
Computational Nuclear Physics in the Exascale Era
 - towards the quantum computing era -

US efforts described in report available at http://exascaleage.org
workshop June 15-17, 2016; M. Savage, JC, and many others

Outline:

• Hot QCD
• Cold QCD
• Nuclear Structure and Reactions
• Nuclear Astrophysics
• Experimental Nuclear Physics

computational nuclear physics provides key bridges between
different areas of nuclear science:

from the quark-gluon plasma to hadrons to nuclei and stars   



New exascale computing ecosystem offers a unique opportunity:
• Huge increase in computational capability 
• Important advances in software and algorithms
• Diverse nuclear science enabled through exascale computing

Grand Challenges

.How Did Visible Matter Come into Being and  
    how Does It Evolve?

 How Does Subatomic Matter Organize Itself  
    and What Phenomena Emerge?

 Are the Fundamental Interactions Basic to the Structure  
    of Matter Fully Understood?

 How Can the Knowledge and Technological Progress Provided  
by Nuclear Physics Best Be Used to Benefit Society?



RHIC Double Beta Decay

Nuclear 
Physics  

Facilities & 
Experiments



Rich Ties to Many Fields of Physics

Cold Fermionic Atoms
2 solar mass neutron stars

and mergers

core-collapse supernovae
accelerator neutrino experiments



Strongly Correlated Quantum Many-Body Physics 

cautions:
The Schrodinger equation cannot be solved accurately when  the number of 
particles exceeds about 10. No computer existing,  or that will ever exist, can 
break this barrier because it is a  catastrophe of dimension ... 
Pines and Laughlin (2000) 

In general the many electron wave function Ψ  ... for a system of N electrons is 
not a legitimate  scientific concept [for large N] 
Kohn (Nobel lecture, 1998) 

                                  

Must solve the quantum many-body problem

 but often we do not need a complete description of the system:
thermal properties, samples of path integral, cluster expansions,…

Quantum Monte Carlo, Coupled Cluster, CI, IMSRG, …



World-wide effort

Sunway TaihuLight (China)

Titan (US)

K Computer (Japan)

Piz Daint (Switzerland)



Rank System Cores

Rmax

(TFlop/s)

Rpeak

(TFlop/s)

Power

(kW)

1 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway (/system/178764), NRCPC 
National Supercomputing Center in Wuxi (/site/50623) 
China

10,649,600 93,014.6 125,435.9 15,371

2 Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon
Phi 31S1P (/system/177999), NUDT 
National Super Computer Center in Guangzhou (/site/50365) 
China

3,120,000 33,862.7 54,902.4 17,808

3 Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100
(/system/177824), Cray Inc. 
Swiss National Supercomputing Centre (CSCS) (/site/50422) 
Switzerland

361,760 19,590.0 25,326.3 2,272

4 Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz
(/system/179102), ExaScaler 
Japan Agency for Marine-Earth Science and Technology (/site/49318) 
Japan

19,860,000 19,135.8 28,192.0 1,350

5 Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x (/system/177975),
Cray Inc. 
DOE/SC/Oak Ridge National Laboratory (/site/48553) 
United States

560,640 17,590.0 27,112.5 8,209

6 Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom (/system/177556), IBM 
DOE/NNSA/LLNL (/site/49763) 
United States

1,572,864 17,173.2 20,132.7 7,890

7 Trinity - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect (/system/178610), Cray Inc. 
DOE/NNSA/LANL/SNL (/site/50334) 
United States

979,968 14,137.3 43,902.6 3,844

8 Cori - Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz, Aries interconnect (/system/178924), Cray Inc. 
DOE/SC/LBNL/NERSC (/site/48429) 
United States

622,336 14,014.7 27,880.7 3,939

9 Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, Intel Omni-Path
(/system/178932), Fujitsu 
Joint Center for Advanced High Performance Computing (/site/50673) 
Japan

556,104 13,554.6 24,913.5 2,719

10 K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect (/system/177232), Fujitsu 
RIKEN Advanced Institute for Computational Science (AICS) (/site/50313) 
Japan

705,024 10,510.0 11,280.4 12,660
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2012
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JUNE 2012
For the first time since November 2009, a United States supercomputer sits atop the TOP500 list of the world’s top supercomputers. Named Sequoia, the IBM

BlueGene/Q system installed at the Department of Energy’s Lawrence Livermore National Laboratory achieved an impressive 16.32 petaflop/s on the Linpack

benchmark using 1,572,864 cores.

Sequoia is also one of the most energy efficient systems on the list, which will be released Monday, June 18, at the 2012 International Supercomputing

Conference in Hamburg, Germany. This will mark the 39th edition of the list, which is compiled twice each year.

On the latest list, Fujitsu’s “K Computer” installed at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe, Japan, is now the No. 2 system with

10.51 Pflop/s on the Linpack benchmark using 705,024 SPARC64 processing cores. The K Computer held the No. 1 spot on the previous two lists.

The new Mira supercomputer, an IBM BlueGene/Q system at Argonne National Laboratory in Illinois, debuted at No. 3, with 8.15 petaflop/s on the Linpack

benchmark using 786,432 cores. The other U.S. system in the Top 10 is the upgraded Jaguar at Oak Ridge National Laboratory in Tennessee, which was the top

U.S. system on the previous list and now clocks in at No. 6.

The newest list also marks a return of European systems in force. The most powerful system in Europe and No.4 on the List is SuperMUC, an IBM iDataplex

system installed at Leibniz Rechenzentrum in Germany. Another German machine, the JuQUEEN BlueGene/Q at Forschungszentrum Juelich, is No. 8.

Italy makes its debut in the Top 10 with an IBM BlueGene/Q system installed at CINECA. The system is at No. 7 on the list with 1.72 Pflop/s performance. In all,

four of the top 10 supercomputers are IBM BlueGene/Q systems. France occupies the No. 9 spot with a homegrown Bull supercomputer.

China, which briefly took the No. 1 and No.3 spots in November 2010, has two systems in the Top 10, with Tianhe-1Aat the National Supercomputing Center in

Tianjin in No. 5 and Nebulae at the National Supercomputing Centre in Shenzhen No. 10.

Total performance of all the systems on the list has increased considerably since November 2011, reaching 123.4 Pflop/s. The combined performance of the last

list was 74.2 Pflop/s. In all, 20 of the supercomputers on the newest list reached performance levels of 1 Pflop/s or more. The No. 500 machine on the list

notched a performance level of 60.8 teraflop/s, which was enough to reach No. 332 just seven months ago.

TOP 10 Sites for June 2012
For more information about the sites and systems in the list, click on the links or view the complete list (/list/2012/06).

Rank System Cores
Rmax
(TFlop/s)

Rpeak
(TFlop/s)

Power
(kW)

1 Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom (/system/177556), IBM 
DOE/NNSA/LLNL (/site/49763) 
United States

1,572,864 16,324.8 20,132.7 7,890

2 K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect (/system/177232), Fujitsu 
RIKEN Advanced Institute for Computational Science (AICS) (/site/50313) 
Japan

705,024 10,510.0 11,280.4 12,660

3 Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom (/system/177718), IBM 
DOE/SC/Argonne National Laboratory (/site/47347) 
United States

786,432 8,162.4 10,066.3 3,945

4 SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR (/system/177719),
IBM/Lenovo 
Leibniz Rechenzentrum (/site/48248) 
Germany

147,456 2,897.0 3,185.1 3,423

5 Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 (/system/176929), NUDT 
National Supercomputing Center in Tianjin (/site/50310) 
China

186,368 2,566.0 4,701.0 4,040

1-100 (/list/2012/06?page=1) 101-200 (/list/2012/06?page=2) 201-300 (/list/2012/06?page=3) 301-400 (/list/2012/06?page=4)

401-500 (/list/2012/06?page=5)

6x speed,   7x cores, 2x power (10-12x from 10 years ago)



Hot QCD

RHIC - recreating conditions similar to the early Universe:
•          high T - low baryon density
•          LQCD has provided accurate equation-of-state,
•          moving to finite baryon density
•          dynamics and transport coefficients (‘perfect fluid’)



Hot QCD: Equation of State
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Figure 13. The total energy density (upper two curves) of (2+1)-flavor QCD for µB/T = 0 and 2, respectively. The lower two
curves show corresponding results for three times the pressure. The dark lines show the results obtained with the stout action
from analytic continuation with sixth order polynomials in µ̂B [14].
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, k = 1, 3, 5 . (37)

Here t̄ = Tc/T and the QCD transition temperature Tc = 154 MeV is used as a convenient normalization. Similarly
we define the parametrization of the expansion coe�cients for the electric charge chemical potential,

qk(T ) =
qk,0n + qk,1nt̄+ qk,2nt̄2 + qk,3nt̄3 + qk,4nt̄4

1 + qk,1dt̄+ qk,2dt̄2 + qk,3dt̄3 + qk,4dt̄4
, k = 1, 3, 5 . (38)

The parameters for these interpolating curves are summarized in Table I.
The expansion coe�cients of the pressure are then obtained by using Eqs. 32-34. The resulting interpolating

curves for Pk are shown as darker curves in Fig. 8. All other interpolating curves shown as darker curves in other
figures have been obtained by using the above interpolations. In particular, interpolating curves for the energy and
entropy densities are obtained by using Eqs. 35 and 36 and calculating analytically temperature derivatives of the
parametrizations of Pn and qn given in Eqs. 37 and 38. The resulting interpolating curves for the second and fourth
order Taylor expansion coe�cients are shown in Fig. 12.

We also used a ratio of fourth order polynomials to interpolate results for the pressure at µB = 0. We write the
pressure as

P (T, µB = 0)

T 4

=
p
0n + p

1nt̄+ p
2nt̄2 + p

3nt̄3 + p
4nt̄4

1 + p
1dt̄+ p

2dt̄2 + p
3dt̄3 + p

4dt̄4
. (39)

The coe�cients pin and pid are also given in Table I.

VI. LINES OF CONSTANT PHYSICS TO O(µ4
B)

We want to use here the Taylor series for bulk thermodynamic observables, i.e. the pressure, energy and entropy
densities, to discuss contour lines in the T -µB plane on which these observables stay constant. It has been argued quite
successfully that the thermal conditions at the time of chemical freeze-out in heavy ion collisions can be characterized
by lines in the T -µB plane on which certain thermodynamic observables or ratios thereof stay constant [32, 33],
although the freeze-out mechanism in the rapidly expanding fireball created in a heavy ion collision is of dynamical
origin and will in detail be more complicated (see for instance [34]). While lines of constant physics (LCPs) involving
total baryon-number densities, as used in [32, 33], are not appropriate for calculations within the framework of
quantum field theories, other criteria like lines of constant entropy density in units of T 3 [35] or constant pressure
[36–38] have been suggested to characterize freeze-out parameters (Tf , µ

f
B) corresponding to heavy ion collisions at

Total energy density for finite μB
6th order taylor expansion

Hot QCD collab: PRD (2017)

Crossover at μB =0
Wuppertal-Budapest JHEP (2010)

Chiral vs deconfinement transition

• There is no true phase transition in QCD, only a crossover.
• QCD explicity breaks both center and chiral symmetry.
• We use both the Polyakov loop or the chiral condensate the crossover

! Tc values overlap

Wuppertal-Budapest: JHEP 1009 (2010) 073
A. Pásztor (Uni Wuppertal) The phase diagram of QCD and the lattice June 1st 2017 14 / 50
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Hot QCD: transport properties

Initial energy density distribution generated in a HI collision (left), and at τ = 6 fm/c 
for two values of η/s = 0 (middle) and η/s = 0.16 (right). 

