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Many-body formulations (cntd.)

§ Remark I: Certain forms of  wave function parametrization 
are universal across energy/spatial scales in providing 
accurate energies. 

§ Remark II: All methods that have exact-wave-function-limit 
are equivalent. It is worthwhile to combine properties of 
these methods to build more efficient approximations.  

§ Remark III: All many-body formulations should be equally 
able to  “capitalize” on the availability of quantum 
computers. 



Coupled Cluster (CC) formalism – a brief overview

§ Exponential wave-function Ansatz

§ Excited-state extensions (Equation-of-motion CC 
formalism)

§ Multi-reference CC methods: Fock-space/Hilbert-space  
formulations 
‣ new algebraic techniques to alleviate intruder state  

problems
§ Green’s function CC formulations
‣ Analytical ways of calculating CC Green’s function/ 

CC self-energies /  𝛚-derivatives
‣ Efficient algorithms for representing CC Green’s 

function on entire complex plane 
§ Things are expensive:
‣ CCSD à CCSD(T) à CCSDT à CCSDTQ à …
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Reduced scaling CC methods in quantum 
chemistry  

§ Decomposition of “interaction” tensors – decomposition of 
2-electron integrals 
‣ Possible in quantum chemistry (Coulomb forces)  - not sure if 

applicable to general case for n-n interactions. 
§ Local methods ( O(N) methods)
‣ PNO, DLPNO methods 
‣ Require set of “empirical” threshold
‣ Main effort towards engineering theory & parallel implementations



Two-step decomposition: Cholesky
decomposition à SVD decompositionMethodology
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Figure 1: The compound decomposition strategy of the two-electron integral tensor
(Coulomb-type) of a methane molecule in 6-31+g(d) basis (N

b

= 26). Both ✓CD and ✓SVD

were set to 10�6, which gives 167 Cholesky vectors, and 17 SVD vectors for the chosen
Cholesky vector.

As shown in Fig. 1, two steps are involved in the compound decomposition of the two-

electron integral tensor in atomic orbital (AO) space, (a) a pivoted incomplete CD of the

original integral tensor, and (b) truncated SVD of each single Cholesky vector obtained

from (a). In the following part, we take an N
b

⇥ N
b

⇥ N
b

⇥ N
b

Coulomb-type integral tensor

(denoted as J) for an example to demonstrate how the compound decomposition (denoted

as CD-SVD) works.
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Table 1: Computed transition energy (1T1u

 1A
g

) and dipole polarizabilities (at
! = 0.0 a.u. and 0.0428 a.u.) of C60 molecule. The geometry is adopted from
Ref. 139, and is subject to D2h

symmetry. All 1s electrons were frozen during
calculations. Due to the size of the system, we converged all CCSD iterations
to 10�4, and set both ✓CD and ✓SVD to 10�4.

Basis set N
b

m n̄SVD
!EOM�CCSD

1

T

1u 1

Ag

a ↵(!)LR�CCSD

CD-SVD Canonical ! CD-SVD Canonical
ZPolC 1080 2456 367 3.8683 eV 3.8661 eV 0.0 a.u.b 555.29 a.u. 554.71 a.u.

(82.29 Å3) (82.20 Å3)
0.0428 a.u.c 564.85 a.u. 564.30 a.u.

(83.70 Å3) (83.62 Å3)
aug-cc-pVDZ 1380 4338 418 3.5139 eV 3.5130 eV 0.0 a.u.b 559.37 a.u. 559.44 a.u.

(82.89 Å3) (82.90 Å3)
0.0428 a.u.c 569.08 a.u. 569.15 a.u.

(84.33 Å3) (84.34 Å3)
a Experimental values are ranging from 3.04 eV to 3.78 eV. See Ref. 132–136.

b Experimental value is 76.5 ± 8 Å3. See Ref. 140.
c Experimental value is 79 ± 4 Å3. See Ref. 141.

incomplete CD with a follow-up truncated SVD. A systematic benchmark test on a series of

1-D, 2-D, and 3-D carbon-hydrogen systems has been performed. For N
b

ranging from ⇠ 100

up to ⇠ 2, 000, the observed numerical scaling of our implementation shows O(N2.5⇠3
b

) versus

O(N3⇠4
b

) cost of performing single CD on the AO integral tensor in most of other

implementations. More importantly, this decomposition strategy can significantly reduce the

storage requirement of atomic-orbital (AO) based two-electron integral tensor from O(N4
b

)

to O(N2
b

log10(Nb

)) without significant loss of accuracy. The accuracy test has been done

by carrying out ground- and excited-state CCSD calculations, in which we found that the

decomposition thresholds can be generally set to 10�4 to 10�3 to give a promising compromise

between e�ciency and accuracy.

From the point of view of future implementations of CC methods, the CD-SVD proce-

dure has far-going consequences stemming from the possibility of re-factoring CC equations

(using the contracted singular vectors obtained from the CD-SVD of the two-electron in-

tegral tensor) and storing a large portion of data locally at the node or at the local disk

drive. The latter factor can help design new algorithms to reduce time-to-solution of CC

calculations based on the distribution of all cluster amplitudes across the network and per-
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forming contractions with the locally available data (e.g. the contracted singular vectors).

