STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

INT Workshop on .attice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017

STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

<text><text><text><text><text><text>

Goals and impact

INT Workshop on Lattice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017 Nuclear matrix elements for tests of fundamental symmetries of nature...

...and beyond the SM searches, neutrino experiments, etc.

Deep Underground Neutrino Experiment

Nuclear reactions

Nuclear and hypernuclear forces

updated from J. Pochodzalla, Int. Journal Modern Physics E, Vol 16, no. 3 (2007) 925-936

Quark and gluon structure of hadrons and nuclei

STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

INT Workshop on Lattice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017

LIGHT NUCLEI AND HYPERNUCLEI AT A FLAVOR-SYMMETRIC POINT

 $m_{\pi} = 806 \text{ MeV}$

$$N_f = 3, \ m_\pi = 0.806 \ \text{GeV}, \ a = 0.145(2) \ \text{fm}$$

Beane et al (NPLQCD), Phys. Rev. D87, 034506 (2013).

A COMPILATION OF BINDING ENERGIES IN THE TWO-NUCLEON SECTOR (2014)

Yamazaki, PoS(LATTICE2014)009.

See also: Orginos et al (NPLQCD), Phys. Rev. D 92, 114512 (2015). And: Berkowitz et al (CalLat), Phys. Lett. B, Volume 765, 10 (2017), 285.

ARE THESE BOUND STATES ROBUST?

$$C_{\hat{\mathcal{O}},\hat{\mathcal{O}}'}(\tau;\mathbf{d}) = \sum_{\mathbf{x}} e^{2\pi i \mathbf{d} \cdot \mathbf{x}/L} \langle 0 | \hat{\mathcal{O}}'(\mathbf{x},\tau) \hat{\mathcal{O}}^{\dagger}(\mathbf{0},0) | 0 \rangle = \mathcal{Z}_{0}' \mathcal{Z}_{0}^{\dagger} e^{-E^{(0)}\tau} + \mathcal{Z}_{1}' \mathcal{Z}_{1}^{\dagger} e^{-E^{(1)}\tau} + \dots$$

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

Volume dependence unambiguously signals a bound ground state!

Beane et al (NPLQCD), arXiv:1705.09239, Wagman et al (NPLQCD), arXiv:1706.06550.

STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

INT Workshop on Lattice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017

BARYON-BARYON SCATTERING AND LOW-ENERGY INTERACTIONS AT A FLAVOR-SYMMETRIC POINT

 $m_{\pi} = 806 \text{ MeV}$

Wagman et al (NPLQCD), arXiv:1706.06550.

NPLQCD's conclusion: clear evidence for a bound state

Luescher (1986, 1990).

$$B=20.6^{(+1.8)(+2.8)}_{(-2.4)(-1.6)}\;{\rm MeV}$$

Wagman et al (NPLQCD), arXiv:1706.06550.

NPLQCD's conclusion: clear evidence for a bound state

 $B=27.9^{(+3.1)\,(+2.2)}_{(-2.3)\,(-1.4)}\;{\rm MeV}$

Wagman et al (NPLQCD), arXiv:1706.06550.

NPLQCD's conclusion: clear evidence for a bound state

 $B=40.7^{(+2.1)\,(+2.4)}_{(-3.2)\,(-1.4)}\;{\rm MeV}$

$$N_f = 3, \ m_\pi = 0.806 \text{ GeV}, \ a = 0.145(2) \text{ fm}$$

Wagman et al (NPLQCD), arXiv:1706.06550.

NPLQCD's conclusion: bound state not conclusive

 $B=6.7^{(+3.3)\,(+1.8)}_{(-1.9)\,(-6.2)}\;{\rm MeV}$

Wagman et al (NPLQCD), arXiv:1706.06550.

Evidence for SU(6) spin-flavor symmetry predicted at large N_c

Kaplan and Savage, Phys.Lett.B365:244-251,1996.

Wagman et al (NPLQCD), arXiv:1706.06550.

$$\fbox{SU(3)} \longrightarrow \fbox{SU(6)} \longrightarrow \fbox{SU(16)}$$

Kaplan and Savage, Phys.Lett.B365:244-251,1996.

NUCLEON-NUCLEON SCATTERING IN HIGHER PARTIAL WAVES AT A FLAVOR-SYMMETRIC POINT $m_{\pi} = 806 \text{ MeV}$

Berkowitz et al (CalLat), Phys. Lett. B, Volume 765, 10 (2017), 285.