(Images from B. Schenke.) 

Extracting shear viscosity over entropy from HI collisons:
realizing the perfect fluid

Relativistic Hydrodynamics



Cold QCD
• Hadron spectroscopy and structure 
• Reaching towards nuclear physics from LQCD
• Fundamental symmetries and new physics

80

DOE EXASCALE REQUIREMENTS REVIEW — NP/ASCR

Path to Exascale in Fundamental Symmetries  
and New Physics

 � 2016: Calculate the dominant contributions to the nEDM. 

 � 2020: Estimate short-distance two-nucleon distance interactions 

contributing to 0νββ and nuclear EDMs and complete precision 

calculations of leading contributions to proton decay and to the rate of 

neutron–antineutron oscillations.

 � 2025: Complete precision calculations of the two- and three-nucleon 

short-distance interactions contributing to 0νββ decay of nuclei and of 

interactions contributing to nEDM and nuclear EDMs.

3.4.2.5  Simulating the Quantum Vacuum: Generation of Gluon Field 
Configurations
A critical common element in addressing the science objectives in cold QCD with lattice QCD is 
the simulation of the strong interaction quantum vacuum (the results of a recent calculation are 
shown in Figure 3-36). More precisely, lattice QCD calculations of quantities of importance to 
cold nuclear physics involve sampling the zero-temperature correlations between the gluon fields 
at different points in space-time. In order to optimize scientific output, significant coordination 
among scientists is required in designing, producing, and analyzing these ensembles of gluon-field 
configurations that are generated through Markov Chain Monte Carlo techniques. We expect that 
this coordination will continue through the exascale era.

Figure 3-36. The quantum 
fluctuations of the gluon 
fields captured in a field 
configuration in one ensemble. 
The solid regions show 
enhanced action density and 
the vectors show orientation 
of a component of the gluon 
fields in space-time. (Image 
reproduced with permission 
from Derek Leinweber.)

The key algorithm for gauge generation, HMC algorithm and its variants, is a hybrid molecular 
dynamics (MD) Markov Chain method utilizing Hamiltonian MD in a fictitious MD-time with 
Metropolis Accept/Reject steps. Area-preserving and time-reversible MD integrators are used in 
order to satisfy detailed balance, which, along with ergodicity, is sufficient to correctly sample the 
equilibrium gluon-field probability distributions. At each step of the MD, solution of the lattice 
Dirac  governing quark–gluon interactions is required, which is the dominant cost of current gauge 
generation. The solvers have traditionally been Krylov subspace iterative methods for sparse 
systems, such as conjugate gradients (CG) or stabilized biconjugate gradients (BiCGStab). The cost 
of these methods is driven by the condition number of the lattice Dirac operator, scaling inversely 

starting with gauge configurations 
(computationally very demanding)



Cold QCD: Hadrons
 Hadron Spectroscopy
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Figure 1. Lattice QCD results on the octet and decuplet baryon masses compared to the
experimental values shown by the horizontal bands. Results by ETMC are shown in red circles.
Left: using N

f

= 2+1+1 ensembles after performing a chiral extrapolation (statistical errors are
shown in red, whereas the blue error bar includes an estimate of the systematic errors due to the
chiral extrapolation [6]. Right: for the physical ensemble [7]. In both plots we also show results
using clover fermions from BMW [8] (magenta squares), from PACS-CS [9] (green triangles),
and from QCDSF-UKQCD collaborations [10] using N

f

= 2 + 1 SLiNC configurations (blue
inverted triangles). Open symbols show the baryon mass used as input to the calculations.

Figure 2. Results by ETMC are shown in red circles for the mass of the spin-1/2 (left) and spin-
3/2 (right) charmed baryons for the physical ensemble. Included are results from various hybrid
actions with staggered sea quarks from Refs. [11] (purple triangles), [12] (magenta diamonds)
and [13] (orange inverted triangles). Results from PACS-CS [14] are shown in green triangles.

in the large Euclidean time limit, after projecting to zero momentum, ~q = ~0.
In Fig. 2 we show the spectrum of the octet and decuplet baryons. We show two sets of

results using twisted mass fermions (TMF). One set is obtained with N

f

= 2 + 1 + 1 gauge
configurations at three lattice spacings, determined using the nucleon mass as a = 0.094 fm,
0.082 fm and 0.065 fm. Thus results can be extrapolated to the continuum limit. The continuum
results are chirally extrapolated using heavy baryon chiral perturbation theory to leading and
next to leading order. We take the di↵erence between the two orders as an estimate of the
systematic error due to the chiral extrapolation, which constitutes the biggest systematic error
on the results as can be seen by the blue error bars [6]. Results obtained at two di↵erent lattice
volumes and showed no observable e↵ect within our statistics and thus volume corrections were
not performed. The other set of TMF results shown in Fig. 2 is obtained using simulations
with physical values of the light quark masses (physical ensemble), thus requiring no chiral

Baryon masses
Alexandrou (2014)

Meson masses
(orange: glue
quant. #s)
Dudek, 2013
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take. The method known as lattice QCD makes the approximation of 
considering these fields on a discrete grid of points describing a restricted 
region of space-time. A finite, but large, number of possible configura-
tions of the fields on this grid can be generated using random sampling on 
a computer, and a good approximation for observable hadron properties 
obtained. The volume of the grid and number of field configurations 
required to achieve useful precision demands substantial computational 
resources. Total computational times of several teraflop-years are not 
unusual for contemporary calculations, with such efforts making use 
of ‘leadership-class’ supercomputing facilities—future precision lattice 
QCD calculations of increased sophistication will require petaflop-scale 
machines.

Lattice QCD has been applied with substantial success to a broad range 
of processes involving hadrons19, including the spectrum and internal 
structure of the lightest hadrons20, the behaviour of hadrons at non-zero 
temperature, relevant in collisions of heavy ions21, and heavy flavour 
decays, in which a heavy quark confined inside a meson decays through 
the weak interaction22.

Lattice QCD as a tool for hadron spectroscopy
Our interest is in the determination of properties of excited hadrons, 
where obtaining a high degree of numerical precision is an issue that is 
secondary to the more basic question of whether certain states exist or do 
not. In the past few years we have seen excellent progress in overcoming 
the challenges posed by these calculations. Exploration of the excited 
hadron spectrum is possible using an approach in which each state in the 
spectrum is produced by a different combination of quark and gluon field 
constructions, and for this method to be successful, a large set of possible 
constructions is required. The dynamics of QCD, implemented by the 
sum over possible field configurations, determines which combination 
of constructions is present in each state in the spectrum. A scheme out-
lined in refs 23 and 24 includes many constructions resembling qq pairs 
with various orbital motions and radial wavefunctions, motivated by the 
success of the qq rule in describing the experimental hadron spectrum. 
More elaborate structures are possible, though, and refs 23 and 24 
included several that feature the gluon field in a non-trivial way, inspired 
by the possibility that hybrid mesons may be allowed by QCD.

This large set of constructions, coupled with advances in computa-
tional techniques25, and the application of state-of-the-art computing 
hardware26,27, led to the pioneering results presented in Fig. 4 for the 
spectrum of mesons constructed from light up and down quarks. The 
computational challenges of these calculations currently require the  
utilization of masses for the lightest quarks that are heavier than the phys-
ical up and down quark masses, which leads to a systematic shift in the 
computed meson masses. However, since the immediate goal is to under-
stand the underlying QCD dynamics by studying the pattern of states, 
rather than precisely to predict the mass of each meson, the computed 
spectrum allows us to develop intuitive rules for constructing hadrons 
that generally apply for quarks of any mass.

The spectrum presented in Fig. 4 qualitatively reproduces many of the 
features of the experimental light meson spectrum, and further it reflects 
the simple picture of qq mesons, with the bulk of the states fitting into the 
pattern expected for states excited with increasing amounts of orbital 
angular momentum and/or excitations in the radial quantum number. 
There are some notable exceptions to this pattern, however, in particular 
the 0−+, 1−− and 2−+ states between 2.1 GeV and 2.4 GeV do not have an 
obvious explanation, and most strikingly there is a clear spectrum of states 
with exotic JPC =  1−+, 0+− and 2+−, which cannot be constructed from a 
qq pair alone.

These additional mesons, which go beyond the set predicted by the qq 
rule, have a natural explanation as quark–gluon hybrid mesons. 
Previously, estimates for the spectrum of hybrid mesons came only from 
models, which made educated guesses for the behaviour of the strongly 
coupled gluons inside a hadron. Different guesses led to very different 
predictions for the number and mass of hybrid states28–34. Using the lattice 
QCD technique, we are now able to predict a definitive pattern of states 
directly from the fundamental interactions as prescribed by QCD. Further 
calculations35–37, performed with larger values of the quark mass, up as 
high as the charm quark mass, show the same pattern of hybrid mesons, 
and they are found to be consistently 1.3 GeV heavier than the lightest 
JPC =  1−− meson. The particular pattern of states and the simple mass gap 
leads to a new rule of hadron construction for hybrid mesons, namely: 
combine qq constructions with a gluonic field that has JPC =  1+− and a 
mass of about 1.3 GeV to form the spectrum of hybrid mesons in QCD. 
This is the first example of a rule following from a QCD calculation rather 
than being inferred from experimental observations38.

Of course this rule must be verified by producing and studying hybrid 
mesons in the laboratory, and many current and near-future experiments 
include searches for these states in their programmes. Some hybrid meson 
candidates have already been observed experimentally in both the light 
meson sector14–18 and in the charm region. For example, the Y(4260) 
discussed in the previous section has JPC =  1−−, approximately the right 
mass relative to the J/ψ, and it seems to appear in addition to the expected 
qq excitations. The new rule of hybrid meson construction would have 
this meson partnered with states of JPC =  (0, 1, 2)−+ at a similar mass. 
Searches for these states are underway.

Calculating how hadrons decay
These calculations of the excited meson spectrum within QCD represent 
a major step forward in our understanding of hadron spectroscopy, but 
they still make approximations that fail to capture an important feature 
of excited hadrons—that they are resonances, decaying rapidly to lighter 
hadrons. As can be seen in Figs 2 and 3, in simple cases, excited states 
appear as characteristic peaks in the rate of observation of certain final-
state mesons, and lattice QCD calculations should be capable of repro-
ducing this behaviour.

Experimentally, resonances are often observed to decay preferentially 
into certain sets of mesons and not others, and these patterns can be used 
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Figure 4 | Lattice QCD computation of the 
meson spectrum. The spectrum is computed 
with light-quark masses such that mπ   =  392 
MeV (ref. 67). The spectrum features sets of 
states compatible with the nL assignments of a 
qq  model (see Fig. 1), but also (shown in blue) 
states that do not have a place in such a model. 
These states can be interpreted as hybrid 
mesons in which a qq  pair is partnered with an 
excitation of the gluon field38—their presence 
suggests a new rule of hadron construction  
that includes gluons. (The height of each box 
represents the estimated uncertainty in the 
calculation.)
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Cold QCD: Hadrons

Hadronic Structure:
•Radii
•Form factors (e, v scattering)
•Parton distributions and TMD
•Fundamental symmetries: g-2, nEDM

neutron EDM

proton radius
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for the four ensembles a12m310, a09m130, a06m220 and
a06m135. Including the O(a) improvement of the axial

current, the ratios in Eqs (29)–(32) become
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Light Nuclear Structure from LQCD:

• NN (and other) scattering
• Binding of dibaryons and light nuclei 
• Magnetic moments of Light Nuclei
• NN EW matrix elements

Light Nuclear Spectra (NPLQCD)

NN interaction
central, tensor

near physical point
(HAL QCD)

Fig. 5. NN central force VC(r) in 3S 1-3D1 (I = 0)
channel obtained at t = 7, 8, 9.

