Resummation at small x

Anna Stasto Penn State University

INT Seattle, February 14, 2017

Question: what is the range of applicability of standard collinear formalism with DGLAP evolution and the calculations with low x effects (including saturation)? Question: what is the range of applicability of standard collinear formalism with DGLAP evolution and the calculations with low x effects (including saturation)?

One possible answer: it depends on the process

Question: what is the range of applicability of standard collinear formalism with DGLAP evolution and the calculations with low x effects (including saturation)?

One possible answer: it depends on the process

Another possible answer: it depends on the accuracy of calculation in both cases. More specifically, it is possible to extend the region of validity of any of these approaches through the resummation.

Are F₂ data compatible with DGLAP evolution?

HERAPDF

NNPDF

Both HERAPDF and NNPDF find some dependence on the cutoff. Small x resummation? Or some other effects?

1.200

1.154

1.205

1.144

1.201

1.158

1.223

1.171

1.195

1.163

1.170

1.171

Are F₂ data compatible with DGLAP evolution?

CTEQ-TEA

CTEQ finds no dependence of χ^2 on the different cuts. DGLAP seems to work fine in the entire region down to very low x and Q.

Excluding data below the value set by the geometric scaling variable

$$A_{gs} = x^{\lambda} Q^2$$

Cannot conclude definitely about the tension between DGLAP and data in the low Q region.

$$\sqrt{s} \to \infty, x \to 0$$

Energy much larger than any other scale in the process

At small x there are large logs:

 $xP_{gg}(x) \sim \alpha_S^n \ln^{n-1}(1/x), \quad xP_{qg}(x) \sim \alpha_S^n \ln^{n-2}(1/x) \quad \text{and} \quad xC_{L,g}(x) \sim \alpha_S^n \ln^{n-2}(1/x).$

$$\sqrt{s} \to \infty, x \to 0$$

Energy much larger than any other scale in the process

At small x there are large logs:

 $xP_{gg}(x) \sim \alpha_S^n \ln^{n-1}(1/x), \quad xP_{qg}(x) \sim \alpha_S^n \ln^{n-2}(1/x) \quad \text{and} \quad xC_{L,g}(x) \sim \alpha_S^n \ln^{n-2}(1/x).$

At high energy, or small x we can have:

$$\sqrt{s} \to \infty, x \to 0$$

Energy much larger than any other scale in the process

At small x there are large logs:

 $xP_{gg}(x) \sim \alpha_S^n \ln^{n-1}(1/x), \quad xP_{qg}(x) \sim \alpha_S^n \ln^{n-2}(1/x) \quad \text{and} \quad xC_{L,g}(x) \sim \alpha_S^n \ln^{n-2}(1/x).$

At high energy, or small x we can have:

 $\alpha_S \ln 1/x \sim 1$

Need to resum them as well to all orders:

$$(\alpha_S \ln 1/x)^n$$

$$\sqrt{s} \to \infty, x \to 0$$

Energy much larger than any other scale in the process

At small x there are large logs:

 $xP_{gg}(x) \sim \alpha_S^n \ln^{n-1}(1/x), \quad xP_{qg}(x) \sim \alpha_S^n \ln^{n-2}(1/x) \quad \text{and} \quad xC_{L,g}(x) \sim \alpha_S^n \ln^{n-2}(1/x).$

At high energy, or small x we can have:

 $\alpha_S \ln 1/x \sim 1$

Need to resum them as well to all orders:

Any fixed order here would not be sufficient, potentially very large corrections.

 $(\alpha_S \ln 1/x)^n$

Many soft gluon emissions in small x limit

I.Balitsky, V.Fadin, E.Kuraev, L.Lipatov

integral over 🖊 transverse momenta

kernel describing branching of gluons gluon density

Evolution equation in longitudinal momenta

Why NLLx is so large in BFKL?

- Strong coupling constant is <u>**not**</u> a naturally small parameter in the Regge limit: $s \gg |t|, \Lambda_{QCD}^2$ but $\alpha_s(\mu^2), \ \mu^2 \neq s$
- Regge limit is inherently nonperturbative.
- Compare DGLAP (collinear approach): $Q^2 \gg \Lambda^2$ and $\alpha_s(Q^2) \ll 1$
- No momentum sum rule, since the evolution is local in x. In DGLAP: momentum sum rule satisfied at each order due to the initial assumption of the collinearity of the partons and the non-locality of the evolution in x.
- Approximations in the phase space (multi-Regge kinematics, quasi multi-Regge kinematics, etc..) cannot be recovered by the (fixed number of) the higher orders of expansion in the coupling constant.

Resummation

Resummation

Resummation

linear case

Anderson, Gustafson, Kharraziha, Samuelson Z. Phys. C71 (1996) 613 Kwiecinski, Martin, Sutton Z. Phys. C71 (1996) 585; Kwiecinski, Martin, AS Phys. Rev. D56 (1997) 3991 Salam JHEP 9807 (1998) 19; Ciafaloni, Colferai, Salam, AS Phys. Rev. D68 (2003) 114003 Altarelli, Ball, Forte Nucl. Phys. B575 (2000) 313; Bonvini, Marzani, Perano Eur. Phys. J C76 (2016) 597. Thorne Phys. Rev. D64 (2001) 074005 Sabio-Vera Nucl. Phys. B722 (2005) 65. Brodsky, Fadin, Kim, Lipatov, Pivovarov JETP Lett. 70 (1999) 155.

nonlinear case

Motyka, AS Phys. Rev. D79(2009) 085016; Beuf Phys. Rev. D89(2014) 074039

lancu,Madrigal,Mueller,Soyez; Phys.Lett. B744 (2015) 293;Lappi,Mantysaari Phys.Rev.D93(2016) 094004

General setup

- Kinematical constraint.
- DGLAP splitting function at LO and NLO.
- NLLx BFKL with suitable subtraction of terms included above.
- Momentum sum rule.
- Running coupling.
- Calculations done in momentum space, even though we use Mellin space as a guidance.