For example, using the contracted singular vectors, one possible re-factorization

of the most time-consuming linear term in the CCSD expression,
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and the corresponding diagram change adapted to the parallel implementation

is shown in Fig. 7. Here we want to point out that all the terms in the CC
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Figure 7: Diagram change according to a possible new tensor contraction strategy for the
most time-consuming linear term,

P

Nv

c,d

habkcditcd
ij

, in the CCSD expression.

formulations, including linear and nonlinear terms, can be re-factorized in a

manner similar to Eq. (21). The practice of this re-factorization of the CC

formulations and its parallel implementation along with large scale benchmark

tests (with an emphasis on properly describing excited states) are currently

under intensive development. We expect to be able to perform CC calculations, without

truncating cluster/excitation amplitudes, for the excitation energies and molecular properties

of systems described by 5, 000 ⇠ 10, 000 orbitals on currently available architectures.
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Highly Efficient and Scalable Compound Decomposition of Two-
Electron Integral Tensor and Its Application in Coupled Cluster
Calculations
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ABSTRACT: The representation and storage of two-electron integral tensors
are vital in large-scale applications of accurate electronic structure methods.
Low-rank representation and efficient storage strategy of integral tensors can
significantly reduce the numerical overhead and consequently time-to-solution
of these methods. In this work, by combining pivoted incomplete Cholesky
decomposition (CD) with a follow-up truncated singular vector decom-
position (SVD), we develop a decomposition strategy to approximately
represent the two-electron integral tensor in terms of low-rank vectors. A
systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon−hydrogen
systems demonstrates high efficiency and scalability of the compound two-
step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, Nb, ranging
from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows −N( )b

2.5 36 versus −N( )b
3 46 cost of

performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this
decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor
from N( )b

46 to N N( log( ))b b
26 with moderate decomposition thresholds. The accuracy tests have been performed using ground-

and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several
benchmark systems including the C60 molecule described by nearly 1,400 basis functions. The results show that the
decomposition thresholds can be generally set to 10−4 to 10−3 to give acceptable compromise between efficiency and accuracy.

■ INTRODUCTION
Accurate electronic structure calculations often involve
expensive tensor contractions. A typical example is the standard
coupled cluster (CC) theory,1−8 of which the wave function of
the system of interest is written as an exponential ansatz, eT|Φ⟩,
with T being the cluster operator and |Φ⟩ the reference wave
function. Higher excitations can be included in T in an iterative
or perturbative manner to provide a systematically improved
hierarchy of approximations. For this reason CC formalism has
evolved into a method-of-choice for accurate predictions of
geometrical structures, reaction dynamics, molecular properties,
and excited-state processes (see refs 8−16 for recent reviews).
However, the steep polynomial scaling and high storage
requirements originating from complex contractions of high-
dimensional tensors (e.g., two-electron integral tensor) are
well-known bottlenecks that preclude CC methods from being
applied to large systems in various areas of interest including
molecular properties and excitation energies.14−22 For example,
when employing rudimentary CCSD approach (CC approach
with singles and doubles)5 the underlying tensor contractions
can scale as N( )b

66 (Nb is the number of basis functions
representing the size of a quantum chemical system). When
performing excited-state calculations, such as equation-of-
motion CCSD (EOM-CCSD)23−25 and linear-response

CCSD (LR-CCSD),26,27 this polynomial scaling will be further
increased by a significant prefactor. It has been shown that by
properly selecting intermediate arrays and optimizing the

N( )b
66 and N( )b

56 loops, the efficiency of a CCSD code can be
increased by a factor of 5.6 To a larger extent, high numerical
costs associated with the polynomial scaling can be effectively
addressed by the development of highly scalable implementa-
tions of CC methods, as evidenced by several recent
benchmark calculations.28−39 Growing interest in efficient
utilization of peta- and soon-to-be exa-scale computational
resources has stimulated an intensive development of various
tensor libraries40−53 that can be exploited in generating scalable
CC codes for homogeneous as well as for many-core/multicore
computer systems.54−61 Nevertheless, in all above-mentioned
examples of canonical CC implementations the storage
requirement will quickly grow as a function of the system
size to become a storage and communication bottleneck when
going from mid- (102 to 103 basis functions) to large-scale (103

to 104 basis functions) CC calculations. Although it has been
shown that by employing integral-direct algorithms the storage
requirement can be greatly minimized, the integral-direct way
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a

b

Figure 5: (a) Linear relationship between m the number of Cholesky vectors and N
b

for all
the studied carbon-hydrogen systems. ✓CD is ranging from 10�6 to 10�2. The inset reveals
the relationship between the slopes of linear fitting curves (y = k ·x+b) and log10(✓CD). The
black dashed line shows the dimension of the Coulomb-type two-electron integral tensor, i.e.
N

b

(N
b

+1)/2. (b) Average number of SVD vectors per Cholesky vector (n̄SVD) as a function
of N

b

for all the carbon-hydrogen systems. The fitting function is y = a · log10(x + c) + b
with a, b, and c fitting parameters. For all the tests in (b), both ✓CD and ✓SVD were set to
10�4.
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a b s t r a c t

In this letter, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors
to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal
blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permu-
tation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of
high-dimensional tensor contractions in post-Hartree-Fock calculations. Here, we discuss the second-
order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as exam-
ples to demonstrate the efficiency of this technique in representing the two-electron integrals in a com-
pact form.

! 2017 Elsevier B.V. All rights reserved.