Fig. 6. NN tensor force VT (r) in 3S 1-3D1 (I = 0)
channel obtained at t = 7, 8, 9.

4. Summary

We have presented the first lattice QCD calculations of baryon forces which employ almost phys-
ical quark masses. Nf = 2+ 1 dynamical clover fermion gauge configurations have been generated at
the lattice spacing of a ≃ 0.085 fm on a (96a)4 ≃ (8.2fm)4 lattice, where (mπ,mK) ≃ (146, 525) MeV.
Baryon forces have been calculated using the time-dependent HAL QCD method.

In this report, we have shown the preliminary results for ΞΞ and NN systems. In the ΞΞ(1S 0)
central force, we have observed a strong attraction, although it is not strong enough to form a bound
state. In the ΞΞ (3S 1-3D1) channel, we have observed the strong repulsive core in the central force.
Also a small ΞΞ tensor force with opposite sign from the NN tensor force has been found. Nuclear
forces have been studied as well in 1S 0 and 3S 1-3D1 channels. In particular, we have observed a clear
signal of the tensor force. Investigations with larger statistics are under progress.
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Cold QCD: towards nuclear currents

[47] and the finite-volume effects in the matrix elements are
negligible [62,63]. At lighter values of the quark masses,
where the npð1S0Þ system and/or the deuteron is unbound
or only weakly bound, the connection between finite-
volume matrix elements and transition amplitudes requires
the framework developed in Refs. [62,63].
To isolate the two-body contribution, the combination

Lsd-2b
1;A ðtÞ=ZA ¼ ½R3S1;1S0ðtÞ − 2RpðtÞ%=2 is formed as shown

in the lower panel of Fig. 3. Taking advantage of the near
degeneracy of the 3S1 and 1S0 two-nucleon channels at the
quark masses used in this calculation, it is straightforward
to show that this correlated difference leads directly to the
short-distance two-nucleon quantity Lsd-2b

1;A . Fitting a con-
stant to the late-time behavior of this quantity leads to

Lsd-2b
1;A

ZA
¼ h3S1; Jz ¼ 0jA3

3j1S0; Iz ¼ 0i − 2gA
2ZA

¼ −0.011ð01Þð15Þ; ð13Þ

where the first uncertainty is statistical and the second
encompasses fitting and analysis systematics.
In light of the mild quark-mass dependence of the

analogous short-distance, two-body quantity contributing
to np → dγ [39], Lsd-2b

1;A is likely to be largely insensitive to
the pion mass between mπ ∼ 806 MeV and its physical
value. This approximate independence and the associated
systematic uncertainty will need to be refined in subsequent
calculations. Based on this expectation, the result obtained
here at mπ ∼ 806 MeV is used to estimate the value of

Lsd-2b
1;A at the physical pion mass by including an additional

50% additive uncertainty. Propagating this uncertainty
through Eq. (8), the threshold value of ΛðpÞ in this system
at the physical quark masses is determined to be
Λð0Þ ¼ 2.659ð2Þð9Þð5Þ, where the three uncertainties are
the statistical uncertainty, the fitting and analysis systematic
uncertainty, and the quark-mass extrapolation systematic
uncertainty, respectively. Uncertainties in the scattering
parameters and other physical mass inputs are also propa-
gated and included in the systematic uncertainty. This result
is remarkably close to the currently accepted, precise
phenomenological value Λð0Þ ¼ 2.65ð1Þ [11] (see also
Ref. [57]). The N2LO relation of Ref. [4], when enhanced
by the summation of the effective ranges to all orders
using the dibaryon field approach [10,59,60], gives
Λð0Þ¼2.62ð1Þþ0.0105ð1ÞL1;A, enabling a determination
of the πEFT coupling,

L1;A ¼ 3.9ð0.2Þð1.0Þð0.4Þð0.9Þ fm3; ð14Þ

at a renormalization scale μ ¼ mπ . The four uncertainties
are the statistical uncertainty, the fitting and analysis
systematic uncertainty, the mass extrapolation systematic
uncertainty, and a power-counting estimate of higher order
corrections in πEFT, respectively. This value is also very
close to previous phenomenological estimates, as summa-
rized in Refs. [11,14].
Summary.—The primary results of this work are the

isovector axial-current matrix elements in two- and three-
nucleon systems calculated directly from the underlying
theory of the strong interactions using lattice QCD (see also
the Supplementary Material [64]). These matrix elements
determine the cross section for the pp fusion process pp →
deþν and the Gamow-Teller contribution to tritium β decay,
3H → 3He e−ν. While the calculations are performed at
unphysical quark masses corresponding to mπ ∼ 806 MeV
and at a single lattice spacing and volume, the mild mass
dependence of the analogous short-distance quantity in the
np → dγ magnetic transition enables an estimate of
the pp → deþν matrix element at the physical values of
the quark masses, and the results are found to agree within
uncertainties with phenomenology. Future LQCD calcu-
lations, including electromagnetism beyond Coulomb
effects, at lighter quark masses with isospin splittings,
larger volumes, and finer lattice spacings, making use of the
new techniques that are introduced here, will enable
extractions of these axial matrix elements with fully
quantified uncertainties and will be important for phenom-
enology, providing increasingly precise values for the pp-
fusion cross section and GT matrix element in tritium
β decay.
Beyond the current study, background axial-field

calculations also allow the extraction of second-order, as
well as momentum-dependent, responses to axial fields.

FIG. 3. Ratios of correlation functions that determine the
unrenormalized isovector axial matrix element in the Jz¼ Iz¼0
coupled two-nucleon system (upper panel), and the unrenormal-
ized difference between the axial matrix element in this channel
and 2gA (lower panel). The orange diamonds (blue circles)
correspond to the SS (SP) effective correlator ratios and the bands
correspond to fits to the asymptotic plateau behavior and include
only the statistical and fitting systematic uncertainties (the
additional 1% uncertainty from Wigner symmetry breaking is
not represented in the bands).
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Nuclear Structure and Reactions: interactions and currents

E. Epelbaum 855

LO (ν = 0) NLO (ν = 2) NNLO (ν = 3)

N3LO (ν = 4)

FIG. 1: Two–nucleon force up to N3LO. Solid (dashed) lines denote nucleons (pions). Solid dots, filled circles, filled rectangles and crossed
circles refer to vertices with ∆i = 0, 1, 2 and 4, respectively.
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FIG. 2: np differential cross section and vector analyzing power at Elab = 25 MeV (left panel), Elab = 50 MeV (middle panel) and Elab = 96
MeV (right panel). The light (dark) shaded bands show the NNLO (N3LO) results. The Nijmegen PWA result is taken from [17]. For data see
[15].

chiral symmetry. Consequently, the chiral order ν is bounded
from below and for any given ν only a finite number of dia-
grams needs to be taken into account. Notice further that the
boundary ν∏ 2N°4, which follows from eq. (2) for connec-
ted diagrams, implies a rather natural picture, in which nu-
cleons interact mainly via 2N forces while many–body forces
provide small corrections.

As shown in Fig. 1, the general structure of the NN force in
the chiral EFT approach can be expressed as

V2N =VNN+V1π+V2π+V3π+ . . . , (3)

where the NN contact terms VNN and the pion–exchange con-
tributions can be obtained order–by–order, see eqs. (1) and

(2):

VNN = V (0)
NN +V (2)

NN +V (4)
NN + . . . ,

V1π = V (0)
1π +V (2)

1π +V (3)
1π +V (4)

1π + . . . ,

V2π = V (2)
2π +V (3)

2π +V (4)
2π + . . . ,

V3π = V (4)
3π + . . . . (4)

Here the superscript means the chiral order ν. The NN poten-
tial was first worked out up by Ordóñez, Ray and van Kolck
[5], who derived an energy–dependent, non–hermitian two–
nucleon (2N) potential up to next–to–next–to–leading order
(NNLO) in the chiral expansion and applied it to the nucleon–
nucleon system. The explicit energy dependence of the po-
tential is a severe complication for applications in three– (3N)
and more–nucleon systems. Energy–independent expressions
for the chiral potential at NNLO have been derived by seve-
ral groups independently using different methods [6–8] and

NN interactions 

NN currents 
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NLO NNLO N3LO Exp
Ed [MeV] °2.171 . . .°2.186 °2.189 . . .°2.202 °2.216 . . .°2.223 °2.224575(9)
AS [fm°1/2] 0.868 . . .0.873 0.874 . . .0.879 0.882 . . .0.883 0.8846(9)
ηd 0.0256 . . .0.0257 0.0255 . . .0.0256 0.0254 . . .0.0255 0.0256(4)

TABLE I: Deuteron observables at NLO, NNLO and N3LO in chiral EFT in comparison to the data.

FIG. 3: 3N force at NNLO. For notation see Fig. 1
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FIG. 4: Nd elastic observables at 65 MeV.

applied to the 2N system in [9]. Recently, N3LO correc-
tions to the 2N force have been calculated by Kaiser [10–
13] and applied to study the properties of the 2N system in
[14, 15]. In our N3LO analysis [15], a novel regularization
scheme for pion loop integrals in the 2π–exchange potential
is applied, which is based on the spectral–function representa-
tion [16] and allows for a better separation between the long–
and short–distance contributions compared to dimensional re-
gularization. Within this scheme, we found the 3π–exchange
contribution to the potential to be negligibly small. We have
fixed 24 LECs related to contact interactions with up to four
derivatives from a fit to np phase shifts in S–, P– and D–waves
and the corresponding mixing angles.

The resulting potential at N3LO leads to an accurate des-
cription of the phase shifts and the low–energy observables in
the 2N system. In Fig. 2 we show the NNLO and N3LO results
for np differential cross section and vector analyzing power
at three different energy. The bands correspond to the varia-
tion of the cut–offs in the spectral–function representation of
the potential and in the Lippmann–Schwinger equation. They
may serve as a rough estimation of the theoretical uncertainty,
which at N3LO is expected to be of the orderª 0.5%, 7% and
25% at laboratory energy ª 50, 150 and 250 MeV, respecti-
vely, see [15] for more details.

In Table I we show our predictions for the deuteron binding
energy, asymptotic S–wave normalization AS and asymptotic
D/S ratio at various orders in chiral EFT. All these observa-
bles are well described at N3LO.

