

Quantum Algorithms for Many-Body Systems:

A chemistry and materials science perspective

Matthias Troyer

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

Feynman proposed to use quantum computers to simulate quantum physics

Simulating quantum computers on classical computers

Simulating a quantum gate acting on N qubits needs $O(2^N)$ memory and operations

Qubits	Memory	Time for one operation
10	16 kByte	microseconds on a smartwatch
20	16 MByte	milliseconds on smartphone
30	16 GByte	seconds on laptop
40	16 TByte	seconds on cluster
50	16 PByte	minutes on top supercomputers?
60	16 EByte	hours on exascale supercomputer?
70	16 ZByte	days on hypothetical future supercomputer?
250	size of visible universe	age of the universe

arXiv.org > quant-ph > arXiv:1704.01127

Quantum Physics

0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit

Thomas Häner, Damian S. Steiger

(Submitted on 4 Apr 2017)

First applications that reached a petaflop on Jaguar @ ORNL

Domain area	Code name	Institution	# of cores	Performance	Notes
Materials	DCA++	ORNL	213,120	1.9 PF	2008 Gordon Bell Prize Winner
Materials	WL-LSMS	ORNL/ETH	223,232	1.8 PF	2009 Gordon Bell Prize Winner
Chemistry	NWChem	PNNL/ORNL	224,196	1.4 PF	2008 Gordon Bell Prize Finalist
Materials	DRC	ETH/UTK	186,624	1.3 PF	2010 Gordon Bell Prize Hon. Mention
Nanoscience	OMEN	Duke	222,720	> 1 PF	2010 Gordon Bell Prize Finalist
Biomedical	МоВо	GaTech	196,608	780 TF	2010 Gordon Bell Prize Winner
Chemistry	MADNESS	UT/ORNL	140,000	550 TF	
Materials	LS3DF	LBL	147,456	442 TF	2008 Gordon Bell Prize Winner
Seismology	SPECFEM3D	USA (multiple)	149,784	165 TF	2008 Gordon Bell Prize Finalist

Source: T. Schulthess

The Theory of Everything

The N-body Schrödinger equation

$$i\hbar \frac{\partial \Psi(\vec{r}_1, \dots, \vec{r}_N, t)}{\partial t} = H\Psi(\vec{r}_1, \dots, \vec{r}_N, t)$$

Describes (almost) everything we encounter in daily life with a very simple Hamilton

$$H = \sum_{i} \left(-\frac{1}{2m_i} \Delta_i + V^{ext}(\vec{r}_i) \right) + \sum_{i,j} \frac{q_i q_j}{\left| \vec{r}_i - \vec{r}_j \right|}$$

It is a simple linear partial differential equation (PDE)

But is exponentially complex since it lives in 3N dimensions

Density functional theory and quantum chemistry

Approximates the N-body Schrödinger by a tractable 1-body problem

 $E_0 = \min_{\rho(\vec{r})} \left(F[\rho] + \int d^3 \vec{r} V(\vec{r}) \rho(\vec{r}) \right)$

Successful in calculating properties many metals, insulators, semiconductors

Walter Kohn

John A. Pople

Band structure of silicon

1998 Nobel prize in chemistry

Cuprate high temperature superconductors

Undoped materials:

half-filled band and metal according to DFT but antiferromagnetic insulator in experiment! Band structure calculation breaks down!

Doped materials:

high-temperature superconductors

What causes superconductivity?

Are there room temperature superconductors?

Band structure of La₂CuO₄

Preparing the ground state

On a classical computer

Imaginary time projection

Power method or other iterative eigensolver

$$\left|\Psi_{GS}\right\rangle = \lim_{\tau \to \infty} e^{-\tau H} \left|\Psi_{T}\right\rangle$$
$$\left|\Psi_{GS}\right\rangle = \lim_{n \to \infty} (H - \Lambda)^{n} \left|\Psi_{T}\right\rangle$$

On a quantum computer

Imaginary-time-evolution-

Power method

Unitary operations + measurements:

prepare trial state

projectively measure energy

obtain the ground state if the ground state energy was measured $\begin{aligned} \left| \Psi_{T} \right\rangle \\ \left| \Psi_{T} \right\rangle \rightarrow \left| \phi_{n} \right\rangle \text{ with } H \left| \phi_{n} \right\rangle = E_{n} \left| \phi_{n} \right\rangle \\ \left| \phi_{n} \right\rangle \text{ picked with propability } \left| \left\langle \phi_{n} \right| \Psi_{T} \right\rangle \right|^{2} \end{aligned}$