1. Introduction

Expensive tensor contractions are often the bottleneck of the
accurate electronic structure calculations. A typical example is
the coupled-cluster (CC) model [1–7]. Even though its accuracy
can be systematically improved by including higher excitations
in an iterative or perturbative manner, high numerical overhead
and high memory requirements associated with performing con-
tractions between high dimensionality tensors representing cluster
amplitudes and two-electron integrals tensors in a parallel imple-
mentation precludes this formalism from being applied to large
systems. For example, the CCSD(T) approach [8] scales as O(N7)
with N representing the system size, and the corresponding mem-
ory requirements are proportional to N4. To reduce the high
numerical overhead and high memory demands of the CCmethods,
low-rank representations of the involved tensors are highly
expected. Since the amplitudes tensors defining the corresponding
wave function are only known after achieving convergence in the
iterative process, the a-priori decomposition of the cluster ampli-
tudes, given highly non-linear character of the CC equations, may
be a challenging task. Instead, in this letter we will focus on low-
rank representations of the two-electron integral tensors which
can be calculated prior to the CC calculations. Typically, this can

be done by invoking well-established procedures such as the
density-fitting [9–16] or incomplete pivoted Cholesky decomposi-
tion (CD) [17–20] methods to represent the atomic two-electron
integral tensor in terms of the products of low-rank tensors. In
practice, both methods have their merits, and the CD method
may be preferred since the accuracy of the decomposition can be
controlled to arbitrary precision. However, the number of the Cho-
lesky vectors resulting from the above approach is usually very
large and the cost of the tensor contractions using Cholesky vectors
still can lead to a considerable numerical effort. Unfortunately, the
situation may become even worse when using the CD technique to
decompose a non-diagonally dominant integral tensor (e:g.
exchange-type). In this case, the number of the Cholesky vectors
can be significantly larger than the size of the basis set.

Remarkably, the two-electron integral tensor will become
sparse as system size increases. For a sparse tensor, it is well-
known that an optimal reordering of columns/rows can reduce
tensor decomposition procedure, thereby reducing the space and
time required to perform the factorization [21,22]. Moreover, in
the corresponding parallel implementations, the reordering can
even improve the parallel performance [23,24]. In practice, com-
puting the optimal reordering is NP-complete, thus heuristic
reordering algorithms are often used, such as the minimum degree,
the Cuthill-McKee (CM), the reverse Cuthill-McKee (RCM), the
Sloan, and the nested dissection orderings [25,22,26–28]. It seems
that the potential applications of these algorithms in the areas of
electronic structure theory are still under development. To the best
of our knowledge, there were only few attempts in the past to

http://dx.doi.org/10.1016/j.cplett.2017.01.056
0009-2614/! 2017 Elsevier B.V. All rights reserved.
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TAMM (Tensor Algebra for Many-body Methods) 

▪ TAMM 
▪ C++
▪ Dense tensor algebra system

▪ Extension to sparse tensors 
(under development) 

▪ Specification of tensor 
expression in a domain-specific 
language

▪ Offline analysis & optimization 
▪ Online optimization (under 

development)
▪ Interoperability with existing TCE 

implementations

Example TAMM input 
(Tensor Algebra for Many-body Methods) 
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t1 { 
 
index h1,h2,h3,h4,h5,h6,h7,h8 = O; 
index p1,p2,p3,p4,p5,p6,p7 = V; 
 
array i0[V][O]; 
array f[N][N]: irrep_f; 
array v[N,N][N,N]: irrep_v; 
array t_vo[V][O]: irrep_t; 
array t_vvoo[V,V][O,O]: irrep_t; 
array t1_2_1[O][O]; 
array t1_2_2_1[O][V]; 
array t1_3_1[V][V]; 
array t1_5_1[O][V]; 
array t1_6_1[O,O][O,V]; 
 
t1_1:       i0[p2,h1] += 1 * f[p2,h1]; 
t1_2_1:     t1_2_1[h7,h1] += 1 * f[h7,h1]; 
t1_2_2_1:   t1_2_2_1[h7,p3] += 1 * f[h7,p3]; 
t1_2_2_2:   t1_2_2_1[h7,p3] += -1 * t_vo[p5,h6] * v[h6,h7,p3,p5]; 
t1_2_2:     t1_2_1[h7,h1] += 1 * t_vo[p3,h1] * t1_2_2_1[h7,p3]; 
t1_2_3:     t1_2_1[h7,h1] += -1 * t_vo[p4,h5] * v[h5,h7,h1,p4]; 
t1_2_4:     t1_2_1[h7,h1] += -1/2 * t_vvoo[p3,p4,h1,h5] * v[h5,h7,p3,p4]; 
t1_2:       i0[p2,h1] += -1 * t_vo[p2,h7] * t1_2_1[h7,h1]; 
t1_3_1:     t1_3_1[p2,p3] += 1 * f[p2,p3]; 
t1_3_2:     t1_3_1[p2,p3] += -1 * t_vo[p4,h5] * v[h5,p2,p3,p4]; 
t1_3:       i0[p2,h1] += 1 * t_vo[p3,h1] * t1_3_1[p2,p3]; 
t1_4:       i0[p2,h1] += -1 * t_vo[p3,h4] * v[h4,p2,h1,p3]; 
t1_5_1:     t1_5_1[h8,p7] += 1 * f[h8,p7]; 
t1_5_2:     t1_5_1[h8,p7] += 1 * t_vo[p5,h6] * v[h6,h8,p5,p7]; 
t1_5:       i0[p2,h1] += 1 * t_vvoo[p2,p7,h1,h8] * t1_5_1[h8,p7]; 
t1_6_1:     t1_6_1[h4,h5,h1,p3] += 1 * v[h4,h5,h1,p3]; 
t1_6_2:     t1_6_1[h4,h5,h1,p3] += -1 * t_vo[p6,h1] * v[h4,h5,p3,p6]; 
t1_6:       i0[p2,h1] += -1/2 * t_vvoo[p2,p3,h4,h5] * t1_6_1[h4,h5,h1,p3]; 
t1_7:       i0[p2,h1] += -1/2 * t_vvoo[p3,p4,h1,h5] * v[h5,p2,p3,p4]; 
 
