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Enabling developments for defect-based

guantum information
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Measurement-based quantum entanglement

Single defect experiments
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Distributed model of quantum information processing?

Optical image of single defects in
commercial diamond substratel.

(Not just in diamond!)
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Removing the need for local interaction
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Raussendorf, Briegel, PRL 86, 5188 “A one-way quantum computer”
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(Significant portion of my research)

This edge is created when a c-phase gate is applied to the following input states.
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(Output state is local unitary equivalent to a Bell state.)
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Can be created by measurement of emitted photons!
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System requirements (subset)
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> Two atoms must emit identical photons

> Photon must be detected
— Described protocol scales linearly with detection efficiency
— Protocols robust to loss error scale as square of efficiency

> At least 2 qubits per node with local operations

> Entanglement rate should be significantly faster than
decoherence time.
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Many different defect systems
Diamond: NV-, SiV- ,SiV0

— Room temperature second-long spin coherence time
— Phonon assisted optical transitions
SIC VSI-VC’ VSI
— Mature host crystal for device fabrication
— Phonon assisted optical transitions
Si: P, Su
— Silicon!!!
— Nonradiative recombination

Rare-earth doped crystals: Tm3*, Pr3*, Er3*in KTP, YSO, YAG, etc.

— 6-hour quantum memory
— Weak optical transitions

Quantum dots

— Advanced device integration, large oscillator strength
— Short decoherence time (single microseconds)

ZnO: Ga, In, Al
— high optical homogeneity
— near-UV optical transitions



Many different defect systems
Diamond: NV-, SiV- ,SiV0

=""Roomtemperature second-long spin coherence time

Outstanding issues:

LARGE PARAMETER SPACE
S long characterization time
lack of predictive modeling

deterministic defect creation
R degradation of quantum properties with device integration

— Advanced device integration, large oscillator strength
— Short decoherence time (single microseconds)

ZnO: Ga, In, Al
— high optical homogeneity
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Realization of measurement-based
entanglement using NV centers in diamond

Entanglement Fidelity: 0.87

Coherence time: 1s

— Excitation

------- » Emission
BS Beamsplitter
DC Dichroic mirror
ZPL Zero-phonon line
PSB Phonon sideband
MW Microwave control
pol Polarizer

A2 h/4 Waveplates /,/'

Entanglement attempt rate: 100 kHz

Entanglement rate: 4 mHz

Success probability: < 1e-7

——
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Reasons for poor entanglement efficiency:
1) Phonon assisted radiative recombination
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Reasons for poor entanglement efficiency:
2) Difficult to collect the emitted photon
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Solution: use a cavity to enhance NV emission into a
useful spectral and spatial mode
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Mirror 1 Mirror 2
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Santori, Faraon, Fu, Barclay (HP Labs)

Englund (MIT) e (Cavity is on resonance with NV
Lukin/Loncar/Hu (Harvard) . . . .

Wang (U. Oregon) NV is at cavity maximum
Childress (McGill) .

NV electric dipole is aligned to cavity mode.
* High quality factor

Hanson (Delft)

e Small mode volume
Purcell, 1946



And do it all on a chip for
scalability (with the NV
center in diamond for now...)
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Schematic for two-NV entanglement

electrodes to Star
tune NV centers

1) Can we implement all passive components?

2) Can we efficiently extract photons from the NV center?
3) Can we stabilize the NV center optical transition?

4) Can we efficiently detect the photons?
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Passive Photonics
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Gould et al. (UW) JOSA B 33, B35 (2016)

Take away message: performance and fabrication tolerances are reasonable for simple circuits.



Resonant enhancement of the zero-phonon-line
emission from a single NV center

Excite NV
]
) |
& ' , Bus-coupled resonators Grating couplers
\ .. With single NV centers
)
1 , -
Markers fer automated
testing and microscope
stabilization i
Collect =

Gould, Schmidgall, Dadgostar, Hatami, Fu, “Efficient extraction of zero-
phonon-line photons from single nitrogen-vacancy centers in an
UNIVERSITY of WASHINGTON integrated GaP-on-diamond platform,” Physical Review Applied (2016)



Zero Phonon Line Collection

Excite NV
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Single Photon Source

Excite NV
& 50/50 | Coincidence
-\D Counter
- 1
/1 - -~ I
// I _ - - I
¢ I -
[=o |
g WX
/
I ’
\ Collect (2) A
\\—/,  C(Clearg“dip
below 0.5

T (ns)




My groups current efforts in diamond

electrodes to Star
tune NV centers

1) Moving detectors on-chip
2) Tuning and stabilizing the optical transition frequency of near-surface NV centers
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Current efforts in diamond

R2 H - 19 Detectors
T T

=

/

z

&
41 / N,
10 I P 140

AlGaP

GaP
/- I

-

o
N
T

Average Counts (Hz)

/ #  60nm 20um
4 70nm 20um

#  80nm 20um
# 90nm 20um
O 60nm 40um

) 70nm 40um
O 80nm 40um a8
O 90nm 40um b S1

-
o
o

—
<
N

12 14
Bias Current (uA)

8

SN
(0]

1) Moving detectors on-chip
2) Stabilizing the optical transition frequency of near-surface NV centers
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Current efforts in diamond

PLE Scans For 242 NVs
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1) Moving detectors on-chip

2) Tuning and stabilizing the optical transition frequency of near-surface NV centers
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Example of quantum defect “discovery’.
donors in ZnO
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Donors in 4 direct-band gap semiconductors
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Gallium donor in ZnO:

longitudinal spin relaxation time
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Theoretical work still in
progress for wurtzite crystal
structure.
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Double pulse experiment

rotation laser
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Inhomogeneous dephasing time
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(Spin-echo measurement under construction.)



Triple pulse experiment (spin-echo)

a)

rotation laser

pumping laser

L pulse picker
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T2 data In a COmmerCiaI, hlgh-punty substrate- no ”engineering”
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Summary and outlook

> Measurement-based model of quantum computing has
several attractive features
— Qubits do not need directly interact
— Network is created by photons

> Ultilizing defects for the nodes is promising but progress
IS slow

Fiscal Year (FY) 2018 Department of Defense
Multidisciplinary Research Program of the University Research Initiative

could also allow multifunctional sensing. However, the synthesis of isotope free quantum grade novel
host materials, identification and incorporation of unique color centers, characterization of their
quantum properties (coherence times, spectral stability etc.) and the understanding of their interactions
with the external excitations (optical, electrical etc.) still remain significant challenges/unknowns.
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