Quantum phase estimation

Energy can be measured through the phase of a wave function after unitary time evolution

$$U\left|\phi_{n}\right\rangle = e^{-iHt}\left|\phi_{n}\right\rangle = e^{-iE_{n}t}\left|\phi_{n}\right\rangle = e^{-i\phi}\left|\phi_{n}\right\rangle$$

We can only measure relative phases, thus do a controlled evolution $|\mathbf{0}\rangle|\phi_n\rangle \rightarrow \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + |\mathbf{1}\rangle)|\phi_n\rangle \rightarrow \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle|\phi_n\rangle + U|\mathbf{1}\rangle|\phi_n\rangle) = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle + e^{-i\phi}|\mathbf{1}\rangle)|\phi_n\rangle \rightarrow \frac{1}{2}((1+e^{-i\phi})|\mathbf{0}\rangle + (1-e^{-i\phi})|\mathbf{1}\rangle)|\phi_n\rangle$

Measure the ancilla qubit to obtain the phase

Solving quantum chemistry on a quantum computer

1. Select a finite (generally non-orthogonal) basis set

2. Perform a Hartree-Fock calculation to get an approximate solution get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set

$$H = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \sum_{pqrs} V_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_r$$

exact classical approach: full-configuration interaction exponential complexity!

Solving quantum chemistry on a quantum computer

1. Select a finite (generally non-orthogonal) basis set

2. Perform a Hartree-Fock calculation to get an approximate solution get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set

$$H = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \sum_{pqrs} V_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_r$$

- 4. Prepare a good guess for the ground state
- 5. Perform quantum phase estimation to get the ground state wave function and energy

Representing fermion terms by quantum circuits

Map the occupation of each spin-orbital to the states of one qubit

$$|0\rangle = |\uparrow\rangle \qquad |1\rangle = |\downarrow\rangle$$

Density operators get mapped to Pauli matrices

$$n_i = \frac{1}{2} \left(1 - \sigma_i^z \right)$$

Hopping terms get mapped to spin flips with Jordan-Wigner strings

$$C_p^{\dagger}C_q = \sigma_p^{-} \prod_{i=p+1}^{q-1} \sigma_i^z \sigma_p^{-1}$$

Time evolution gets mapped to circuits built from unitary gates

Guessing a good trial state

Mean field approximation Hartree-Fock Density functional theory

Variational approaches: fit parameters in variational ansatz Configuration-Interaction Variational Monte Carlo Tensor network methods (e.g. DMRG) Neural network states Carleo & Troyer, Science (2017)

Preparing a good trial state

Adiabatic evolution from a simple initial Hamiltonian H_0 with known ground state to the desired Hamiltonian H_1

$$H(s) = (1 - s)H_0 + sH_1$$

Good starting Hamiltonians

Mean-field approximation (with right broken symmetry)

Non-interacting particles (in the right symmetry sector)

Cooling into a good trial state

Evolve the system coupled to a heat bath that is being cooled See e.g. Kaplan, Klco, Roggero, arXiv:1709.08250

Monte Carlo sampling with the quantum Metropolis algorithm Use a unitary update + phase estimation to propose a new energy eigenstate Accept or reject according to the Metropolis algorithm Solves the sign problem of QMC by working with energy eigenstates

Temme et al, Nature (2011)

Simulating time evolution on quantum computers

There are $O(N^4)$ interaction terms in an N-electron system

$$H = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \sum_{pqrs} V_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_r = \sum_{m=1}^M H_m$$

We need to evolve separately under each of them

Efficient circuits available for each of the N^4 terms

Runtime estimates turn out to be $O(NM^2) = O(N^9)$

It's efficient since it's polynomial!

The polynomial time quantum shock

Estimates for a benchmark molecule: Fe₂S₂ with 118 spin-orbitals

Gate count	10 ¹⁸
Parallel circuit depth	10 ¹⁷
Run time @ 100ns gate time	300 years

We cannot declare victory proving the existence of polynomial time algorithms

We need quantum software engineers to develop better algorithms and implementations

The result of quantum software optimization

Estimates for a benchmark molecule: Fe₂S₂ with 118 spin-orbitals

Gate count	10 ¹⁸	Reduced gate count	10 ¹¹
Parallel circuit depth	10 ¹⁷	Parallel circuit depth	10 ¹⁰
Run time @ 100ns gate time	300 years	Run time @ 100ns gate time	20 minutes

Attempting to reduce the horrendous runtime estimates we achieved Wecker *et al.*, PRA (2014), Hastings *et al.*, QIC (2015), Poulin *et al.*, QIC (2015)