} 
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▪ Quick deployment of various
many-body methodologies:
‣ CC ground-state
‣ EOMCC formulation 
‣ Linear response CC
‣ CC Green’s function methods  
‣ Multi-reference CC methods
‣ …



Illustrative examples of TAMM perfromance



Other examples (1)



Other examples (2) 



PNNL’s science challenges that require 
many-body simulations 

§ Active sites in proteins
‣ Effect of the environment in the active site function

§ Enzymatic reactions
§ Metabolic processes/metabolic cycles (effect of biotic and abiotic 

factors/stresses) 
§ Catalysis/photo-catalysis (low-pressure/low-temperature)
§ Catalytic conversion of biomass to biofuels 
§ Electron transport in biological systems (long-range processes, 

respiration processes, DNA damage & DNA repair mechanisms)
§ Interactions of biological systems with light

To describe these  processes a detailed characterization 
of energetics & dynamics is needed: reliable methods 
are needed (cutting corners is not always a good idea)



Ongoing projects targeting exa-scale 
(conventional) computing 

‣ NWChem
• Gaussian basis DFT / plane-wave DFT / high-accuracy methods / multi-scale 

methods
‣ NWChemEx (ex-scale extension of NWChem)

• Ground-state CC formulations (canonical/reduced-scaling)
– DLPNO-CC formulations for ground-state calculations

‣ SPEC 
• Equation-of-motion CC formalisms
• Relativistic approaches 
• Hierarchical Green’s function approaches:

– GW /Bethe-Salpeter/ Cumulant theory 
– GF(n) perturbative approached 
– CC Green’s function formulation
– Self-energy embedding  

• MRCC methods

 SPEC: Scalable Predictive methods for i 
 Excitation and Correlated phenomena 

 

 



SPEC: Scalable Predictive methods for 
Excitations and Correlated Phenomena

 SPEC: Scalable Predictive methods for 1 
 Excitation and Correlated phenomena 

1. Introduction 

The proposed Center for Scalable, Predictive methods for Excitation and Correlated phenomena 
(SPEC) will enable scientists to simulate excited states and excited state processes with unprecedented 
predictive power and orders-of-magnitude greater computational performance than current methods. 
This will remove a major barrier to realizing discoveries from next-generation experiments at BES light 
sources and accelerate progress on Grand Challenges in fields such as solar energy capture, catalysis, 
and energy storage. Our multidisciplinary team of internationally recognized researchers will couple the-
oretical and computational breakthroughs to deliver scalable, open-source software libraries suitable for 
simulating realistic systems on extreme-scale leadership computing facilities. 

The DOE Office of Basic Energy Sciences (BES) provides extraordinary research capabilities through its 
investments in user facilities, including light sources that enable state-of-the-art studies of the spectra of 
molecules in various energy regimes. Research using these light sources is vital to answering fundamental 
science questions that will shape our nation’s energy future. However, theoretical and computational bar-
riers inhibit their full utilization. The spectra of complex molecular systems from these light sources are 
interpreted using simplified models because the lack of accuracy and computational efficiency limits sci-
entists’ ability to simulate these spectra for realistic molecular systems. We will develop theoretical and 
computational capabilities that will dramatically advance scientists’ ability to analyze and simulate the 
data being produced by BES light sources as well as similar facilities around the world (Figure 1.1). 

The SPEC team consists of national laboratory and 
university researchers—theoretical and computational 
chemists, computer scientists, and applied mathemati-
cians—who have collaborated to develop and utilize in-
novative computational chemistry approaches in the 
past. SPEC’s multidisciplinary approach will couple the-
oretical breakthroughs with cutting-edge computational 
implementations to deliver scalable, open-source soft-
ware libraries suitable for simulating realistic systems on 
DOE’s Leadership Computing Facilities (LCFs). These 
open-source libraries will be interoperable with other 
community electronic structure software and will be 
available at DOE’s LCFs. 

To achieve these computational advances, we will 
implement state-of-the-art, high-accuracy, scalable com-
putational methods for the accurate treatment of electron 
correlation, which is essential for describing valence- 
and core-level electronic excitations in molecules. We 
will also rigorously integrate several levels of quantum-
chemical methods to enable calculations on molecules 
and their local environment. Simultaneously, we will de-
velop new scalable programming models and open-
source libraries, leveraging the ongoing NWChemEx project’s advances towards redesign and reimple-
mentation of NWChem for exascale computers. In addition to supporting BES light sources, the planned 
computational modeling capabilities will be broadly applicable to BES missions including solar energy 
conversion, artificial photosynthesis, carbon-based materials, solvation chemistry, catalysis, and geo-
chemistry as well as understanding the phenomena in ultrafast femtosecond processes. 

Eight nationally and internationally regarded users of light sources have submitted letters indicating 
their intent to closely interact with the SPEC team, assisting the development of and providing experi-
mental data that can be used for validating the simulation libraries that are developed in the project. 

