}$<br>$m_c^{ m pole}$         | RT optimal [125]<br>RT optimal [125]             | NLO<br>NLO                                              | 72/52<br>71/52                                | 78/52<br>83/52       |
| NNPDF3.0 [7]<br>(NLO)<br>(NNLO)   | 1.275<br>1.275                                       | $m_c^{\text{pole}}$<br>$m_c^{\text{pole}}$ | FONLL-B [ <u>124</u> ]<br>FONLL-C [ <u>124</u> ] | NLO<br>NLO                                              | 58/52<br>67/52                                | 60/52<br>69/52       |
| PDF4LHC15 [8] d                   | -                                                    | -                                          | FONLL-B [124]                                    | -                                                       | 58/52                                         | 64/52                |
|                                   | -                                                    | -                                          | RT optimal [125]                                 | -                                                       | 71/52                                         | 75/52                |
|                                   | -                                                    | -                                          | SACOT() [123]                                    | -                                                       | 51/47                                         | 76/47                |

No advantage of the GMVFN schemes: the VFN  $\chi^2$  values are systematically bigger than the FFN ones

Accardi, et al. hep-ph/1603.08906

#### Charm quark mass and the Higgs cross section

#### MMHT

- "Tuning" Charm mass m<sub>c</sub> parameter effects the Higgs cross section
  - linear rise in  $\sigma(H) = 40.5 \dots 42.6$  pb for  $m_c = 1.15 \dots 1.55$  GeV with MMHT14 PDFs Martin, Motylinski, Harland-Lang, Thorne '15

| $m_c^{\text{pole}}$ [GeV] | $\alpha_s(M_Z)$ | $\chi^2$ /NDP                       | $\sigma(H)^{ m NNLO}$ [pb] | $\sigma(H)^{ m NNLO}$ [pb] |
|---------------------------|-----------------|-------------------------------------|----------------------------|----------------------------|
|                           | (best fit)      | (HERA data on $\sigma^{c\bar{c}}$ ) | best fit $\alpha_s(M_Z)$   | $\alpha_s(M_Z) = 0.118$    |
| 1.15                      | 0.1164          | 78/52                               | 40.48                      | (42.05)                    |
| 1.2                       | 0.1166          | 76/52                               | 40.74                      | (42.11)                    |
| 1.25                      | 0.1167          | 75/52                               | 40.89                      | (42.17)                    |
| 1.3                       | 0.1169          | 76/52                               | 41.16                      | (42.25)                    |
| 1.35                      | 0.1171          | 78/52                               | 41.41                      | (42.30)                    |
| 1.4                       | 0.1172          | 82/52                               | 41.56                      | (42.36)                    |
| 1.45                      | 0.1173          | 88/52                               | 41.75                      | (42.45)                    |
| 1.5                       | 0.1173          | 96/52                               | 41.81                      | (42.51)                    |
| 1.55                      | 0.1175          | 105/52                              | 42.08                      | (42.58)                    |



- Uncertainty of ~5% is achieved at x around 0.1
- NuTeV/CCFR data play no essential role → impact of the nuclear corrections is greatly reduced (NOMAD and CHORUS give the ratio CC/incl.)



#### CHORUS charm data



#### CMS W+charm data



- CMS data go above the NuTeV/CCFR by  $1\sigma$ ; little impact on the strange sea
- The charge asymmetry is in a good agreement with the charge-symmetric strange sea
- Good agreement with the CHORUS data

#### ATLAS W+charm data



43

$$(\bar{d} - \bar{u})(x, Q_0^2) = A(1 - x)^{\eta_{sea} + 2} x^{\delta} (1 + \sum_{i=1}^4 a_i T_i (1 - 2x^{\frac{1}{2}})), \qquad \text{QCD}@LHC2016$$



The sum of  $\chi^2$ /NDP for the DY data by LHCB, CMS, and D0 from the table:

184/119 (MMHT16)

171/119 (ABMP16, no filtering), account of other DY data increases the difference

#### Sea quark iso-spin asymmetry



sa, Blümlein, Moch PRD 89, 054028 (2014)

 At x~0.1 the sea quark iso-spin asymmetry is controlled by the fixed-target DY data (E-866), weak constraint from the DIS (NMC)

• At x<0.01 Regge-like constraint like  $x^{(a-1)}$ , with a close to the meson trajectory intercept; the "unbiased" NNPDF fit follows the same trend

Onset of the Regge asymptotics is out of control

#### ATLAS W&Z at 13 TeV

ATLAS, hep-ex/1603.09222



Data are well accommodated into the fit  $\chi^2/NDP=9/6$ 

#### Comparison with lattice results



## Details of the epWZ and ABMP16 fits

|           | epWZ16                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ABMP16                                                                                                                                                                                                                                                                          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data      | HERA, ATLAS W&Z                                                                                                                                                                                                                                                                                                                                                                                                                                               | HERA, LHC and Tevatron W&Z,<br>fixed-target DIS and charm production,<br>fixed-target DY,                                                                                                                                                                                       |
| PDF shape | $ \begin{aligned} x u_{v}(x,\mu_{0}^{2}) &= A_{u_{v}} x^{B_{u_{v}}} (1-x)^{C_{u_{v}}} (1+E_{u_{v}} x^{2}), \\ x d_{v}(x,\mu_{0}^{2}) &= A_{d_{v}} x^{B_{d_{v}}} (1-x)^{C_{d_{v}}}, \\ x \bar{u}(x,\mu_{0}^{2}) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}}, \\ x \bar{d}(x,\mu_{0}^{2}) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}}, \\ x g(x,\mu_{0}^{2}) &= A_{g} x^{B_{g}} (1-x)^{C_{g}} - A'_{g} x^{B'_{g}} (1-x)^{C'_{g}}, \end{aligned} $ | $\begin{aligned} xq_{v}(x,\mu_{0}^{2}) &= \frac{2\delta_{qu} + \delta_{qd}}{N_{q}^{v}} (1-x)^{b_{qv}} x^{a_{qv}P_{qv}(x)}, \\ xq_{s}(x,\mu_{0}^{2}) &= A_{qs} (1-x)^{b_{qs}} x^{a_{qs}P_{qs}(x)}, \\ xg(x,\mu_{0}^{2}) &= A_{g} (1-x)^{b_{g}} x^{a_{g}P_{g}(x)}, \end{aligned}$ |
|           | $x\bar{s}(x,\mu_0^2) = A_{\bar{s}}x^{B_{\bar{s}}}(1-x)^{C_{\bar{s}}},$                                                                                                                                                                                                                                                                                                                                                                                        | $P_p(x) = (1+\gamma_{-1,p}\ln x) \left(1+\gamma_{1,p}x+\gamma_{2,p}x^2+\gamma_{3,p}x^3\right),$                                                                                                                                                                                 |
|           | 15 free parameters                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25 free parameters                                                                                                                                                                                                                                                              |

ABMP16 PDFs are selected more flexible in order to accommodate more data as compared to the EpWZ16 fit, which was evolved form the HERA data analysis

## Implication for(of) the single-top production



ATLAS and CMS data on the ratio t/tbar are in a good agreement

• The predictions driven by the froward DY data are in a good agreement with the single-top data (N.B.: ABM12 is based on the deuteron data  $\rightarrow$  consistent deuteron correction was used) talks by Petti at DIS2016

Single-top production discriminate available PDF sets and can serve as a standard candle process

#### Single-top: c.m.s. energy dependence