Reuse of computations:	O(N) reduction in gates
Parallelization of terms:	O(<i>N</i>) reduction in circuit dept
Optimizing circuits:	4x reduction in gates
Smart interleaving of terms:	10x reduction in time steps
Multi-resolution time evolution:	10x reduction in gates
Better phase estimation algorithms:	4x reduction in rotation gate

Improvements in algorithms

Original circuit

Reducing the number of terms

Reduce the number of terms in the evolution from $O(N^4)$ to $O(N^2)$ by using real-space representations and quantum Fourier transforms

First quantized formulation Kivlichan, Wiebe, et al, J. Phys. A (2017) requires expensive quantum arithmetic

Plane wave basis Babbush, Wiebe, et al, arXiv:1706.00023 requires much larger number of basis states

Can the asymptotic advantages be realized with reasonable runtimes?

Avoiding the Trotter breakup

New quantum algorithms based on series expansions into sums of unitary operators have exponentially better error scaling

$$e^{-iH} \approx \sum_{-K}^{K} \alpha_{k} U^{k}$$
$$U = \sum_{m=1}^{M} \beta_{m} V_{m}$$

Childs & Wiebe, QIC (2012) Berry *et al*, STOC'14 Low & Chuang, PRL (2017)

Are these methods advantageous given the unavoidable errors due to finite basis sets/lattice spacings?

Nitrogen fixation

Fertilizer production using Haber-Bosch process needs 3% of the world's natural gas production

But bacteria can do it in the soil without a huge factory!

Understanding biological nitrogen fixation

Intractable on classical supercomputers

But a 200-qubit quantum computer will let us understand it

Simulation strategy

Quantum developer tools

Learn quantum programming

Develop quantum algorithms

Estimate runtime and memory needs

MICROSOFT.COM/QUANTUM

N F	-lello\	Norld-e2e - Microsoft Visual Studio	
File	Edit	View Project Build Debug Team Tools Architecture Test Analyze Window	Help
0	. 0	🔯 - 😩 🔐 🤔 🎐 - 🔍 - 🛛 Debug - Any CPU - 🕞 Start - 🍠 🛫 🍉 👘	3 월 📕 일 일 월 🚽 🕄 🕑 - 😸 🖄 🖉 -
E Te	leport	t.gb 👳 🗙 Teleport.g.cs	
VerB	1	<pre>poperation () EPR (Qubit q1, Qubit q2) {</pre>	
pla	2	Body {	
orer	3	H (q1)	
1	4	CNOT (q1,q2)	
0B	5		
8	6	}	
	7	Teneration () Telepart (Arbit and Arbit have Arbit there) (
	8	-operation () releport (Qubit msg, Qubit here, Qubit there) {	
	10	EDP (here there)	
	11	CNOT (msg, here)	
	12	H (msg)	
	13		
	14	<pre>let m here = M (here)</pre>	
	15	if (m here == One) {	
	16	X (there)	
	17	}	
	18		
	19	<pre>let m_msg = M (msg)</pre>	
	20	if (m_msg == One) {	
	21	Z (there)	
	22	}	
	23	}	
	24	}	
	25		
	26	<pre>-operation (Result) TeleportTest (Result msg) {</pre>	
	21	Body {	
	28	mutable res = zero	
	29	lot msr0 = oubits[0]	
	30	rec msgo = dupres[0]	
	32	// Set msg0 to message state	
	33	SetOubit (msg. msgO)	
	34	performe (mpB) mpB4)	
	35	Teleport (msgO, qubits[1], qubits[2])	
	36		
	37	set res = M (aubits[2])	
	38	}	
	39	return res	
	40	}	
	41		
	42		

Total cost with error correction

	Nes	Nested rotations		
Error Rate	10^{-3}	10^{-6}	10^{-9}	
Required code distance	37,17	9	5	
Quantum processor				
Logical qubits	109			

We want very good qubits! Better algorithms! Better error correction and gate synthesis

Steps in software development for quantum applications

7. Run the quantum algorithm to solve the problem

6. Embed into specific hardware and check runtime

5. Add error correction and check overhead and resources

4. Optimize code until logical circuit depth $< 10^{14}$

duantum software endineers 3. Check for quantum speedup

2. Implement all oracles and subroutines

1. Find quantum algorithm with quantum speedup

Coming soon: Quantum programming language Visual Studio extensions Quantum simulator

Learn more & sign up at: MICROSOFT.COM/QUANTUM