 
Figure 1.1. Our proposed approach (SPEC) will 
provide the necessary link to interpret spectra ob-
tained at light sources. This advancement will ena-
ble us to realize the full capability of DOE’s exper-
imental and computational user facilities. 
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T4 Scalable Multi-Configurational and Multi-Reference Meth-
ods for Quasi-Degenerate Molecular Systems (G1, G2) 

T5 Self-Energy Embedding Approaches (G1, G2) 
T6 Programming Models, Computer Science Tools, and Opti-

mization for Many-Body Methods (G3) 
Team member task roles are delineated in the below section 
headings and described in more detail in section 4.1.2.  
2.1 Comprehensive Research Program 
2.1.1 Task 1: Accurate Equation-of-Motion Coupled Cluster 
(EOMCC) Formalisms for Valence Excited States  
(Kowalski, Aprà, Li, Krishnamoorthy) 
Scientific Goal (G1, G2): Develop theoretical approaches to treat 
valence excitations that are based on hierarchical description of 
electron correlation. 

In recent years the EOMCC and closely related linear response 
CC (LRCC) as well as symmetry adapted cluster approaches86-89 
have set the accuracy benchmark for other, less accurate ap-
proaches and established the importance of correlation effects. 
High-quality EOMCC and multireference coupled cluster 
(MRCC) methodologies have been successfully employed in the-
oretical studies of core-level excited states, X-ray absorption 
spectra, and core-ionization potentials, all of which require detailed treatment of correlation effects.66-68 
We propose to capitalize on our past experience and track record in these areas in order to develop scala-
ble libraries for: 
• EOMCC methods that include higher-order excitations in both iterative and non-iterative manners: 

EOMCCSD(T), EOMCCSDT, and general active-space EOMCC methods. 
• EOMCC gradients for characterizing ground and excited state potential energy surfaces. 
• EOMCC models based on relativistic two-component Hamiltonians. 

The details of the proposed efforts are outlined below. 
Canonical EOMCC implementations: The non-iterative EOMCC methods that provide approximate 
treatments for the effect of triply excited configurations can be viewed as an excited-state counterpart of 
the ubiquitous CCSD(T) approximation90 used in ground-state calculations. These include EOMCCSD(T) 
and EOMCCSD(𝑇𝑇�)91,92 formulations by Watts and Bartlett, linear response CCSDR(3) and CCSDR(T) 
corrections,93 perturbative triples corrections by Hirata et al.,94,95 perturbative corrections to spin-flip 
model,96 and the completely renormalized family of the EOMCCSD(T) corrections (CR-EOMCCSD(T), 
CR-EOMCC(2,3)),97-101 In analogy to the CCSD(T) approach, these methods are characterized by an N7 
numerical complexity, where N is related to the system size. 

A wealth of evidence garnered over the last decade in large-scale simulations with perturbative (T) 
methods, such as the CR-EOMCCSD(T) formalism, clearly indicates the increasing importance of triply 
excited configurations for systems composed of 200–300 correlated electrons even for excited states dom-
inated by single excitations. Triple excitations are likely to be even more important in the description of 
excited-state potential energy surfaces. Using novel programming models (see T6) we will develop scala-
ble implementations of several high-level EOMCC methodologies for medium and large scale molecular 
systems. This effort will include the non-iterative EOMCCSD(T) approaches, the iterative EOMCCSDT 
approach, and general-active space EOMCC formulations (vide infra).  

The so-called active-space CC/EOMCC formulations have been shown to provide accurate valence 
excitation energies for a large class of molecular systems.102-104 We propose to extend these ideas beyond 
valence excited states and develop customized selections of active orbitals for describing several classes 

 

Figure 2.1. SPEC consists of an inte-
grated approach combining method devel-
opment, computer tools and optimization 
(Tasks T1–T6) that will deliver scalable 
open-source libraries. 



Hybrid computing 

§ Having 100-200 qubits, what can we do?:
‣ A: Perform  quickly CC/unitary-CC calculations 

for 50-100  (or more) orbitals?
‣ B: Perform quickly FCI calculations for 50-100 

orbitals?
‣ C: Perform FCI calculations for 50-100 orbitals in 

“no time” and integrate it   with conventional  CC 
calculations for 1,000-2,000- or more orbitals 



Hybrid computing 

Perhaps accuracy of many-body models utilizing 
quantum computing can be further amplified by 
integrating them with conventional computational 
models at exa-scale?



Hybrid computing 
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With rapid recent advances in quantum technology, we are close
to the threshold of quantum devices whose computational pow-
ers can exceed those of classical supercomputers. Here, we show
that a quantum computer can be used to elucidate reaction mech-
anisms in complex chemical systems, using the open problem of
biological nitrogen fixation in nitrogenase as an example. We dis-
cuss how quantum computers can augment classical computer
simulations used to probe these reaction mechanisms, to signifi-
cantly increase their accuracy and enable hitherto intractable sim-
ulations. Our resource estimates show that, even when taking
into account the substantial overhead of quantum error correc-
tion, and the need to compile into discrete gate sets, the necessary
computations can be performed in reasonable time on small quan-
tum computers. Our results demonstrate that quantum computers
will be able to tackle important problems in chemistry without
requiring exorbitant resources.

quantum computing | quantum algorithms | reaction mechanisms

Chemical reaction mechanisms are networks of molecular
structures representing short- or long-lived intermediates

connected by transition structures. The relative energies of all
stable structures determine the relative thermodynamical stabil-
ity. Differences of the energies of local minima and connecting
transition structures determine the rates of interconversion, i.e.,
the chemical kinetics of the process. As they enter exponential
expressions, very accurate energy differences are required for the
reliable evaluation of the rate constants. At its core, the detailed
understanding and prediction of complex reaction mechanisms
then requires highly accurate electronic structure methods. How-
ever, the electron correlation problem remains, despite decades
of progress (1), one of the most vexing problems in quantum
chemistry. Although approximate approaches, such as density
functional theory (DFT) (2), are very popular, their accuracy is
often too low for quantitative predictions (see, e.g., refs. 3 and
4); this holds particularly true for molecules with many energet-
ically close-lying orbitals. For such problems on classical com-
puters, much less than a hundred strongly correlated electrons
are already out of reach for systematically improvable ab initio
methods that could achieve the required accuracy.

