

Quantum Computing: Great Expectations

Quantum Computing for Nuclear Physics Workshop

Dave Bacon dabacon@google.com

In a Galaxy Seven Years Ago...

Preparation and Measurement of Three-Qubit Entanglement in a Superconducting **Circuit**

> L. DiCarlo.¹ M. D. Reed.¹ L. Sun.¹ B. R. Johnson.¹ J. M. Chow.¹ J. M. Gambetta,² L. Frunzio,¹ S. M. Girvin,¹ M. H. Devoret,¹ and R. J. Schoelkopf¹ ¹Departments of Physics and Applied Physics, Yale University, New Haven, CT 06511, USA ²Department of Physics and Astronomy and Institute for Ouantum Computing. University of Waterloo, Waterloo, Ontario N2L 3G1, Canada (Dated: 27th April 2010)

Generation of Three-Qubit Entangled States using Superconducting Phase Qubits

M. Neeley,¹ R. C. Bialczak,¹ M. Lenander,¹ E. Lucero,¹ M. Mariantoni,¹ A. D. O'Connell,¹ D. Sank,¹ H. Wang,¹ M. Weides,¹ J. Wenner,¹ Y. Yin,¹ T. Yamamoto,^{1,2} A. N. Cleland,¹ and J. M. Martinis¹ ¹Department of Physics, University of California, Santa Barbara, CA 93106, USA ²Green Innovation Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305-8501, Japan

14-qubit entanglement: creation and coherence

Thomas Monz,¹ Philipp Schindler,¹ Julio T. Barreiro,¹ Michael Chwalla,¹ Daniel Nigg,¹ William A. Coish.^{2, 3} Maximilian Harlander.¹ Wolfgang Hänsel.⁴ Markus Hennrich.¹ and Rainer Blatt^{1, 4}

¹Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25. A-6020 Innsbruck, Austria^{*} ²Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada ³Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8 ⁴Institut für Quantenoptik und Quanteninformation. Österreichische Akademie der Wissenschaften. Otto-Hittmair-Platz 1, A-6020 Innsbruck. Austria (Dated: March 24, 2011)

0.88 fidelity

0.78 fidelity

fidelities: 14 qubits: 0.50 3 qubits: 0.97

Google

What Has Changed?

All the authors moved to industry? ;)

What Has Changed? (superconducting qubits)

Progress on all fronts

Devoret and Schoelkopf, Science 399, p1169 (2013)

This Talk: XMon Transmon Qubits

Frequency tunable superconducting qubit (based on planar transmon)

John Martinis and team (Santa Barbar)

Barends, Kelly *et al* PRL 111, p080502 (2013)

What Changed?

"Superconducting quantum circuits at the surface code threshold for fault tolerance" Barends, Kelly *et al* Nature 2014

Photo credit: Erik Lucero Photo credit: Julian Kelly

"State preservation by repetitive error detection in a superconducting quantum circuit" Kelly, Barends, Fowler *et al* Nature 2015

More Qubits. "Yes But"

TABLE S2: Single qubit gate fidelities for all qubits, determined by Clifford-based randomised benchmarking. Averaged over all gates and all qubits we find an average fidelity of 0.9992. The standard deviation is typically $5 \cdot 10^{-5}$. The gate times are between 10 and 20 ns, see Table S3, except for the composite gates H and 2T, which are twice as long. The idle is as long as the shortest microwave gate (12 ns to 20 ns).

TABLE S4: CZ gate fidelities for all qubit pairs, determined by Clifford-based randomised benchmarking. Gate times are between 38 and 45 ns; Q₀-Q₁: 45 ns, Q₁-Q₂: 43 ns, Q₂-Q₃: 43 ns, Q₃-Q₄: 38 ns.

Single qubit fidelities: 0.9992 Two qubit fidelities: 0.992 Measurement fidelity: 0.99 T₁: 20-40µs 1 qubit gates: 10-20ns 2 qubit gates: 38-45ns

More Qubits. "Yes But"

Industry groups have been allowed to focus on complete system design, and increasing the speed of their development lifecycle

Low Gate Count Circuits

T₁: 20-40µs 1 qubit gates: 10-20ns 2 qubit gates: 38-45ns

Depth 500 before decoherence (need to refocus for T_2)

Limit: gate and measurement fidelity.

(all from Barends, Kelly *et al* Nature 2014)

What can we do?

A Naive calculation:

 $2 * 2^{49} * (4 \text{ bytes}) = 4.5 \text{ petabytes}$

TOP500 #1 supercomputer Sunway TaihuLight has 1.3 petabytes memory.

At around 49 qubits, direct (naive) simulation becomes something that challenges today's best supercomputers.