THE IMPACT ON AB INITIO NUCLEAR MANY-BODY CALCULATIONS

Effective Field Theory for Lattice Nuclei, Barnea et al, Phys.Rev.Lett. 114 (2015) no.5, 052501

Ground-State Properties of 4He and 16 O Extrapolated from Lattice QCD with Pionless EFT Contessi et al, arXiv:1701.06516.

ONGOING WORK IN BARYON-BARYON SCATTERING AT THE PHYSICAL POINT

Lattice 2017: Talk by T. Doi

Potential method of HALQCD is used. Systematic uncertainties?

Detmold, Orginos and Savage, Phys. Rev. D76, 114503 (2007). Beane, Detmold, Orginos and Savage, Prog.Part.Nucl.Phys.66,1 (2011).

Lattice 2017: Talk by T. Doi

Potential method of HALQCD is used. Systematic uncertainties?

Detmold, Orginos and Savage, Phys. Rev. D76, 114503 (2007). Beane, Detmold, Orginos and Savage, Prog.Part.Nucl.Phys.66,1 (2011).

HALQCD's conclusion: Strong interactions in both $\Omega\Omega(^{1}S_{0})$ and $N\Omega(^{5}S_{2})$ channels

Lattice 2017: Talk by T. Doi

HALQCD's conclusion: Strong interactions in these channels but no bound state

Lattice 2017: Talks by N. Ishii and T. Doi

Lattice 2017: Talk by H. Nemura

See also: Lattice 2017: Talk by K. Sasaki

STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

INT Workshop on Lattice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017

ELECTROMAGNETIC PROBES OF STRUCTURE

Chang et al (NPLQCD), Phys. Rev. Lett. 113, 252001 (2014), and Phys. Rev. D 92, 114502 (2015).

$$E_{h;j_z}(\mathbf{B}) = \sqrt{M_h^2 + P_{\parallel}^2 + (2n_L + 1)|Q_h e\mathbf{B}|} - \boldsymbol{\mu}_h \cdot \mathbf{B} - 2\pi \beta_h^{(M0)} |\mathbf{B}|^2 - 2\pi \beta_h^{(M2)} \langle \hat{T}_{ij} B_i B_j \rangle + \dots$$

Chang et al (NPLQCD), Phys. Rev. Lett. 113, 252001 (2014), and Phys. Rev. D 92, 114502 (2015).

Shell Model is a good description of light nuclei even at heavy values of quark masses.

See also Krischer et al, arXiv:1702.07268 [nucl-th].

GLUONIC PROBES OF STRUCTURE

STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

INT Workshop on Lattice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017

A RADIATIVE CAPTURE PROCESS

$$\left[\begin{array}{cc} \sigma(np \to d\gamma) \; = \; \frac{e^2(\gamma_0^2 + |{\bf p}|^2)^3}{M^4\gamma_0^3 |{\bf p}|} |\tilde{X}_{M1}|^2 + \dots \end{array} \right]$$

For formal aspects of a general matrix element calculation see e.g.: Detmold and Savage, Nucl.Phys. A743 (2004) 170, Briceno and ZD, Phys. Rev. D 88, 094507 (2013), Briceno and Hansen, Phys. Rev. D 94, 013008 (2016), Christ et al, Phys. Rev. D 91, 114510 (2015), Hansen et al, arXiv:1704.08993.

Savage et al (NPLQCD), arXiv:1610.04545.

Savage et al (NPLQCD), arXiv:1610.04545.

DOUBLE-WEAK PROCESSES

Bottom-Up approach: Matching the high scale to low scale

Bottom-Up approach: Matching the high scale to low scale

<u>Cal</u>

Berkowitz et al (CalLat), arXiv:1608.04793.

HISQ ensembles, $m_{\pi} \approx 310$, 220, 135 MeV, 0.09 fm $\leq a \leq 0.15$ fm

$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right]$$
$$\mathcal{O}_{1+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right)$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^- q_L\right) \left[\bar{q}_R \tau^- q_L\right] + \left(\bar{q}_L \tau^- q_R\right) \left[\bar{q}_L \tau^- q_R\right]$$
$$\mathcal{O}_{2+}^{++} = \left(\bar{q}_R \tau^- q_L\right) \left[\bar{q}_R \tau^- q_L\right) + \left(\bar{q}_L \tau^- q_R\right) \left[\bar{q}_L \tau^- q_R\right)$$
$$\mathcal{O}_{3+}^{++} = \left(\bar{q}_L \tau^- \gamma^\mu q_L\right) \left[\bar{q}_L \tau^- \gamma_\mu q_L\right] + \left(\bar{q}_R \tau^- \gamma^\mu q_R\right) \left[\bar{q}_R \tau^- \gamma_\mu q_R\right]$$

prelimina -0.010 $\mathcal{O}_3 = c_2 m_\pi^2 + c_4 m_\pi^2$ ÷ -0.019 $\mathcal{O}_i = c_0 + c_2 m_\tau^2$ -0.0 -0.02 0.6 200 m_(MeV) ŏ 0.4 0.3 0.0 -0.2 350 100 200 250 300 50 150 $m_{\pi}(\text{MeV})$