III. THREE AND MORE NUCLEONS

3N and 4N systems have been studied at NLO [18] and
NNLO [19] in the chiral EFT framework solving rigorously
the Faddeev–Yakubovsky equations in momentum space.
Chiral 3N force starts formally to contribute at NLO (ν = 2),
see eq. (2). It is, however, well known that the leading 3N
force at this order vanishes provided one uses an energy–
independent formulation such as the method of unitary trans-
formation [8, 20], see also [21–23]. Consequently, only
the 2N interaction needs to be taken into account at NLO,
which is already completely fixed from the 2N system. The
first nonvanishing 3N forces appear at NNLO and are given
by the diagrams shown in Fig. 3 [19, 22]. While the 2π–
exchange contribution is parameter–free, the 1π–exchange
and contact interactions depend on one parameter each. These
two parameters cannot be determined in the 2N system and
were fixed from the triton binding energy and the nd doublet
scattering length. Our prediction for the α–particle binding
energy based upon the resulting parameter–free 3N Hamilto-
nian, BE(4He) = °29.51 . . .° 29.98 MeV, agrees well with
the empirical (corrected for missing nn and pp forces) num-
ber, °29.8 MeV.
We also observe good description of the 3N scattering data

at NNLO at low and intermediate energies. For example, dif-
ferential cross section and vector analyzing power for elastic
Nd scattering at Elab = 65 MeV are shown at NLO (light sha-
ded band) and NNLO (dark shaded band) in Fig. 4.
Recently, first and very promising parameter–free results

for the 1+ ground and 3+ excited states of 6Li were obtai-
ned using chiral forces at NLO and NNLO within the no–core
shell model framework [24]. At NNLO both the ground and
excited state energies are reproduced within the theoretical un-
certainty of 5.7% and 7.6% (based on the cut–off variation),
respectively.

IV. SUMMARY AND OUTLOOK

Chiral EFT provides a systematic framework to study the
low–energy dynamics of hadronic systems. Recent applica-
tions in the few–nucleon sector show promising results. The
two–nucleon system has been studied at N3LO. Accurate re-
sults for the deuteron and low–energy scattering observables
have been obtained. 3N, 4N and 6N systems have been analy-
zed at NNLO. For the first time, the chiral 3N force has been
included in few–body calculations. In the future, N3LO analy-
sis of the 2N system should be extended to heavier systems.
One should also consider reactions with external electroweak

3N 
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experiment.

TABLE I AV18+IL7 GFMC results for A  12 nuclear ground states, compared to experimental values (Amroun et al., 1994;
NNDC, 2014; Nörtershäuser and et al., 2009; Nörtershäuser et al., 2011; Purcell et al., 2010; Shiner et al., 1994; Tilley et al.,
2002, 2004). Numbers in parentheses are statistical errors for the GFMC calculations or experimental errors; errors of less than
one in the last decimal place are not shown.

AZ(J⇡;T ) E (MeV) r
p

[r
n

] (fm) µ (µ
N

) Q (fm2)
GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+; 0) �2.225 �2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3H( 1

2

+

; 1

2

) �8.47(1) �8.482 1.59 [1.73] 1.58 2.960(1) 2.979
3He( 1

2

+

; 1

2

) �7.72(1) �7.718 1.76 [1.60] 1.76 �2.100(1) �2.127
4He(0+; 0) �28.42(3) �28.30 1.43 1.462(6)
6He(0+; 1) �29.23(2) �29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) �31.93(3) �31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) �0.082(2)
7He( 3

2

�
; 3

2

) �28.74(3) �28.86 1.97 [3.32(1)]
7Li( 3

2

�
; 1

2

) �39.15(3) �39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 �3.9(2) �4.06(8)
7Be( 3

2

�
; 1

2

) �37.54(3) �37.60 2.51 [2.32] 2.51(2) �1.42(1) �1.398(15) �6.6(2)
8He(0+; 2) �31.42(3) �31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) �41.14(6) �41.28 2.11 [2.47] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Be(0+; 0) �56.5(1) �56.50 2.40(1)
8B(2+, 1) �37.51(6) �37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8C(0+; 2) �24.53(3) �24.81 2.94 [1.85]
9Li( 3

2

�
, 3

2

) �45.42(4) �45.34 1.96 [2.33] 2.11(5) 3.36(4) 3.439 �2.3(1) �2.74(10)
9Be( 3

2

�
, 1

2

) �57.9(2) �58.16 2.31 [2.46] 2.38(1) �1.29(1) �1.178 5.1(1) 5.29(4)
9C( 3

2

�
, 3

2

) �38.88(4) �39.04 2.44 [1.99] �1.35(4) �1.391 �4.1(4)
10Be(0+; 1) �64.4(2) �64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) �64.7(3) �64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10C(0+; 1) �60.2(2) �60.32 2.51 [2.25]
12C(0+; 0) �93.3(4) �92.16 2.32 2.33
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The target problem for the next decade will be to study the physics of neutron-rich nuclei that are 
important for the creation of all the heavy elements in the universe.

Figure 3-18. Nuclei calculated in ab initio approaches prior to 2005 (upper panel) and now (lower panel). Exascale 
computing will enable ab initio calculations for many of the nuclei critical to the synthesis of the heavy elements. 
(Image available in Hergert et al. 2016.)Ab Initio Methods
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FIG. 5. Isosurface of proton densities are plotted for the two model discussed in the text over the range of baryon densities at a fixed proton
fraction of Yp = 0.05. The total number of nucleons is fixed at A = 2000 and the side of the cubic box varies from 40.55 fm down to 27.14 fm,
corresponding to average baryon densities of 0.03 ! ρ ! 0.10 fm−3, respectively.

this result is likely due to the system being not equilibrated. At
even higher density of ρ = 0.05 fm−3, the former now has two
rod-like structures only, whereas the latter has three rod-like
structures and two nuclei within the simulation box. The
corresponding effective proton fractions rise in both models,
meaning there are more free neutrons in the system now (see
Table IV). Since the symmetry energy rises faster as a function
of density in the model with L = 80 MeV, the effective proton
fraction also gets boosted further, as evidenced by the results
shown on Table IV and displayed in Fig. 6.

At ρ = 0.06 fm−3, in UNEDF1, the rod-like structures now
start getting fused in the perpendicular direction. As density
is increased to ρ = 0.07 fm−3 rods get further fused and the
system consists of a continuous crest-like structure (recall that
the system is periodic). On the other hand, at ρ = 0.06 fm−3,
the phase coexistence between rods and nuclei continues to
exist in UNEDF1⋆, whereas at ρ = 0.07 fm−3 we observe a
combination of P surface [75] and a flat plate, also known as
the lasagna phase. This means that pure rod-like structures in
models with the stiff symmetry energy can only exist within a

055804-8

Pasta phases in dense matter
F. J. Fattoyev, et al. 2017

OCTUPOLE DEFORMATION IN THE GROUND STATES OF . . . PHYSICAL REVIEW C 93, 044304 (2016)
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FIG. 12. The same as Fig. 1, but for the 226Th obtained with indicated CEDFs.

smaller (|!Eoct| is typically around 0.5 MeV) than in the
actinides. Thus, the stabilization of octupole deformation at
the ground state is less likely in this region as compared with
actinides.

Second, the results obtained with DD-MEδ still differ
from the ones obtained with other functionals. However,
the differences are less pronounced as compared with the
actinides where the RHB results obtained with this functional
contradict drastically experimental data and the results of other
functionals. One can also see in Fig. 14 that the topologies
of the PESs obtained with the five employed functionals are
similar; the only difference is the fact that octupole minimum
is somewhat deeper in the DD-ME2 and DD-PC1 CEDFs as
compared with other functionals. Note that we do not discuss
the details of the results obtained with CEDF DD-MEδ in the
following.

In this mass region we focus on the presentation of the
RHB results and their comparison with nonrelativistic ones.
In general, the island of octupole deformation predicted
in the RHB calculations is close to the ones obtained in
nonrelativistic calculations. Moreover, it is close to the one
extracted from experimental data, indicating either octupole
deformation or enhanced octupole correlations (see Ref. [1]
for details). However, a detailed interpretation of experimental
data in this mass region at the mean-field level is complicated
by the fact that PES are extremely soft in the octupole
direction which favors the fluctuations and vibrations in this
degree of freedom. For example, expected parity doublets in
odd-mass nuclei, which are clear fingerprints of static octupole
deformation [1], are frequently not observed even near the
center of the island of octupole deformation in the lanthanides
[18,19,26].
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FIG. 13. The same as Fig. 3, but for the Ba, Ce, and Nd isotopes.
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fission pathways: Th isotopes
S. E. Agbemava, et al, 2016
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FIG. 7. Calculated fission barrier heights in MeV in the re-
gion 84  Z  120 and 118  N  250 for three di↵erent
mass models: BCPM (this study, upper panel), HFB14 [16]
(middle panel) and FRLDM [13] (lower panel). Drip lines
are represented by dashed black lines. The solid black lines
show the r-process path, given by the heaviest isotope of each
nuclei with Sn � 2MeV.

viation between BCPM and FRLDM is 2.31 MeV. The
major di↵erences between BCPM and HFB14 are found
in neutron rich actinides where HFB14 predicts fission
barriers larger by 2-3 MeV, and around Z/N = 97/187
and 106/196 where BCPM barriers are roughly 2 MeV
larger.

Another quantity of major interest for astrophysical
calculations is the energy window for neutron-induced
fission given as the di↵erence between the highest fis-
sion barrier height and the neutron separation energy
Bf � Sn. This quantity indicates whether the produc-
tion of superheavy nuclei during the r-process can by
inhibited by neutron-induced fission, recycling the mate-
rial to lighter fission products. Fig. 8 shows the values of
Bf �Sn obtained with the BCPM EDF. In principle, an
appropriate estimation of the r-process path would re-
quire a network calculation taking into account neutron
captures, beta- decays and photodissociations. However,
from simple arguments it is still possible to make a rough
estimation of where the r-process path will be terminated
by the neutron-induced fission. For typical astrophysical
conditions in neutron star mergers, the r-process path
is supposed to proceed along nuclei with constant neu-
tron separation energy Sn ⇠ 2–3 MeV [57]. On the other
hand, the excitation energy of a nucleus after captur-
ing a neutron is given by the neutron separation energy.
From these arguments one one concludes that nuclei with
Bf�Sn ⇠ 2MeV will immediately fission after capturing
a neutron [58, 59]. Fig. 8 shows how the r-process path is

FIG. 8. Energy window for the neutron-induced fission
Bf � Sn computed with the BCPM EDF. The solid black
line represents the r-process path, given by the heaviest iso-
tope of each nuclei with Sn � 2MeV. The drip line predicted
by the BCPM EDF is represent by dashed line.

stacked along nuclei with N = 184 until Z = 102, where
the disappearance of the jump in the neutron separa-
tion energy described in Sec. II B allows to overcome the
waiting point. However, at this point the r-process path
has already proceeded into the region of low fission bar-
riers where Bf � Sn drops below zero (Z/N = 102/190).
Therefore, we may expect the r-process nucleosynthesis
of superheavy nuclei to be terminated by the neutron
induced fission in the region around Z/N = 102/190.