The apparent intractability of accurate simulations for such
quantum systems led Richard Feynmann to propose quantum
computers. The promise of exponential speedups for quantum
simulation on quantum computers was first investigated by Lloyd
(5) and Zalka (6) and was directly applied to quantum chemistry
by Lidar, Aspuru-Guzik, and others (7–11). Quantum chemistry
simulation has remained an active area within quantum algorithm
development, with ever more sophisticated methods being used
to reduce the costs of quantum chemistry simulation (12–20).

The promise of exponential speedups for the electronic struc-
ture problem has led many to suspect that quantum computers
will one day revolutionize chemistry and materials science. How-
ever, a number of important questions remain. Not the least of
these is the question of how exactly to use a quantum computer
to solve an important problem in chemistry. The inability to point
to a clear use case complete with resource and cost estimates is

a major drawback; after all, even an exponential speedup may
not lead to a useful algorithm if a typical, practical application
requires an amount of time and memory that is beyond the reach
of even a quantum computer.

Here, we demonstrate, for an important prototypical chemical
system, how a quantum computer would be used, in practice, to
address an open problem, and we estimate how large and how
fast a quantum computer would have to be to perform such cal-
culations within a reasonable amount of time. Our findings set a
target for the type and size of quantum device that we would like
to emerge from existing research and further gives confidence
that quantum simulation will be able to provide answers to prob-
lems that are both scientifically and economically impactful.

The chemical process that we consider in this work is that
of biological nitrogen fixation by the enzyme nitrogenase (22).
This enzyme accomplishes the remarkable transformation of
dinitrogen into two ammonia molecules under ambient condi-
tions. Whereas the industrial Haber–Bosch catalyst requires high
temperature and pressure and is therefore energy-intensive, the
active site of Mo-dependent nitrogenase, the iron molybdenum
cofactor (FeMoco) (23, 24), can split the dinitrogen triple bond
at room temperature and standard pressure. Mo-dependent
nitrogenase consists of two subunits, the Fe protein, a homod-
imer, and the MoFe protein, an ↵2�2 tetramer. Fig. 1 shows
the MoFe protein of nitrogenase (Fig. 1, Left) and the FeMoco
buried in this protein (Fig. 1, Middle). Despite the importance
of this process for fertilizer production that makes nitrogen
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§ Quantum FCI calculations for nitrogen fixation by the enzyme nitrogenase

§ Externally corrected/Tailored  CC  formalisms (DMRG à CCSD)

length is slightly worse than the CCSD value, which is however
justifiable as the CCSD methods works well around the energy
minimum where the wave function exhibits single-reference
nature. Nevertheless, the error of 0.006 Å for the TCCSD-
(10,19) equilibrium bond length represents fairly good
accuracy. The TCCSD(6,6) dissociation energy (De) computed
as the difference of the N2 energy at the optimum geometry
and the double of the N atom energy equals 213.7 kcal/mol
and lies 11 kcal/mol under the experimental value (De

exp = 225
kcal/mol71). It improves the CASSCF(6,6) dissociation energy
by 10 kcal/mol and the CCSD dissociation energy by 6.5 kcal/
mol (De

CASSCF(6,6) = 203.8 kcal/mol; De
CCSD = 207.2 kcal/mol).

The last system that we have computed is oxo-Mn(Salen). It
catalyzes the enantioselective epoxidation of unfunctional
olefins72,73 and has been studied extensively with different
multireference methods,74−76 most recently also with the
DMRG methodology.45,77,78 Despite huge efforts, the energetic
ordering of the lowest singlet and triplet states is still not clear,
and proper answer requires studies of the effect of dynamic
correlation. The ordering of the lowest spin states is an
important issue indeed because different reaction paths have
been suggested depending on the spin state.79 To the best of

our knowledge, we report the first “post-DMRG” computations
of this system.
In the case of oxo-Mn(Salen), we followed the work of

Olivares-Amaya et al.45 in selection of the active space. The
active space contained 5 Mn 3d orbitals, 10 π orbitals of the
equatorial conjugated rings (C, N, O atoms), 4 equatorial 2p
orbitals forming Mn−N and Mn−O σ bonds, 3 2p orbitals for
axial O, as well as Cl atoms, which resulted in CAS(34,25). The
split-localized molecular orbitals forming the DMRG active
space with their respective mutual information are presented in
Figure 2. Our TCCSD and DMRG 1A and 3A energies together
with previous DMRG and DMRG-SCF results are listed in
Table 3. As can be seen, our DMRG(34,25) results agree with
the DMRG-SCF results of Wouters et al.77 in predicting the 3A
state to be the ground state.80 In our case, the singlet−triplet
gap is higher in absolute value, which can be assigned to the fact
that we did not optimize the orbitals. However, inclusion of the
dynamic correlation through the TCCSD approach decreases
the gap, suggesting that the 3A state is lower in energy than the
1A state by 3.6 kcal/mol.
In this Letter, we have presented a novel method for accurate

treatment of strongly correlated molecules that , in the spirit of
TCC,7,15,16,19 combines the CC theory, in particular, CCSD,