Prezeau, Ramsey-Musolf and Vogel, Phys.Rev. D68 03401 (2003), Savage, Phys. Rev. C59, 2293 (1999), Cirigliano, Dekens, Graesser and Mereghetti, arXiv:1701.01443 [hep-ph]. Pionic matrix elements of $\Delta I_3 = 2$ four-quark operators

Bottom-Up approach: Matching the high scale to low scale

LONG-DISTANCE PIECE

SHORT-DISTANCE PIECE

$$\mathcal{R}_{nn \to pp}(t) = \frac{C_{nn \to pp}(t)}{2C_{0,0}^{(nn)}(t)}$$
See RBPC's recent developments in KL-KS.
$$u^{2}\mathcal{R}_{nn \to pp}(t) = \left[-t + \frac{e^{\Delta t} - 1}{\Delta}\right] \frac{\langle pp | \tilde{J}_{3}^{+} | d \rangle \langle d | \tilde{J}_{3}^{+} | nn \rangle}{\Delta} + t \sum_{\nu \neq d} \frac{\langle pp | \tilde{J}_{3}^{+} | l' \rangle \langle l' | \tilde{J}_{3}^{+} | nn \rangle}{\delta_{\nu}} + C + D e^{\Delta t} + \mathcal{O}(e^{-\delta t}, e^{-\delta' t})$$

$$N_{f} = 3, m_{\pi} = 0.806 \text{ GeV}, a = 0.145(2) \text{ fm}$$
Shanahan et al (NPLQCD), arXiv:1701.03456. Tiburzi et al (NPLQCD), arXiv:1702.02929.
$$I_{j} = \frac{1}{2} \int_{0}^{0} \int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{$$

Shanahan et al (NPLQCD), arXiv:1701.03456. Tiburzi et al (NPLQCD), arXiv:1702.02929.

Isotensor axial polarizability could be comparable to quenching of axial charge, and can only be constrained with lattice QCD.

STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

INT Workshop on Lattice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017

Extending the "Golden Window"

Beane et al (NPLQCD), Phys.Rev.D79:114502,2009.

$$C_{\hat{\mathcal{O}},\hat{\mathcal{O}}'}(\tau;\mathbf{d}) = \sum_{\mathbf{x}} e^{2\pi i \mathbf{d} \cdot \mathbf{x}/L} \langle 0 | \hat{\mathcal{O}}'(\mathbf{x},\tau) \hat{\mathcal{O}}^{\dagger}(\mathbf{0},0) | 0 \rangle = \mathcal{Z}_{0}' \mathcal{Z}_{0}^{\dagger} e^{-E^{(0)}\tau} + \mathcal{Z}_{1}' \mathcal{Z}_{1}^{\dagger} e^{-E^{(1)}\tau} + \dots$$

Going beyond the "Golden Window"

Time derivates approach time-independent stable and wrapped stable distributions at late times.

Similar physics of decorrelation between spacetime subvolumes exploited in: Ce, Giusti and Schaefer, Phys.Rev. D93 (2016).

 $\Delta t
ightarrow t$ Wagman and Savage, arXiv:1611.07643, arXiv:1704.07356.

Wagman and Savage, arXiv:1611.07643, arXiv:1704.07356.

A nice demonstration of the consistency between GW result and the phase reweighed result.

STATUS OF LQCD CALCULATIONS FOR MULTI-NUCLEON SYSTEMS

INT Workshop on .attice QCD Input for Neutrinoless Double–β Decay July 6 – 7, 2017

BACKUP SLIDES

EFT correlation function

$$M_{nn \to pp} = -\frac{|M_{pp \to d}|^2}{\Delta} + \frac{Mg_A^2}{4\gamma_s^2} - \mathbb{H}_{2,S}$$

 $M_{pp \to d} = g_A(1+S) + \mathbb{L}_{1,A}$