C. Systematic of fission lifetimes

The trend of the fission barriers gives only a rough
hint of the stability of the nucleus against the fission
process. As it was already explained in Sec. IIA, the
probability of the system to penetrate the fission bar-
rier is determined by a complex process where several
ingredients must be taken into account and it can not be
solely determined by the height of the barrier. A more
complete picture can be therefore obtained studying the
trend of the spontaneous fission lifetimes and the con-
tribution of the di↵erent terms entering in Eq. (3). In
this section we will study the sensitivity of the sponta-
neous fission lifetimes to variations in the collective iner-
tiasM(Q20), the vibrational energy corrections ✏vib(Q20)
and the collective ground state energy E0. Fig. 9 shows
the tsf obtained from Eq. (3) using the three di↵erent
schemes of the collective inertias described in Sec. II A.
For the ATDHFB and GCM schemes the vibrational en-
ergy corrections are consistently computed using Eq. (9)
and (10). For the semiempirical inertias we arbitrary
choose the ✏ATDHFB

vib (Q20) scheme. Regarding the collec-
tive ground state energy, all the lifetimes were obtained
with E0 = 0.5 MeV. Due to the arbitrariness in the choice
of these last two parameters, the second part of this sec-
tion will be devoted to study the sensitivity of the life-
times on ✏vib and E0.
From Fig. 9 it is possible to conclude that the trend

of the spontaneous fission lifetimes resembles the general
trend of the maximum fission barrier height plotted in

fission properties of superheavies
Samuel A. Giuliani, et al (2017)
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energy functionals, which will include finite-range and/or three-body nuclear forces. The target 
problem for the next decade will be to develop quantum mechanical tools for precision nuclear 
spectroscopy and determine the ground state and decay properties of all atomic nuclei involved 
in nucleosynthesis.

Figure 3-21. Spontaneous 
fission yields of 240Pu predicted 
in nuclear DFT. Exascale 
computing will enable more 
accurate treatments of 
spontaneous and induced 
fission, which are important 
in many applications and in 
r-process nucleosynthesis. 
(Image used with permission 
from Witek Nazarewicz; 
available in Sadhukhan 
et al. 2016.)

Path to Exascale in Quantified Heavy Nuclei
 � 2016: Determine quantified masses, spontaneous fission half-lives, and 
yields for even-even nuclei.

 � 2020: Determine neutron-induced fission and 0νββ rates with 
microscopically constrained nuclear energy functionals.

 � 2025: Identify global nuclear physics inputs, with theoretical 
uncertainties, for r-process nuclei.

3.3.2.5  Dense Nucleonic Matter
What is the Nature of Dense Nucleonic Matter in the Cosmos and on Earth? 
The properties of dense matter are critical to the study of compact objects in nuclear astrophysics, 
including especially NSs and CCSNe. These environments form the key to creating all the heavy 
elements in the universe and probing matter at extremely high densities and low temperatures; they 
are the keys to the phase diagram of QCD in this regime. To understand these astrophysical objects, 
one needs to know the EoS of dense matter and also the response to electroweak probes such as 
neutrinos. To this end, an interdisciplinary approach is essential to integrating low-energy nuclear 
experiments and theory with knowledge from astrophysics, atomic physics, computational science, 
and electromagnetic and gravitational-wave astronomy. The input of the exascale NS&R program 
to this mix is essential. It includes ab initio and DFT approaches to the EoS of nuclear matter, 
studies of nuclear matter at both supranuclear and subnuclear densities, as well as development of 
electroweak current models to provide a realistic description of the dynamic properties of dense 
matter (Figure 3-22). The target problems for the next decade will be to determine the EoS for cold 
dense matter for NSs and supernovae; calculate neutrino interactions in dense matter for supernovae 
spectra and proto-NS cooling; and understand superfluidity in dense matter for NS cooling.

Nuclear Structure and Reactions: low energy reactions

Fission Mass DistributionsLight-Ion Fusion

Density Functional Theory



Nuclear Structure and Reactions: high energy reactions
electron and neutrino scattering

scattering as being dominated by a single-nucleon knock
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced by
charge-changing and neutral current processes. In particu-
lar, the energy dependence of the cross section is quite
important in extracting neutrino oscillation parameters. An
earlier study of the sum rules associated with the weak
transverse and vector-axial interference response functions
in 12C found [42] a large enhancement due to two-body
currents in both the vector and axial components of the
neutral current. Only neutral weak processes have been
considered so far, but one would expect these conclusions
to remain valid in the case of charge-changing ones. In this
connection, it is important to realize that neutrino and
antineutrino cross sections differ only in the sign of this
vector-axial interference response, and that this difference
is crucial for inferring the charge-conjugation and parity
violating phase, one of the fundamental parameters of
neutrino physics, to be measured at the Deep Underground
Neutrino Experiment (DUNE)[43].
We conclude by updating in Fig. 3 the results for the

Coulomb sum rule of 12C obtained in Ref. [5]. The
theoretical calculation (solid line) is identical to the one

reported in that work. In the present analysis of the
experimental data (empty and full circles), the inelastic
threshold has been assumed to correspond to the energy of
the 4þ state rather than to that of the 2þ state, as we have
explicitly accounted for the transitions to the low-lying
states. We recall that the empty circles are obtained by
integrating RLðq;ωÞ up to ωmax, the highest measured
energy transfer, while the full circles also include the “tail”
contribution for ω > ωmax and into the timelike region
(ω > q), which cannot be accessed in (e, e0) scattering
experiments, by assuming that the longitudinal response in
12C is proportional to that of the deuteron [5]. As the direct
calculations demonstrate in Figs. 1 and 2, there is non-
vanishing strength in the timelike region (see in particular
the top panels of these figures which extend to ω > q), and
this strength needs to be accounted for before comparing
theory to experiment.
The square data points in Fig. 3 have been obtained by

adding to the full circles the contribution due to the low-
lying Jπ ¼ 2þ, 0þ2 , and 4þ states. Given the choice of
normalization for SLðqÞ in Fig. 3, this contribution is
simply given by the sum of the squares—each multiplied
by Z ¼ 6—of the (longitudinal) transition form factors
listed in Table I. Among these, the dominant one is the form
factor to the 2þ state at a 4.44 MeV excitation energy. The
contributions associated with these states, in particular the
2þ state, were overlooked in the analysis of Ref. [5] and, to
the best of our knowledge, in all preceding analyses—the
difference between the total inelastic and quasielastic
strength alluded to earlier was not fully appreciated.
While they are negligible at large q (certainly at
q ¼ 570 MeV=c), they are significant at low q. They help
to bring theory into excellent agreement with experiment.
Figures 1 and 2 clearly demonstrate that the picture of

interacting nucleons and currents quantitatively describes
the electromagnetic response of 12C in the quasielastic
regime. The key features necessary for this successful

FIG. 2. Same as Fig. 1 but for the electromagnetic transverse
response functions. Because pion production mechanisms are not
included, the present theory underestimates the (transverse)
strength in the Δ peak region; see in particular the q ¼
570 MeV=c case.

FIG. 3. Coulomb sum rule in 12C: theory (black solid line
labeled 1bþ 2b) and analyses of experimental data (blue empty
and full circles labeled EXP-TR and EXP) are from Ref. [5]; the
(red square) data points, labeled EXP-TFF, include the contri-
butions of the low-lying Jπ ¼ 2þ, 0þ2 (Hoyle), and 4þ states,;
see the text for explanations.
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Nuclear Structure and Reactions: double beta decay
low energy but moderate momenta

2

required to fully cover the inverted-hierarchy region de-
pends not only on the masses of the three kinds of neutri-
nos, but also on the nuclear matrix element (or elements,
since present and planned 0⌫�� decay experiments [5–18]
may consider about a dozen di↵erent nuclei) of a subtle
two-nucleon operator between the ground states of the
decaying nucleus and its decay product. Since 0⌫�� de-
cay involves not only nuclear physics but also unknown
neutrino properties, such as the neutrino mass scale, the
matrix elements cannot be measured; they must be cal-
culated. And at present they are not calculated with
much accuracy. We need to know them better.

Fortunately, nuclear-structure theory has made rapid
progress in the last decade and the community is now in
a position to improve calculated matrix elements mate-
rially. This review describes work that has already been
carried out, from early pioneering studies to more recent
and sophisticated e↵orts, and discusses what is needed
to do significantly better. We are optimistic that re-
cent progress in the use of chiral e↵ective field theory
(�EFT) to understand nuclear interactions [19–22], and
of nonperturbative methods to e�ciently solve the nu-
clear many-body problem from first principles (with con-
trolled errors) [23–28] will produce reliable matrix ele-
ments with quantified uncertainties over the next five or
so years. We will outline the ways in which that might
happen.

This review is structured as follows: Section II dis-
cusses the significance of 0⌫�� decay and the nuclear
matrix elements that govern it. Section III reviews cal-
culations of the matrix elements and indicates where we
stand at present. Section IV is a slight detour into a
more general problem, the “renormalization of the axial
vector coupling gA,” that has important consequences for
0⌫�� nuclear matrix elements. Section V is about ways
in which matrix-element calculations should improve in
the next few years, and ways in which the uncertainty in
new calculations can be assessed. Section VI is a conclu-
sion.

II. SIGNIFICANCE OF DOUBLE-BETA DECAY

A. Neutrino Masses and Hierarchy

Before turning to nuclear-structure theory, we very
briefly review the neutrino physics that makes it nec-
essary. References [29] and [30] contain pedagogical re-
views of both the neutrino physics and the nuclear matrix
elements that are relevant for �� decay.

Flavor oscillations of neutrinos from the atmo-
sphere [31], from the sun [32], and from nuclear reac-
tors [33] have revealed neutrino properties that were un-
known a few decades ago. Neutrinos have mass, but the
three kinds of neutrino with well-defined masses are lin-
ear combinations of the kinds with definite flavor that
interact in weak processes. We know with reasonable ac-
curacy the di↵erences in squared mass among the three
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FIG. 1. Left panel: Bands for the value of the parameter
m�� as a function of the mass of the lightest neutrino, for the
case of normal (NH, red band) and inverted (IH, green band)
neutrino-mass hierarchies. The present best experimental up-
per limits on m�� are shown in the blue band. Right panel:
Present best upper limits, with uncertainty bars, on m�� from
experiments performed on each �� emitter, as a function of
mass number A. The uncertainty bands and bars include
experimental uncertainties and ranges of calculated nuclear
matrix elements. Figure adapted from Ref. [5], courtesy of
the KamLAND-Zen collaboration.

mass eigenstates, with one smaller di↵erence �m2
sun '

75 meV2 [34] coming mainly from solar-neutrino experi-
ments and one larger di↵erence �m2

atm ' 2400 meV2 [34]
coming mainly from atmospheric-neutrino experiments.
We also know, with comparable accuracy, the mixing
angles that specify which linear combinations of flavor
eigenstates have definite mass [35].
The arrangement of the masses, called the “hierarchy,”

is still unknown, however. There are two possibilities:
either the two mass eigenstates that mix most strongly
with electron flavor are lighter than the third (the “nor-
mal hierarchy,” because it is similar to the hierarchy of
quark mass eigenstates) or they are heavier (the “inverted
hierarchy”). Long baseline neutrino-oscillation experi-
ments can eventually determine the hierarchy with a con-
fidence level corresponding to four standard deviations or
more, but for now they show just a two-� preference for
the normal hierarchy [36, 37]. Figure 1 shows the present
experimental 0⌫�� decay limits on the combination of
neutrino masses m�� [defined by Eq. (5) in Sec. II B 1],
together with the regions corresponding to the normal
and inverted hierarchies, as a function of the mass of
the lightest neutrino. If the hierarchy is normal and the
lightest neutrino is lighter than about 10 meV, then a de-

8

has been ignored in this analysis. We really need better
calculations. Fortunately, we are now finally in a position
to undertake them.

III. NUCLEAR MATRIX ELEMENTS AT
PRESENT

As we have noted, calculated matrix elements at
present carry large uncertainties. Matrix elements ob-
tained with di↵erent nuclear-structure approaches dif-
fer by factors of two or three. Figure 5 compares ma-
trix elements produced by the shell model [82, 113, 114],
di↵erent variants of the quasiparticle random phase ap-
proximation (QRPA) [81, 115–117], the interacting boson
model (IBM) [109], and energy density functional (EDF)
theory [118–120]. The strengths and weaknesses of each
calculation are discussed in detail later in this Section.