1. Formulate a random circuit U (from universal gate set)

- 2. Program quantum processor to run U and take large sample
	- $S = \{x_1, \ldots, x_m\}$ of bit-strings x in the computational basis

3. Compute quantities log $p_U(x_j)$ with supercomputer.

Cori II at US Lawrence Berkeley National Laboratory used to simulate 45 qubit circuit Steiger and Hähner (2017)

4. Measure quality α of a sampler S as the average difference between its cross entropy and the cross entropy of a uniform classical sampler.

$$
H\big(p_S(x_i),p_U(x_i)\big)=-\sum_{i=1}^m p_S(x_i)\log\big(p_U(x_i)\big)
$$

Google

$$
\alpha=1 \iff p_{S}(x_i) = p_U(x_i)
$$
\n
$$
\alpha=0 \iff p_{S}(x_i) \text{ and } p_U(x_i) \text{ uncorrelated}
$$

 $\alpha \approx exp(-r_{\text{init}}n - r_1g_1 - r_2g_2 - r_{\text{measure}}n)$

Important

- "Computational Supremacy" dependent on
	- **number** of qubits
	- **depth** of circuit
	- ability to get to "**random** enough" circuits
	- **errors** (gate, measurement)
- Time-space trade-off
	- One can get around naive memory calculation, but at the cost of more time (Aaronson and Chen 2016).
		- Halving memory multiplies run time by depth
- A plea to the quantum computer simulation community
	- Report your speeds, as well as your memory consumption
	- Describe your benchmark in detail so others can reproduce it

Even More Important

"Computational Supremacy" is the starting point

What can we do?

49 qubits x 40 depth quantum computational supremacy

What goes here?

$~10^6$ qubits

error corrected quantum computer

Chemistry Simulation?

The Coming Age of Heuristic Quantum Algorithms?

"What is the chance that the only problems for which quantum computing provides an advantage are those for which we can prove, mathematically, that it has an advantage?" - Eleanor Rieffel (NASA) 2017

Variational Eigensolvers

Problem: Find ground state of many-body Hamiltonian

$$
E_0=\min_{\psi}\langle\psi|H|\psi\rangle
$$

Use low depth quantum circuit as an ansatz

 $E(\theta) = \langle \psi(\theta) | H | \psi(\theta) \rangle$

Wrap calculations of expectation values into blackbox non-linear optimizers

Variational Ansatz

Lots of choices for variational ansatz:

- trotterized adiabatic evolution
- unitary coupled cluster
-

Note:

● ...

- Can incorporate known symmetries into ansatz
- Can tailor ansatz to be resistant to dominate noise

But Will It Work?

Sampling from low depth quantum circuits often classically intractable

General limit versions of problems often quantumly intractable

Sometimes we only care about beyond classically solvable scale problems.

A Deep Learning Lesson?

Training of deep neural networks had little (no?) theory that say it will work.

Yet multiple heuristic insights algorithms were developed that lead to best in class machine learning models.

Platforms

Platforms

TABLE S2: Single qubit gate fidelities for all qubits, determined by Clifford-based randomised benchmarking. Averaged over all gates and all qubits we find an average fidelity of 0.9992. The standard deviation is typically $5 \cdot 10^{-5}$. The gate times are between 10 and 20 ns, see Table S3, except for the composite gates H and 2T, which are twice as long. The idle is as long as the shortest microwave gate (12 ns to 20 ns).

TABLE S4: CZ gate fidelities for all qubit pairs, determined by Clifford-based randomised benchmarking. Gate times are between 38 and 45 ns; Q₀-Q₁: 45 ns, Q₁-Q₂: 43 ns, Q₂-Q₃: 43 ns, Q₃-Q₄: 38 ns.

qubits				\mathcal{Q}_3	
$CZ_{Q_0-Q_1}$		0.9924 ± 0.0005			
$CZ_{Q_1-Q_2}$	0.9936 ± 0.0004				
$CZ_{Q_2-Q_3}$	0.9944 ± 0.0005				
$CZ_{Q_3-Q_4}$	0.9900 ± 0.0006				

Single qubit fidelities: 0.9992 Two qubit fidelities: 0.992 Measurement fidelity: 0.99 T₁: 20-40µs 1 qubit gates: 10-20ns 2 qubit gates: 38-45ns

Platforms

Near term quantum computers will require more than just an abstract quantum circuit model. Be prepared to worry about:

- Connectivity / geometry of chip
- Gate error rates, decoherence times, measurement error rate
- Cross-talk, calibrations
- **Error models**
- Native gate set
- Gate set constraints
- Experiment cycle time
- Interface to and from classical bits
- Available classical compute

"Google is interested in having external research run experiments on their quantum computers, as they have done in the past."

Interested?

Contact me: dabacon@google.com

Seattle Quantum Beer

Monthly-ish Google, Microsoft, Alibaba, UW folks meetup

Randomly rotates around area, default location is Postdoc Brewery in Redmond

dabacon@gmail.com

<https://groups.google.com/forum/#!forum/quantum-beer-sea>

