QUANTUM COMPUTING

Quantum Computing Systems - expectations

Dave Wecker Partner Architect Microsoft Quantum

30 qubits \rightarrow 16 Gb 50 qubits \rightarrow 16 Pb 40 qubits \rightarrow 16 Tb

Exponential Scaling

Simulating 260 qubits requires more memory than there are atoms in the universe

Addressing classically intractable problems

4Classical80728777673597 Quantum 1896375014971824 6911650776133798590957000973304597488084284017974291 00426869987549 182422433637259085141865462043576798423387184774447 92173VearS8482382428119116370054 Second 0605620161967625613384414360383390441495205445219011 Classical 09||1
|82||4
|92||7
|1605 billion years 100seconds

The fastest supercomputer
in the world

Majorana Fermions

Predicted by Ettore Majorana in 1937

Inspiration

 $\boldsymbol{\eta}$ $15a$

From "A topological modular functor which is universal for quantum computation"

Talk given by Michael Freedman at "Mathematics of Quantum Computation", **MSRI, Feb. 2000** (available online).

Normal S-Wave Superconductor:

Topological Superconductor:

Electron Fractionalization **Superposition**

uids

spin

Pair

Inca Quipu

Sailing into the Wind

https://en.wikipedia.org/wiki/Forces_on_sails

http://hayward.peirce.me/the-physics-of-sailing-ce-and-clr/

Box Qubits: 1 Qubit Measurements

Measure two Horizontally = M_z Measure two Vertically = M_x Measure two Diagonally = M_v

Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with **Majorana Zero Modes**

Torsten Karzig,¹ Christina Knapp,² Roman M. Lutchyn,¹ Parsa Bonderson,¹ Matthew Hastings,¹ Chetan Nayak,^{1,2} Jason Alicea,^{3,4} Karsten Flensberg,⁵ Stephan Plugge,^{5,6} Yuval Oreg,⁷ Charles Marcus,⁵ and Michael H. Freedman^{1,8}

Richard Feynman: "Shut up & calculate!"

Quantum 2.0: "Shut up & engineer!"

A complete, scalable, quantum system

Quantum development tools components

Quantum programming language

- Domain-specific language for quantum algorithms and development
	- Functional in flavor
	- Visual Studio integration
	- Quantum-specific features
	- Extensive libraries, samples, and documentation

Target machines

- State-of-the-Art Local Simulator
	- · Simulate 30 qubits in 16 GB
	- · Run locally on your PC
- State-of-the-Art Azure Simulator
	- · Simulate more than 40 qubits
	- · Run in Azure
- Resource Estimator
	- Determine resource costs of quantum program
	- · Scale to large algorithms and numbers of qubits
- Quantum Hardware

M HelloWorld-e2e - Microsoft Visual Studio

File Edit View Project Build Debug Team Tools Architecture Test Analyze Window Help

O - ◎ 舒 - ☆ | 』 ♪ | ワ - (| - | Debug - | Any CPU ▼ ▶ Start ▼ 屋 - 第 出 唯 | 国 程 | 圓 句 히 히 - 第 回 - 智 苞 @ -

 \bullet \bullet Quick Launch (Ctrl+Q)

 ρ σ x

 $\overline{1}$

What about T gates?

Layout of T factory (DistillT)

DistillT: 1Q=65 2Q=100 LogQ=81 Frames=277

Finding the ground state of Ferredoxin

Ferredoxin

 $Fe₂S₂$

Used in many metabolic reactions including energy transport in photosynthesis

Classical algorithm

INTRACTABLE

!

Quantum algorithm 2012

Quantum algorithm 2015

BILLION YEARS

HOUR

Nitrogen fixation

Carbon capture

Materials science

Machine learning

Climate Change Food
Production

Antibiotic Resistance

NH

Microsoft's Global Quantum Dream Team

microsoft.com/quantum

Backup Slides

Welcome to the Quantum Age

Error Correction

Quantum Chemistry

 pq $h_{pq}a_p^{\dagger}a_q +$ 1 2 $\sum h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$ pqrs

Can quantum chemistry be performed **Trover**

with a small b the near future particular the computers can t echnology, the chemistry pro http://arxiv.org