Some of these methods can be used to compute single-
� and 2⌫�� decay lifetimes. It is disconcerting to find
that predicted lifetimes for these processes are almost
always shorter than measured lifetimes, i.e. computed
single Gamow-Teller and 2⌫�� matrix elements are too
large [121–123]. The problems are usually “cured” by
reducing the strength of the spin-isospin Gamow-Teller
operator �⌧ , which is equivalent to using an e↵ective
value of the axial coupling constant that multiplies this
operator in place of its “bare” value of gA ' 1.27. This
phenomenological modification is sometimes referred to
as the “quenching” or “renormalization” of gA. In Sec. IV
we review possible sources of the renormalization, none
of which has yet been shown to fully explain the e↵ect,
and their consequences for 0⌫�� matrix elements.

A. Shell Model

The nuclear shell model is a well-established many-
body method, routinely used to describe the properties
of medium-mass and heavy nuclei [121, 124, 125], includ-
ing candidates for ��-decay experiments. The model,
also called the “configuration interaction method” (par-
ticularly in quantum chemistry [126, 127]), is based on
the idea that the nucleons near the Fermi level are the
most important for low-energy nuclear properties, and
that all the correlations between these nucleons are rele-
vant. Thus, instead of solving the Schrödinger equation
for the full nuclear interaction in the complete many-
body Hilbert space, one restricts the dynamics to a lim-
ited configuration space (sometimes called the valence
space) containing only a subset of the system’s nucleons.
In the configuration space one uses an e↵ective nuclear
interaction He↵, defined (ideally) so that the observables
of the full-space calculation are reproduced, e.g.

H |�ii = Ei |�ii ! He↵ |�̄ii = Ei |�̄ii . (17)

The states |�ii and |�̄ii are defined in the full space and
the configuration space, respectively, and have associated
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FIG. 5. Top panel: Nuclear matrix elements (M0⌫) for 0⌫��
decay candidates as a function of mass number A. All the
plotted results are obtained with the assumption that the ax-
ial coupling constant gA is unquenched and are from di↵erent
nuclear models: the shell model (SM) from the Strasbourg-
Madrid (black circles) [113], Tokyo (black circle in 48Ca) [114],
and Michigan (black bars) [82] groups; the interacting bo-
son model (IBM-2, green squares) [109]; di↵erent versions
of the quasiparticle random-phase approximation (QRPA)
from the Tübingen (red bars) [115, 116], Jyväskylä (orange
times signs) [81], and Chapel Hill (magenta crosses) [117]
groups; and energy density functional theory (EDF), relativis-
tic (downside cyan triangles) [118, 119] and non-relativistic
(blue triangles) [120]. QRPA error bars result from the use of
two realistic nuclear interactions, while shell model error bars
result from the use of several di↵erent treatments of short
range correlations. Bottom panel: Associated 0⌫�� decay
half-lives, scaled by the square of the unknown parameter
m�� .

energy Ei.

The configuration space usually comprises only a rela-
tively small number of “active” nucleons outside a core of
nucleons that are frozen in the lowest-energy orbitals and
not included in the calculation. The active nucleons can
occupy only a limited set of single-particle levels around
the Fermi surface. Many-body states are linear combi-
nations of orthogonal Slater determinants | ii (usually
from a harmonic-oscillator basis) for nucleons in those
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FIG. 11. Normalized momentum transfer distribution of the
Gamow-Teller part of the nuclear matrix element of 136Xe.
The solid curves are with one-body currents only, in the shell
model (blue) and QRPA (red). The shaded area includes two-
body contributions in the shell model. Data are taken from
Ref. [217] (shell model) and Ref. [218] (QRPA).

by theQ-value of the transition, which is on the order of 1
MeV. If only electrons are emitted, however, the average
momentum is about 100 MeV, a scale set by the aver-
age distance between the two decaying neutrons. Fig. 11
presents the contribution of di↵erent momentum trans-
fers q to the nuclear matrix element produced by the shell
model and QRPA, for the representative mother nucleus
136Xe. The momentum-transfer distribution is similar in
the two calculations. Although the QRPA distribution is
shifted to higher q, probably because of the larger config-
uration space, it falls o↵ slowly in both cases so that sev-
eral hundred MeV are transferred with reasonable prob-
ability. The higher momentum transfer means that the
first virtual �� transition in 0⌫�� decay can excite vir-
tual intermediate nuclear states with all spins and pari-
ties, not just the 0+ or 1+ intermediate states that con-
tribute to 2⌫�� decay. If the spin-isospin renormalization
depends on the momentum transfer or multipolarity of
the intermediate states, the large quenching needed to
correctly predict single-� Gamow-Teller and 2⌫�� decay
rates may not be needed for 0⌫�� decay. Although ex-
perimentalists are trying to test the momentum-transfer
and multipolarity dependence of quenching [216], the ex-
periments are di�cult and the existing data inconclusive.

In the search for the cause of quenching, complex cor-
relations that calculations do not capture have long been
a suspect. Reference [202] proposed in 1982 that two-
particle–two hole excitations to orbitals outside shell-
model configuration spaces or beyond QRPA correlations
shift the Gamow-Teller strength to high energies. (The
Ikeda sum rule requirement means that strength does
not appear or disappear, but rather moves.) Nuclear-
structure models miss this e↵ect and therefore need
to quench the low-energy strength. The authors of
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N ν e ν
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NN

N

FIG. 12. Diagrams for the �EFT two-nucleon currents most
important for �-decay.

Refs. [146, 203] made a similar argument, and Ref. [147]
proposed that about two thirds of the spin-isospin
quenching comes from missing particle-hole configura-
tions. The authors of Ref. [204] argued slightly di↵er-
ently, suggesting that because �⌧ operates at all inter-
nucleonic distances, its matrix elements should be af-
fected not only by the long-range (low-energy) corre-
lations included e.g. in shell-model states, but also by
short-range (high-energy) correlations, which are not in-
cluded. They went on to argue that shell-model Gamow-
Teller strength should be quenched consistently with
the roughly 30% depletion of single-particle occupancies
needed to reproduce electron scattering data [219] be-
cause both kinds of quenching reflect the same inability
of the shell model to include short-range correlations.
More recently, two studies have tried to use many-body

perturbation theory [149] to quantify the e↵ect of missing
correlations on the �⌧ operator in the shell model. Ref-
erence [220] reported a 20% reduction of Gamow-Teller
strength for nuclei whose valence nucleons are in the sd
and pf shells; the result agrees well with phenomenolog-
ical fits to experimental strength. In heavier systems the
authors found a much stronger reduction, as large as a
60% in 100Sn; that resut is in reasonable agreement with
the trend shown in Fig. 10. The degree of renormalization
varies by only a few percent up to momentum transfers
of about 100 MeV, suggesting similar quenching of 2⌫��
and 0⌫�� matrix elements. Reference [191] studied ��
decay within a similar perturbative framework. While
the method required the closure approximation and so
could say relatively little about 2⌫�� decay, it produced
about a 20% enhancement of the 0⌫�� matrix element
in 76Ge and a 30% enhancement in 82Se. These results
agree with the tendency of the shell model to increase
0⌫�� matrix elements when configuration spaces are en-
larged slightly [114, 189], and argue against any suppres-
sion of 0⌫�� decay. Once more, however, the argument
is not conclusive: First-order one-particle one-hole exci-
tations strongly suppress the matrix element and it just
so happens that higher-order terms tend to counteract
the suppression. But it is not at all clear whether or how
fast the perturbative expansion converges, and neglected
terms could have large e↵ects.
Non-nucleonic degrees of freedom, manifested as many-

need to understand gA ‘quenching’
collective and single-particle structure
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FIG. 3: (color online) Equation of state for neutron matter
using di↵erent potentials. Shown are QMC results for the
s-wave potential (circles) and for the AV4 (squares). Also
shown is the analytic expansion of the ground-state energy of
a normal fluid (line).

below) [28], a Dirac-Brueckner-Hartree-Fock calculation
[12], a lattice chiral EFT method at next to leading or-
der [14] (see also Ref. [15]), and an approach that makes
use of chiral N2LO three-nucleon forces.[16] Of these,
Refs. [9], [28], and [16] include a three-nucleon inter-
action, though at the densities we consider, these are not
expected to be significant. Qualitatively all of these re-
sults agree within 20%.

A series of ab initio calculations for neutron matter us-
ing the AFDMC method have been published beginning
in 2005.[25] After our analysis of the finite-size e↵ects –
described for BCS in section II B and for QMC in Refs.
[32, 38] – was published in late 2007, the AFDMC group
repeated their calculations for larger systems, [28, 30]
bringing them closer to our results, though still, as can
be seen from Fig. 4 the results are distinct. Given the
ab initio nature of the powerful AFDMC method, [43] we
have attempted to compare results more extensively. The
advantage of the AFDMC approach is that it includes an
interaction which is more complete than the simpler ones
used here. The disadvantage of the AFDMC approach is
that it does not provide a variational bound to the energy,
and hence the wave functions are chosen from another
approach. In the calculations of Refs. [25, 28, 30] the
wave function was taken from a Correlated-Basis Func-
tion (CBF) approach that included a BCS-like initial
state. The pairing in that variational state is unusually
large, and in fact increases as a fraction of EF when the
density is lowered.

The QMC AV4 results use a wave function that has
been variationally optimized. QMC thus gives ener-
gies that are considerably lower than the AFDMC re-
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FIG. 4: (color online) Equation of state for neutron matter
compared to various previous results. Despite quantitative
discrepancies, all calculations give essentially similar results.
Our lowest density corresponds to kF a = �1.

sults. As both the wave functions and the interactions
are di↵erent in the previous QMC and AFDMC results,
we have repeated our calculations using the same input
wave function [44] used by the AFDMC group (which
comes from the same Correlated-Basis Function calcula-
tion) at kF = 0.4 fm�1 and at kF a = �10. We find that
in QMC the AV4 results for the optimized wave func-
tion [0.5866(6) MeV and 0.5870(3) MeV, respectively] are
consistently lower in energy than those using the CBF as
input [0.6254(9) MeV and 0.6014(7) MeV, respectively].
This means that they are closer to the true ground-state
energy for the Hamiltonian we consider. It would be
worth studying in more detail the di↵erences arising from
the di↵erent Hamiltonians; the most important remain-
ing di↵erences are likely the spin-orbit and pion-exchange
terms in the p-wave interaction. Extensions of previous
GFMC calculations [10] to lower densities would help to
resolve these issues.

It is interesting to note that at the lowest densities con-
sidered, the AFDMC and QMC results are still distinct.
At those densities contributions of p- and higher partial
waves in the Hamiltonian should be very small, and thus
the two methods should give identical results. The three-
nucleon interaction included in the AFDMC calculations
is one possible source of the di↵erence, though this ap-
pears unlikely at the smallest densities considered. This
suggests that the CBF wave function at very low densi-
ties is problematic; additional studies with Jastrow-BCS
or other wave functions would be useful.

