QUANTUM COMPUTING

Quantum Computing Systems - expectations

Dave Wecker Partner Architect Microsoft Quantum

$30 \text{ qubits} \rightarrow 16 \text{ Gb}$ $40 \text{ qubits} \rightarrow 16 \text{ Tb}$ $50 \text{ qubits} \rightarrow 16 \text{ Pb}$

Exponential Scaling

Simulating 260 qubits requires more memory than there are atoms in the universe

Addressing classically intractable problems

RSA-2048 Challenge Problem Classical Quantum billion years seconds

The fastest supercomputer in the world

All qubits are not created equal

Majorana Fermions

Predicted by Ettore Majorana in 1937

Inspiration

11 The is a

From "A topological modular functor which is universal for quantum computation"

Talk given by Michael Freedman at "Mathematics of Quantum Computation", MSRI, Feb. 2000 (available online).

Normal S-Wave Superconductor:

Topological Superconductor:

Electron Fractionalization

spin

Pair

Inca Quipu

Sailing into the Wind

https://en.wikipedia.org/wiki/Forces_on_sails

http://hayward.peirce.me/the-physics-of-sailing-ce-and-clr/

Box Qubits: 1 Qubit Measurements

Measure two Horizontally = M_z Measure two Vertically = M_x Measure two Diagonally = M_y

Scalable Designs for Quasiparticle-Poisoning-Protected Topological Quantum Computation with Majorana Zero Modes

Torsten Karzig,¹ Christina Knapp,² Roman M. Lutchyn,¹ Parsa Bonderson,¹ Matthew Hastings,¹ Chetan Nayak,^{1,2} Jason Alicea,^{3,4} Karsten Flensberg,⁵ Stephan Plugge,^{5,6} Yuval Oreg,⁷ Charles Marcus,⁵ and Michael H. Freedman^{1,8}

Richard Feynman: "Shut up & calculate!"

Quantum 2.0: "Shut up & engineer!"

A complete, scalable, quantum system

Quantum development tools components

Quantum programming language

- Domain-specific language for quantum algorithms and development
 - Functional in flavor
 - Visual Studio integration
 - Quantum-specific features
 - Extensive libraries, samples, and documentation

Target machines

- State-of-the-Art Local Simulator
 - Simulate 30 qubits in 16 GB
 - Run locally on your PC
- State-of-the-Art Azure Simulator
 - Simulate more than 40 qubits
 - \cdot Run in Azure
- Resource Estimator
 - Determine resource costs of quantum program
 - \cdot Scale to large algorithms and numbers of qubits
- Quantum Hardware

HelloWorld-e2e - Microsoft Visual Studio

File Edit View Project Build Debug Team Tools Architecture Test Analyze Window Help

G - 이 📅 - 🖕 💾 🚰 ಶ - 연 - 🛛 Debug 🕞 Any CPU 🚽 🕨 Start - 🔎 🛫 🔚 🌾 🗇 🖄 🖉 🖕

Quick Launch (Ctrl+Q)

P _ ₽ ×

4 57 84 4

What about T gates?

Max	<u>16</u>	Here	Her	Mex	Mey	Max	U.,.)	11	1470	Mar.	Nm.	لتول		
1077		_	-				1000			-		_	-	
	100			-	-	-		Lies						
			<u> </u>					_	Max	_	_		_	
			- Mara	Mpd									-	_
	_	_	_		Mgg	_					<u>N</u> 2		-	
												<u> ((;;</u>		
Max Max Ma		ta di a di a di a	to Max Max	Us Max Max	Ma Max Max D	$I_X = M_{XX}$	0.000	Here Here D	and a state of the		ta Max Max I	ta Uca Uca Uc	Max Max	

Max	liger	liger	liige a	10.p.s	Max									
_	-	_	_		-	Mex	Max	H ₂	1677	Mar	Mex	Max		
Mga	-	;	;	;		Mer.	11(23)							
	Her			1				Has					(sec	0.000
		Max			_		_	_	-	_	-	-	- 000	
			Max						_					
							-		Was					
				Mm			_			+	Max	<u> </u>		
North Lord L	awawaw	awawa	u wa wa u		Ta Max	un um um u		ania na	100000000000000000000000000000000000000	wawawa		1000 ¹⁰ 000	in the second	ക്കെയ്ക്കായത

Wpp+Wb							
		- Contractor		00-009-009-009-009-009-009-009-009-009-			
							m/wa-wa
Um Um Un	100 100 100	Max Max Ma	1100 1100 1100		10m 10m 10m	Um Um Un	

Layout of T factory (DistillT)

DistillT: 1Q=65 2Q=100 LogQ=81 Frames=277

Connect	Dim	Data Rows	Phys Qubits	Data Teleport	Block Tele	Par Tele Depth
Rect	10x10	All	42	15/9	20/9	4*(9+9)=72
Rect	5x9	All	39	18/13	25/13	4*(13+13)=104
Rect	3x18	Half	39	40/31	40/31	4*(31+31)=248
Diag	3x9	Half	26	15/9	15/9	4*(9+9)=72
Diag	2x18	Half	34	39/24	36/24	4*(24+24)=192

· · · · · · · · · · ·

Finding the ground state of Ferredoxin

Ferredoxin

 Fe_2S_2

Used in many metabolic reactions including energy transport in photosynthesis

Classical algorithm

Quantum algorithm 2012

Quantum algorithm 2015

BILLION YEARS

~1

INTRACTABLE

Nitrogen fixation

Carbon capture

Materials science

Machine learning

Climate Change Food Production Antibiotic Resistance

NH

Microsoft's Global Quantum Dream Team

microsoft.com/quantum

Backup Slides

Welcome to the Quantum Age

Error Correction

Quantum Chemistry

lmr

 $H = \sum \left[h_{pq} a_p^{\dagger} a_q + \frac{1}{2} \right] h_{pqrs} a_p^{\dagger} a_q^{\dagger} a_r a_s$

Can quantum chemistry ha parforma Dave Wecker, Trover

As quantum c with a small b the near futur computers ga Feynman's ori particular the paper, we ana standard algo computer. We ground state (computers cal requires abou technology, th coherently exe that for quant chemistry pro http://arxiv.ore

- Ferredoxin (Fe_2S_2) used in many metabolic reactions including energy transport in photosynthesis
- > Intractable on a classical computer
- \triangleright Assumed quantum scaling: ~24 billion years (N¹¹ scaling)
- ~850 thousand years to solve (N^9 scaling) First paper:
- \succ Second paper: ~30 years to solve (N⁷ scaling)
 - Third paper: ~5 days to solve ($N^{5.5}$ scaling)
- Fourth paper: ~ 1 hour to solve (N³, Z^{2.5} scaling)

be rical br lisive and

es

Microsoft's unique approach

Revolutionary topological approach

Our quantum approach

brings theory to reality, harnessing topological qubits that perform computations longer and more consistently, with fewer errors.

Bold investments and a global team

For more than a decade, we've made consistent investments and built the <u>quantum dream team</u> with collaboration across universities, industries, and more.

Scalable, end-to-end technology

Our <u>full-stack quantum-</u> <u>computing solution</u> is designed so you and your developers can approach quantum computing right away, with the ability to scale.

Building for Scale

MICROSOFT.COM/QUANTUM

Sign up today: Quantum programming language Visual Studio extensions Quantum simulator on Azure