 D aver, Mecker, Imp , Matthew B. Hastings, Matthias for \mathcal{L} As quantum c **including energy transpo** H - Ferredoxin (Fe. P based algorithms used in the simulation of quantum chemistry on a Ferredoxin ($Fe₂S₂$) used in many metabolic reactions including energy transnort in nhotosynthesis Tro including energy transport in photosynthesis

- computers gains in portance. One frequently mentioned application is a problem in the frequency of \mathcal{L} Feynman's original ρ intractable on a classical component \triangleright Intractable on a classical computer modification does not require additional ancilla qubits. Then, we protective even for exercisely even for modest size $N-1$ **▶ Intractable on a classical computer bounds on the scaling of known upper** bounds on the scaling of known upper bounds on the scaling of the s complexity of the set algorithms is daunting. Prior work has bounded errors due to the set algorithms is designed to
- paper, we ana \Box \Diamond decumed quantum scaling standard algo **di chemistry to perform the performant on a quantum chemistry on a quantum chemistry** \sim decument quantum scaling \sim 24 billia \blacktriangleright functionary decrease in the parallel decrease in the cost of the Trotter step required for an ensemble of random artificial molecules. Here, we revisit this analysis th amed quantum scaling. $~\sim$ z4 billion years (N $^{-}$ scaling) $T_{\rm tot}$ is the norm of the norm of the norm of Λt ¹¹ and and and and and analyzed scaling with with Λt \triangleright Assumed quantum scaling: ~24 billion years (N^{11} scaling) $\Big|_{\text{be}}$
- computer. We focus on the f focus on the f focus required to find the f ground state $\left\{\quad\right.\quad\leftarrow\quad$ FIISL PUPPL $\left\{ \right.\quad\left.\right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \left.$ of a small constant factor increase in number of qubits required. \triangleright First paper: \sim 850 thousand years to solve (N⁹ scaling) decomposition, significantly reducing the error at given Trotterand alternative simulation simulation scheme and show that it can sometimes output that it seems of \mathcal{S} loose by up to sixteen orders of magnitude for some molecules. Furthermore, numerical \vert ical \vert \sim 850 thousand vears to solve (N⁹ scalina) between the state error of the state error of the state error state error \sim and number of spin-orbitals. We instead argue that chemical properties, such as the chemical properties, such a ➢ *First paper: ~850 thousand years to solve (* 9 *scaling)*
- requires abou $\begin{bmatrix} \searrow \\ \searrow \end{bmatrix}$ Second naner \sim 30 vears to solve (N reduced by the non-zero Trotter-Suzuki timester timester timester timester timester timester timester timestep
Surfaced timester ti t_{max} depends considerated molecules of $\frac{1}{N}$ so the simulated model ond puper. \sim 30 years to solve (N $\,$ sching) $\,$ m_{max} can be defined to ΔM and the filling fraction of orbitals, can be decisive decisive decisive **►** Second paper: ~30 years to solve (N⁷ scaling)
- coherently executed is matter is matter of magnitude larger. This suggests and the suggests that for quantum computation to become useful for quantum All of these techniques are validated using numerical simulation and \triangleright Third paper: \sim 5 days to solve (N^{5.5} scaling) relied on exponentially costly classical exact simulation. strategies to use classical processing to further reduce the required Trotter step size and **►** *Third paper: ~5 days to solve (N*^{5.5} scaling) resources. Finally, we demonstrate improved methods for state preparation techniques
	- $\Delta \geq$ Fourth nange if the puper. \sim 141 $\frac{1}{2}$ hour to colve $\left(M_3^3 \right)$ $\left(72.5 \right)$ cooling) **►** *Fourth paper:* \sim *~1 hour to solve (N*³, Z^{2.5} scaling)

Microsoft's unique approach

Revolutionary topological approach

Our quantum approach

brings theory to reality, harnessing topological qubits that perform computations longer and more consistently, with fewer errors.

Bold investments and a global team

For more than a decade, we've made consistent investments and built the quantum dream team with collaboration across universities, industries, and more.

Scalable, end-to-end technology

Our full-stack quantumcomputing solution is designed so you and your developers can approach quantum computing right away, with the ability to scale.

Building for Scale

MICROSOFT.COM/QUANTUM

Sign up today: Quantum programming language Visual Studio extensions Quantum simulator on Azure