(b)

Figure 1: The equation of state of low-density neutron matter compared to that
of cold atoms at the same value of Fermi momentum times scattering length
(kFa). The left side compares cold atoms and neutron matter (see text), and the
right panel shows neutron matter results for di↵erent methods over a wider range
of kFa. Figures taken from (21,22).

Fermi Gas wave function. The radial form of the function �(r) and f(r) are
determined in variational calculations.

These calculations have a fixed-node approximation that implies they provide
variational upper bounds to the true energy. They have proven to be very accuate
in studies of cold atom systems, where accurate lattice calculations without a
fixed-node approximation are available (3). These calculations are also in very
good agreement with cold atom experiments (2).

The results of the equation-of-state calculations are shown in Fig. 1. The
left panel compares neutron matters and cold atoms at very low density. The
vertical axis indicates the ratio of fully interacting energy to the energy of the free
Fermi gas at the same density, the horizontal axis is the Fermi momentum times
the scattering length kFa; on the upper axis the equivalent Fermi momentum
for neutron matter is indicated. At extremely low densities, or equivalently small
value of kFa, analytic results are available (24,25), and the higher-order Lee-Yang
result is plotted as a line in the figure.

Results for cold atoms with zero e↵ective range are plotted as filled blue circles,
in the limit of infinite kFa these should approach 0.37. Cold atom results for the
dependence on the e↵ective range are also available, the equation of state can be
expanded in terms of kF :

E /EFG = ⇠ + S kF re + ..., (5)

where S = 0.12(3) is a universal constant that has been determined in the lattice
calculations and in Di↵usion Monte Carlo (3, 26). Using the above equation of
including the experimental neutron-neutron e↵ective range re gives the dashed
line in the figure.

Gezerlis, JC, PRC 2010
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E. Pairing gap and quasiparticle spectrum

We have also performed calculations for the zero-
temperature pairing gap using the AV4 interaction.
These follow from our knowledge of the ground-state en-
ergy, through the use of the the odd-even staggering for-
mula:

� = E(N + 1) � 1

2
[E(N) + E(N + 2)] , (29)

where N is an even number of particles. The results for
the gap are shown in Fig. 5. The main conclusion is that
the gap remains essentially unchanged with the inclusion
of the p-wave interactions. Even at the highest density
examined, kF a = �10, the gap is within statistical errors
the same comparing s-wave and AV4 interactions. This
implies that the dominant contributions to the gap come
from the s-wave part of the interaction.

Our results indicate that the gap is suppressed by
approximately a factor of two from the BCS value at
kF a = �1, roughly consistent with the Gorkov and
Melik-Barkhudarov, Eq. (3), polarization suppression.
In cold atoms, this suppression from BCS is reduced as
the density increases, with a smoothly growing fraction
of the BCS results as we move from the BCS to the
BEC regime. At unitarity the measured pairing gaps
[45–47] are 0.45(0.05) of the Fermi energy, for a ratio
�/�BCS ⇡ 0.65, in agreement with predictions by QMC
methods.[32, 41, 48] In neutron matter, though, the finite
range of the potential reduces �/EF as the density in-
creases. We find a ratio �/�BCS that increases slightly
from |kF a| = 1 to 2.5, but thereafter remains roughly
constant.
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FIG. 5: (color online) Superfluid pairing gap versus kF a for
neutron matter using di↵erent potentials. Shown are QMC
results for the s-wave potential (circles) and for the AV4
(squares). Also shown is the mean-field BCS result (line).

TABLE I: Gap di↵erences at various kF a calculated in per-
turbation theory. Perturbative estimates based on AV4 cal-
culations.

kF a kF [fm�1] �(AV4) [MeV] �(AV4) - �(s) [MeV]

-5.0 0.27 0.48 (0.04) 0.012 (0.008)

-7.5 0.40 0.77 (0.08) 0.11 (0.03)

-10.0 0.54 1.05 (0.11) 0.16 (0.06)

We also used our AV4 calculations to compute the dif-
ference between s-wave and AV4 interaction gaps in per-
turbation theory, in an attempt to isolate the e↵ects of
the addition of the p-wave interaction. This perturba-
tion theory may not be accurate for the highest density
considered, since the s-wave and AV4 ground states are
somewhat di↵erent in energy. It should give an accurate
picture at lower densities, though, and in particular iso-
late the sign of the change arising from the p-wave terms
in the interaction. Using perturbation theory yields much
smaller statistical errors than comparing the separate s-
wave and AV4 calculations. Table I shows that the p-
wave interactions increase the pairing gap modestly over
the range of densities considered. The p-wave interac-
tions apparently decrease the magnitude of the polariza-
tion corrections, though the change is only approximately
15 % at the highest density considered.

In Fig. 6 we compare our results to selected previous
results: a Correlated-Basis Function calculation by Chen
et al. [20], an extension of the polarization-potential
model by Wambach et al. [21], a medium-polarization
calculation by Schulze et al. [22], a renormalization group
calculation by Schwenk et al. [23], a Brueckner calcula-
tion by Cao et al. [26], a determinantal lattice QMC ap-
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FIG. 6: (color online) Superfluid pairing gap versus kF a for
neutron matter compared to previous results.

(b)

Figure 2: The pairing gap of low-density neutron matter compared to that of
cold atoms at the same value of Fermi momentum times scattering length (left).
Comparison of di↵erent calculations of the neutron matter gap (right). Figures
taken from (20,22).

The calculations of neutron matter with the spin singlet s-wave interaction
from AV18 gives the solid red points, correcting the p-wave interactions from
AV4 gives the green squares. At very low densities all these calculations are very
similar. At slightly higher densities the correction from the p-wave interaction
is slightly repulsive, and is in good agreement with the e↵ective range expansion
above.

The right panel shows a comparison of various methods for the neutron matter
equation of state over a somewhat wider range of densities. Methods include
Fermi Hypernetted chain resummation techniques (27,28), the Brueckner-Bethe-
Goldstone expansion (29), e↵ective field theory (30) and several Quantum Monte
Carlo methods including Green’s function Monte Carlo (31) and Auxiliary field
di↵usion Monte Carlo (32,33). All the calculations are in reasonable agreement,
indicating a soft neutron matter equation of state at low density.

2.2 Superfluid Pairing

Neutron pairing at low density is important in both neutron-rich nuclei and in the
crust of neutron stars. Pairing in nuclei and matter has been a long-studied topic,
see a review by Dean and Hjorth-Jensen (34). For pairing at low density, recent
work in cold atom systems, both theoretical and experimental, has advanced our
understanding of pairing in the strongly superfluid regime. Experiments and
calculations indicate that the pairing gap in neutron matter is quite substantial,
reaching a peak of approximately 30 per cent of the Fermi energy. This is the
largest Fermion pairing gap known in nature, and only slightly smaller than the
45 per cent pairing found in cold atoms at unitarity (4, 5, 6).

The pairing gap for matter can be calculated by computing the energy of

Pairing Gap 

3

0.0 0.2 0.4 0.6 0.8 1.0

V
0

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

E
 /

 E
F

G

DMC 
AFMC 

0.24 0.27 0.3 0.33

c
2

-0.006

-0.004

-0.002

0.000

c
4

ε
2

ε
4LDA

FIG. 2. (Color online) Energy of the unitary Fermi gas in a
periodic potential versus strength of the interaction for q =
kF /2 (lower curves) and q = kF (upper curves). Quantum
Monte Carlo calculations are shown as symbols. The bands
are density functional results for E2 using c2 = 0.30(5) and
for E4 with c2 and c4 extracted from fits to all the bulk QMC
data. See the text for details. The error ellipse obtained for
c2 and c4 from the fit is shown in the inset.

blue solid line indicates results expected in the local den-
sity approximation without gradient terms, entirely de-
termined by ⇠. The break in this line represents the point
at which the density separates into quasi two-dimensional
sheeets. The results of the DMC and AFMC calculations
are shown as open and closed symbols respectively.

Using the coe�cient c2 obtained for weak external
fields, the QMC calculated energies for q = 0.5 kF are
well reproduced by this density functional for the whole
range of V0 (lower solid band). This simple density func-
tional is expected to work very well for systems where
|r⇢/(kF ⇢)| << 1 everywhere. In Fig. 2 it is evident that
for the larger q = kF , the E2 density functional begins to
fail, particularly at larger V0. In this region the higher
order gradient corrections are becoming important.

The first correction to the simple gradient density func-
tional E2 (Eq. 3) is of order q4 [27]. It is natural to find
the energies at higher momenta smaller than those given
by E2, this behavior would be expected based on the typi-
cal roton-phonon spectrum [3, 33]. Using the scale invari-
ance of the density functional and a Negele-Vautherin[34]
expansion for the density functional in terms of gradients,
we add another term

E4 = E2 + c4
r2⇢1/2r2⇢1/2

⇢2/3
, (4)

with the same dimensions as E2. This additional term is
attractive (c4 < 0) since the quasiparticle spectrum lies
lower than the simple linear behavior with increasing q.

We perform a simultaneous fit of c2 and c4 in E4 to all
the AFMC data to obtain the error ellipse shown in the
inset of Fig. 2. For each pair of values c2 and c4 a stan-
dard DFT calculation of the density is first performed
setting c4 = 0, then the energy contribution from the c4
term in E4 is calculated perturbatively from this density

FIG. 3. (Color online) Densities of the unitary Fermi gas
in external potentials of frequency kF /2 (upper row) and kF
(middle row) for potential strengths V0 = 0, 0.25, 0.4, and
0.8 from left to right. The lower row shows the predicted
density distributions (in the z=0 plane) for systems of 8, 14,
30, and 50 fermions (left to right) in a harmonic trap. Scale
invariance requires the energies depend only upon the shape
of the density distribution, except for an overall scale of ⇢2/3.

distribution. Since the q4 term in E4 term is attractive,
we must evaluate it perturbatively as it is unstable to
high-frequency oscillations. Higher-order terms includ-
ing those associated with the contact would stabilize the
system [35].
The extracted error ellipse for these parameters shows

a strong correlation since a larger value of c2 requires
a more attractive value of c4. The solid and vertical
hatched regions give the error bands for E2 and E4, re-
spectively. The E4 density functional provides an excel-
lent fit to all the data, with a �2 per degree of freedom
near one. The width of the bands in the main figure
represent varying the coe�cients within the quoted un-
certainties (the inset ellipse for E4).
The density functional can then be used to predict

the densities of inhomogeneous matter and properties of
small numbers of fermions trapped in harmonic wells.
Observing the densities in an external field should be
an accurate way to measure the coe�cients in the den-
sity functional. The densities for both inhomogeneous
matter and small trapped systems are shown in Fig. 3.
The upper two rows illustrate the transition from three
towards two dimensional systems with increasing V0 for
external potentials of momenta kF /2 and kF , and the
bottom row shows the densities of small systems trapped
in a harmonic potential.
To check the predictions for trapped fermions, we cal-

culate systems of fermions at unitarity in a harmonic trap
from 4 to 80 particles (Fig. 4). The square of the ratio
of the energy at unitarity to the Thomas Fermi energy
for free fermions, ETF = !(3N)4/3/4, is plotted as a
function of the number of particles. This ratio should
approach the bulk (LDA) limit as the size of the sys-
tem increases. The DMC results are shown as blue open
circles in the figure, and the AFMC results are shown
as diamonds. For N > 8, both our DMC and AFMC
results are significantly lower than those obtained previ-

Scale-Invariance 
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DOE EXASCALE REQUIREMENTS REVIEW — NP/ASCR

Figure 3-22. Mass-radius 
relation for NSs. Exascale 
computing resources will 
enable more accurate studies 
of dense matter, including the 
EoS and neutrino opacities 
important in NSs and 
supernovae. (Image used with 
permission from Joe Carlson; 
available in Galdolfi et al. 
2012.)