Table 2. Spectroscopic Parameters of the X1Σg
+ Electronic State of N2 Calculated with the cc-pVTZ Basis Together with the

Experimental Values Taken from Reference 71 along with Vibrational Frequencies (ωe) and Anharmonicities (ωexe), Bond
Lengths, and Absolute Values of Deviations from the Experimental Results

ωe (cm
−1) |Δωe| (cm−1) ωexe (cm

−1) |Δωexe| (cm−1) r0 (Å) |Δr0| (Å)
CCSD 2423.3 64.7 12.75 1.57 1.0967 0.0010
TCCSD(6,6) 2376.3 17.7 13.57 0.75 1.1009 0.0032
DMRG(10,19) 2298.8 59.8 13.72 0.60 1.1112 0.0135
TCCSD(10,19) 2347.3 11.3 13.91 0.41 1.1036 0.0059
experiment 2358.57 14.324 1.09768

Figure 2. CAS split-localized orbitals and their mutual information (M = 512) for 1A and 3A states of oxo-Mn(Salen) with the 6-31G* basis. The
mutual information is color-coded: the thick red lines correspond to the strongest correlations (order of magnitude 1), followed by black (10−1),
pink (10−2), and gray (10−3). One-site entropy values are represented by a color gradient of the respective dot, red being the largest value and white
being zero.
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ABSTRACT: In the past decade, the quantum chemical version
of the density matrix renormalization group (DMRG) method has
established itself as the method of choice for calculations of
strongly correlated molecular systems. Despite its favorable
scaling, it is in practice not suitable for computations of dynamic
correlation. We present a novel method for accurate “post-
DMRG” treatment of dynamic correlation based on the tailored
coupled cluster (CC) theory in which the DMRG method is
responsible for the proper description of nondynamic correlation,
whereas dynamic correlation is incorporated through the
framework of the CC theory. We illustrate the potential of this
method on prominent multireference systems, in particular, N2
and Cr2 molecules and also oxo-Mn(Salen), for which we have performed the first post-DMRG computations in order to shed
light on the energy ordering of the lowest spin states.

The coupled cluster (CC) approach, introduced to
quantum chemistry (QC) by Čiźěk,1 is one of the most

accurate ab initio methods for the treatment of dynamic
electron correlation. The advantages of this scheme include a
compact description of the wave function, size-extensivity,
invariance to orbital rotations, together with a systematic
hierarchy of approximations converging toward the full
configuration interaction (FCI) limit.2 Despite the great success
of QC and, in particular, the CC methodology3 in standard
(single-reference) cases, the situation is dramatically different
for strongly correlated (multireference) systems,4 where the
usual single-reference approaches become inaccurate or even
completely break down. One category of methods designed for
the treatment of such systems are multireference coupled
cluster (MRCC) approaches, which generalize the CC
exponential parametrization of the wave function.5−7 Out of
many formulations of MRCC theories, the class of methods
relevant to this work are externally corrected CC, which extract
information about the most important higher excitations or
active space single and double excitations from an “external”
calculation performed by a different method like complete
active space self-consistent field (CASSCF) or multireference
configuration interaction (MRCI).8−19 In this Letter, we
present a further development in this field concerning the
tailored CC (TCC) method, where the information for external
correction is obtained from a density matrix renormalization
group (DMRG) calculation.

DMRG is a very powerful approach suitable for treatment of
strongly correlated systems originally developed in solid-state
physics.20−22 The success of DMRG in this field motivated its
application to QC problems23−31 where it has proven the
potential to outperform traditional QC methods for systems
that require very large active spaces, like molecules containing
several transition metal atoms.32,33 Despite the favorable scaling
of the DMRG method, it is computationally prohibitive to treat
the dynamic correlation by including all virtual orbitals into the
active space. Because the dynamic correlation has in general a
very significant chemical impact, development of “post-DMRG”
methods, which aim to describe this effect, is of high
importance. During the past few years, several such methods
have been developed, for example, DMRG-CASPT2,34 DMRG-
icMRCI,35 canonical transformation (CT),36 or matrix product
state (MPS)-based formulation of a multireference perturbation
theory.37

The general TCC wave function employs the following split-
amplitude ansatz15

|Ψ ⟩ = |Φ ⟩ = |Φ ⟩ = |Φ ⟩+e e e eT T T T T
TCC 0 0 0

ext CAS ext CAS (1)

where TCAS represents the amplitudes obtained from the CI
coefficients of the precomputed complete active space
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Fig. 1. (Left) X-ray crystal structure 4WES (21) of the nitrogenase MoFe protein from Clostridium pasteurianum taken from the protein database (the
backbone is colored in green, and hydrogen atoms are not shown), (Middle) the close protein environment of the FeMoco, and (Right) the structural model
of FeMoco considered in this work (C, gray; O, red; H, white; S, yellow; N, blue; Fe, brown; and Mo, cyan).

from air accessible to plants, the mechanism of nitrogen fixation
at FeMoco is not known. Experiments have not yet been able to
provide sufficient details on the chemical mechanism, and theo-
retical attempts are hampered by intrinsic methodological limi-
tations of traditional quantum chemical methods.

Quantum Chemical Methods for Mechanistic Studies
At the heart of any chemical process is its mechanism, the elucida-
tion of which requires the identification of all relevant stable inter-
mediates and transition states. In general, a multitude of charge
and spin states need to be explicitly calculated in search of the rel-
evant ones that make the whole chemical process viable. Such a
mechanistic exploration can lead to thousands of elementary reac-
tion steps (25) whose reaction energies must be reliably calculated.
In the case of nitrogenase, numerous protonated intermediates
of dinitrogen-coordinating FeMoco and subsequently reduced
intermediates in different charge and spin states are feasible and
must be assessed with respect to their relative energy. Especially,
kineticmodelingposes tight limitson theaccuracy ofactivationen-
ergies entering the argument of exponentials in rate expressions.

For nitrogenase, an electrostatic quantum mechanical/molecu-
lar mechanical (QM/MM) model (26) that captures the embed-
ding of FeMoco into the protein pocket of nitrogenase can prop-

chemically ac!ve species
embedded in proper environment

structure
genera!on

kine!c modeling of 
reac!on mechanism

structure
op!miza!on

temperature and
entropic corrections

Classical computer Quantum computer

compute
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energy
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orbital op!miza!on
for ac!ve space

4-index integral
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Fig. 2. Generic flowchart of a computational reaction mechanism elucidation with a quantum computer part that delivers a quantum full configuration
interaction (QFCI) energy in a (restricted) complete active orbital space (CAS). Once a structural model of the active chemical species (here FeMoco, top right)
embedded in a suitable environment (the metalloprotein, top left) is chosen, structures of potential intermediates can be set up and optimized. Molecular
orbitals are then optimized for a suitably chosen Fock operator. A four-index transformation from the atomic orbital to the molecular basis produces all
integrals required for the second-quantized Hamiltonian. Once the quantum computer produces the (ground state) energy of this Hamiltonian, this energy
can be supplemented by corrections that consider nuclear motion effects to yield enthalpic and entropic quantities at a given temperature according to
standard protocols (e.g., from DFT calculations). The temperature-corrected energy differences between stable intermediates and transition structures then
enter rate expressions for kinetic modeling. For complex chemical mechanisms, this modeling might point to the exploration of additional structures.

erly account for the protein environment. Accordingly, we con-
sider a structural model for the active site of nitrogenase (Fig.
1, Right) carrying only models of the anchoring groups of the
protein, which represents a suitable QM part in such calcula-
tions. To study this bare model is no limitation, as it does not at
all affect our feasibility analysis (because electrostatic QM/MM
embedding will not change the number of orbitals considered for
the wave function construction). We carried out (full) molecu-
lar structure optimizations with DFT methods of this FeMoco
model in different charge and spin states to avoid basing our
analysis on a single electronic structure. Although our FeMoco
model is taken from the resting state, binding of a small molecule
such as dinitrogen, dihydrogen, diazene, or ammonia will not
decisively change the complexity of its electronic structure.

The Born–Oppenheimer approximation assigns an electronic
energy to every molecular structure. The accurate calculation of
this energy is the pivotal challenge, here considered by quantum
computing. Characteristic molecular structures are optimized to
provide local minimum structures indicating stable intermedi-
ates and first-order saddle points representing transition struc-
tures. The electronic energy differences for elementary steps
that connect two minima through a transition structure enter
expressions for rate constants by virtue of Eyring’s absolute
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Integrating Full Configuration Interaction (FCI) 
method with single reference CC approaches

§ Externally corrected/Tailored  CC methods
‣ CCSD amplitudes (T1 & T2)  when iterated in the 

presence of exact T3 & T4 operators provide exact 
electronic energies 

𝑓OP 𝑇4, 𝑇5, 𝑇;, 𝑇= = 0

Sources for determining  T3 & 
T4 operators:
• MCSCF
• DMRG

FCI – extracting T3 & T4 through 
cluster analysis of the FCI wave-
function :

𝑒'|Φ⟩ = ln 1 + 𝐶 |Φ⟩
𝑇4 = 𝐶4

𝑇5 = 𝐶5 − 4
5	𝐶4

5

𝑇; = 𝐶; − 𝐶4𝐶5 + 4
;𝐶4

;

…



Methods of Moments of CC equations 
(renormalized CC formulations) 

§ Trial wave-function is needed to calculate renormalized 
corrections 

𝐸 = 𝐸XXOP +
Ψ 𝑀XXOP Φ
Ψ 𝑒'YYZ[ Φ

QFCI wave function:  
ground- and excited-state 
formalisms (when coupled 
with MM EOMCC 
formulations)

“CI-CC compromise” -
sources for the trial wave 
functions:
• CI (approximate)
• CC (approximate)
• perturbative 

(approximate) 



Multi-reference formulations for strongly 
correlated systems

§ MR-MBPT methods
‣ CASPT2 à diagonalization of electronic Hamiltonian in 

the model spaces (40 active orbitals)
• Moving to 50-100 active orbitals would 

significantly extend the applicability range of 
CASPT2 methods

§ MR-CC methods
‣ Diagonalization of effective Hamiltonian in large model 

space



What can be simulated with hybrid 
formulations? 

§ Active sites/Enzymatic reactions/Catalysis:
‣ Externally corrected/Tailored CC methods & renormalized CC for 

systems described by 1,000-3,000 orbitals (400-1200 correlated 
electrons)

‣ Multi-reference methods (CASPT2/MRCC) – models spaces – 100 
orbitals

§ Photo-catalysis
‣ Very accurate EOMCC methods for systems composed of 400-1200 

correlated electrons
‣ Accurate descriptions of excited-state potential energy surfaces (for 

multiple electronic states)
• Assuming that quantum FCI diagonalization algorithm can “lock” 

multiple eigenvalues/eigenvectors 
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