Path to Exascale in Dense Nucleonic Matter
 � 2016: Calculate the zero temperature EoS of neutron matter.

 � 2020: Explore superfluid pairing gaps in dense matter and EoS of nuclear 
matter at finite temperature.

 � 2025: Determine the neutrino response of nuclear matter at zero and 

finite temperature.

3.3.3  Cross-Cutting Issues and Opportunities
The physics of nuclei is closely related to studies at several major experimental facilities under 
construction or being planned in the United States. FRIB is focusing on NS&R, but also has nuclear 
astrophysics as a major focus. Exascale computing resources in NS&R include many-body theory 
of dense nucleonic matter as found in NSs and CCSNe. The EoS and the propagation of neutrinos 
in dense matter are critical components of understanding these astrophysical objects. In addition, 
the structure of the NS crust and reaction rates there, and more generally, are a major overlap with 
nuclear astrophysics.

At the smallest length scales, NS&R has very important overlaps with lattice QCD and with BSM 
physics. Lattice QCD can potentially refine the nuclear interactions and currents beyond experiment 
alone— for example, the three-neutron interaction. Lattice QCD can also provide valuable 
information about multi-nucleon electroweak currents. NS&R plays an important role in studies 
of neutrinos and BSM physics. 0νββ−decay experiments are searching for a new lepton-number 
violating process, the observation of which would identify the Majorana nature of neutrinos. There 
may also be other routes to this new physics. Accelerator neutrino oscillation experiments rely on 
an understanding of neutrino-nucleus cross-sections and their energy dependence. Two-nucleon 
correlations and currents play a critical role in these processes; hence, a sophisticated understanding 
is required to extract the CP-violating phase in the lepton sector and the neutrino mass hierarchy.

Finally, nuclear theory has many areas of overlap with studies of strongly correlated quantum 
matter in many disciplines, including cold atoms, condensed matter, and electronic structure. 
The methods and algorithms used in these studies, although different in implementation, all have 
analogues in these other fields. These analogous methods imply that software and architectural 
advances valuable to the nuclear structure community can also have wide applicability. Examples 
include sparse and dense linear algebra, task-based parallel algorithms and scalability, hierarchical 
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Nuclear Astrophysics: core-collapse supernovae

entropy in a 3D Core-collapse supernovae
(Lentz, et al., 2013)

larger burden this would place on the file system is sufficiently
alleviated with fixed time interval I/O for tracer particles. Our
results in Section 4.5 (item 5) give us confidence in this
approach. Lastly, taking our own advice regarding item 4
(Section 4.4), we have implemented a framework in CHIMERA
to use arbitrary criteria for the NSE transition. When combined
with quasi-statistical equilibrium methods (Hix et al. 2007;
Parete-Koon et al. 2008), CHIMERA will be capable of
seamlessly evolving nuclear-burning networks through the
NSE transition.

In theory, both the indeterminate masscut and expansion
timescale uncertainties could be reduced by extending the
simulation to freeze-out. However, given the inadequate spatial
resolution of the tracer particles and an inherent limitation in
the accuracy of the rate of nuclear energy released by the
smaller network within the hydrodynamics, we cannot rely
entirely on post-processing methods to obtain an accurate
representation of the nucleosynthesis. Since the nucleosynth-
esis depends on the thermodynamic conditions and, conse-
quently, nuclear energy generation, a feedback exists that
cannot be captured with post-processing, significantly affect-
ing the abundances of species such as Ti44 , Fe57 , Ni58 , and Zn60

(Woosley & Weaver 1995). Improving upon the existing in situ
a-network with a more realistic 150-species nuclear network
capable of properly tracking neutronization and energy release via
particle captureis an important step towardresolving this problem
and is the subject of ongoing work.
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Nuclear Astrophysics: Coherent neutrino oscillations

• in early universe, NS mergers and supernovae,  
 coherent neutrino propagation is possible

• Additional oscillations in addition 
to MSW-type resonances

• could impact: explosion, nucleosynthesis, …
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Figure 3-4. R-process nucleosynthesis including simplified (red line) single-angle calculations of coherent neutrino 
oscillations, and more complete multi-angle calculations (blue line). (Figure reproduced with permission from Gail 
McLaughlin; available in Duan et al 2011.)

Coherent flavor evolution simulations along these lines involve solving ~ 107 to 108 nonlinearly 
coupled Schrodinger-like equations for neutrino flavor. This is a mature subject at this point (Duan 
et al. 2008; Duan et al. 2010). Although issues remain unresolved (e.g., spatial and temporal 
instability in coherent flavor transformation), the frontier in this subject now rests on incorporating 
these calculations into more realistic supernova and NSNS environments. Small density fluctuations 
associated with turbulence, for example, can also influence neutrino flavor transformation and, in 
some cases, this effect can be important (Kneller and Volpe 2010).

Another level of complexity in these calculations involves relaxing the coherent, forward scattering-
only approximation. Neutrino energy- or direction-changing scattering-induced decoherence can 
also result in neutrino flavor conversion. The full quantum kinetic equations (QKEs) governing the 
evolution of neutrino flavor and spin — left- to right-handed (meaning neutrino-to-antineutrino 
conversion for Majorana type neutrinos) in dense media — have been derived recently (Vlasenko et 
al. 2014). These QKEs are effectively generalizations of the Boltzmann neutrino transport equations 
described above, but the QKEs encode flavor mixing and neutrino spin. Solution of these QKEs 
in a general and complex anisotropic medium (such as that in compact object environments) is 
daunting; even ordinary Boltzmann neutrino transport that ignores flavor physics is challenging. 

However, simple limits of the QKEs have already been treated numerically, with fascinating results. 
Even a very modest fraction (e.g., 1 in 1,000) of neutrinos suffering a direction-changing scattering 
can modify flavor transformation, sending quantum mechanical flavor information inward, toward 
the NS(s) source. Such scattering changes the otherwise coherent neutrino flavor transformation 
problem from an initial value problem, with neutrino flavors specified on the neutrino sphere, into 
something more akin to a boundary value problem. This phenomenon is called the neutrino “halo” 
effect (Cherry et al. 2012). The halo has been successfully simulated for oxygen-neon-magnesium 
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II. BACKGROUND PHYSICS

A. Neutrino Bulb Model

At tPB ! 3 s, the inner core of the progenitor star has
settled down into a proto-neutron star with a radius of
about 10 km. In the following ∼ 10 s, the nascent neu-
tron star radiates away its gravitational binding energy
as outlined above. During this time, neutrinos could de-
posit energy into the matter above the neutron star and
create a high-entropy “hot bubble” between the proto-
neutron star surface and the shock. Inside the hot bub-
ble, a quasistatic and near adiabatic mass outflow, the
so-called “neutrino-driven wind”, may be established at
this epoch as a result of neutrino/antineutrino heating
[24, 25]. To simplify the numerical calculations of the
flavor transformations of neutrinos and antineutrinos in-
side the hot bubble, we approximate the physical and
geometric conditions of the post-shock supernova by a
“neutrino bulb model”. This model is characterized by
the following assumptions:

1. The neutron star emits neutrinos uniformly and
isotropically from the surface of a sphere (neutrino
sphere) of radius Rν ; [Note that the neutrino flux
emitted at angle ϑ0 with respect to the normal di-
rection at the neutrino sphere comes with a geo-
metric factor cosϑ0. See Eq. (5).]

2. At any point outside the neutrino sphere, the phys-
ical conditions, such as baryon density nb, temper-
ature T , etc., depend only on the distance r from
this point to the center of the neutron star;

3. Neutrinos are emitted from the neutron star sur-
face in pure flavor eigenstates and with Fermi-Dirac
type energy spectra.

The neutrino bulb model, as illustrated in Fig. 1, has
multifold symmetries. It is clearly spherically symmetric.
This means that one only need study the physical condi-
tions at a series of points along one radial direction, which
we choose to be the z–axis. It is also obvious that the
neutrino flux seen at any given point on the z–axis has
a cylindrical symmetry. As a result, different neutrino
beams possessing the same polar angle with respect to
the z–axis and with the same initial physical properties
(flavor, energy, etc.) should be completely equivalent.
In other words, they will have identical flavor evolution
histories. One may choose this polar angle to be ϑ, the
angle between the direction of the beam and the z–axis.
Alternatively, a beam could be specified by the polar an-
gle Θ giving the emission position of the beam on the
neutrino sphere (see Fig. 1). A third option, which we
have found to be most useful in our numerical calcula-
tions, is to label the beam by emission angle ϑ0. This is
defined to be the angle with respect to the normal direc-
tion at the point of emission on the neutrino sphere (see
Fig. 1). This emission angle ϑ0 is an intrinsic geometric

Neutron

Star
P

Rν

Θ z
ϑ

ν

ϑ0

FIG. 1: The geometric picture of the neutrino bulb model. An
arbitrary neutrino beam (solid line) is shown emanating from
a point on the neutrino sphere with polar angle Θ. This beam
intersects the z–axis at point P with angle ϑ. Because neutri-
nos are emitted from the neutrino sphere of radius Rν , point
P sees only neutrinos traveling within the cone delimited by
the dotted lines. One of the most important geometric char-
acteristics of a neutrino beam is its emission angle ϑ0, defined
with respect to the normal direction at the point of emission
on the neutrino sphere (ϑ0 = Θ + ϑ). All other geometric
properties of a neutrino beam may be calculated using radius
r and ϑ0.

property of the beam, and does not vary along the neu-
trino trajectory. Moreover, because of assumptions 1 and
2 in the neutrino bulb model, all the neutrino beams with
the same emission angle ϑ0 and the same initial physical
properties must be equivalent. In simulating the flavor
transformations of neutrinos in the neutrino bulb model,
it is only necessary to follow a group of neutrinos which
are uniquely indexed by their initial flavors, energies and
emission angles.

At any given radius r, all the geometric properties of
a neutrino beam may be calculated using r and ϑ0. For
example, ϑ and Θ are related ϑ0 through the following
identity:

sinϑ

Rν
=

sinΘ

l − l0
=

sinϑ0

r
, (1)

where

l ≡ r cosϑ, (2)

and

l0 ≡ Rν cosϑ0. (3)

Length l − l0 in Eq. (1) is also the total propagation
distance along the neutrino beam. At a point at radius
r, the neutrino beams are restricted to be within a cone
of half-angle

ϑmax = arcsin

(
Rν

r

)
(4)

(see Fig. 1).
One can integrate flux over all neutrino beams (angles)

and calculate the neutrino number density nν at radius
r. In this paper we use the symbol ν in the general



Outlook 

Nuclear physics spans a huge range of problems
exascale (classical) computing is extremely valuable

• Hot QCD
• Cold QCD
• Nuclear Structure and Reactions
• Nuclear Astrophysics

Quantum computing could have a huge impact!
many-body nuclei:   limits of existence for neutron-rich

                            fusion of light ions
                                       linear response (e and neutrinos)
                                          and electroweak transitions
                                       more general reactions  
 
Rich future:     lattice gauge theory (hot, cold, dynamics)
                     nuclear fission, full quantum dynamics
                     neutrino coherence and decoherence

 