LLx + NLLx

Representation of the kernel $\mathcal{K} = \sum_{n=0}^{\infty} \bar{\alpha}_s^{n+1} \mathcal{K}_n \qquad \bar{\alpha}_s \equiv \frac{N_c \alpha_s}{\pi}$

Mellin variables: $\gamma \leftrightarrow \ln k_T^2$

 $\omega \leftrightarrow \ln 1/x$

LLx kernel in Mellin space

$$\chi_0(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$

LLx + NLLx

LLx kernel in Mellin space

$$\chi_0(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$$

running coupling triple poles double poles

NLLx kernel in Mellin space

$$\chi_{1}(\gamma) = \left[-\frac{b}{2}[\chi_{0}^{2}(\gamma) + \chi_{0}'(\gamma)] - \frac{1}{4}\chi_{0}''(\gamma) - \frac{1}{4}\left(\frac{\pi}{\sin\pi\gamma}\right)^{2}\right] \frac{\cos\pi\gamma}{\beta(1-2\gamma)} \left(11 + \frac{\gamma(1-\gamma)}{(1+2\gamma)(3-2\gamma)}\right) \\ + \left(\frac{67}{36} - \frac{\pi^{2}}{12}\right)\chi_{0}(\gamma) + \frac{3}{2}\zeta(3) + \frac{\pi^{3}}{4\sin\pi\gamma} \\ - \sum_{n=0}^{\infty}(-1)^{n}\left[\frac{\psi(n+1+\gamma) - \psi(1)}{(n+\gamma)^{2}} + \frac{\psi(n+2-\gamma) - \psi(1)}{(n+1-\gamma)^{2}}\right]$$

Strictly speaking at NLLx this is not an eigenvalue. Still, one can consider Mellin transform of the kernel.

$$\chi_{1}^{\text{coll}}(\gamma) = \left[-\frac{1}{2\gamma^{3}} - \frac{1}{2(1-\gamma)^{3}}\right] + \left[\frac{A_{1}(0)}{\gamma^{2}} + \frac{A_{1}(0) - b}{(1-\gamma)^{2}}\right] \qquad \begin{array}{l} \text{double and triple poles}\\ \text{of the NLL part} \end{array}$$

$$\text{LO DGLAP anomalous dimension} \qquad \gamma_{gg}^{(0)}(\omega) = \frac{\bar{\alpha}_{s}}{\omega} + \bar{\alpha}_{s}A_{1}(\omega) \qquad A_{1}(\omega) = -\frac{11}{12} + \mathcal{O}(\omega)$$

Difference of about 7% at most

$$\chi_{1}^{\text{coll}}(\gamma) = \left[-\frac{1}{2\gamma^{3}} - \frac{1}{2(1-\gamma)^{3}}\right] + \left[\frac{A_{1}(0)}{\gamma^{2}} + \frac{A_{1}(0) - b}{(1-\gamma)^{2}}\right] \qquad \begin{array}{l} \text{double and triple poles} \\ \text{of the NLL part} \end{array}$$

$$\text{LO DGLAP anomalous dimension} \qquad \gamma_{gg}^{(0)}(\omega) = \frac{\bar{\alpha}_{s}}{\omega} + \bar{\alpha}_{s}A_{1}(\omega) \qquad A_{1}(\omega) = -\frac{11}{12} + \mathcal{O}(\omega)$$

Difference of about 7% at most

$$\chi_{1}^{\text{coll}}(\gamma) = \left[-\frac{1}{2\gamma^{3}} - \frac{1}{2(1-\gamma)^{3}}\right] + \left[\frac{A_{1}(0)}{\gamma^{2}} + \frac{A_{1}(0) - b}{(1-\gamma)^{2}}\right] \qquad \begin{array}{l} \text{double and triple poles} \\ \text{of the NLL part} \end{array}$$

$$\text{LO DGLAP anomalous dimension} \qquad \gamma_{gg}^{(0)}(\omega) = \frac{\bar{\alpha}_{s}}{\omega} + \bar{\alpha}_{s}A_{1}(\omega) \qquad A_{1}(\omega) = -\frac{11}{12} + \mathcal{O}(\omega)$$

Difference of about 7% at most

$$\chi_{1}^{\text{coll}}(\gamma) = \left[-\frac{1}{2\gamma^{3}} - \frac{1}{2(1-\gamma)^{3}}\right] + \left[\frac{A_{1}(0)}{\gamma^{2}} + \frac{A_{1}(0) - b}{(1-\gamma)^{2}}\right] \qquad \begin{array}{l} \text{double and triple poles} \\ \text{of the NLL part} \end{array}$$

$$\text{LO DGLAP anomalous dimension} \qquad \gamma_{gg}^{(0)}(\omega) = \frac{\bar{\alpha}_{s}}{\omega} + \bar{\alpha}_{s}A_{1}(\omega) \qquad A_{1}(\omega) = -\frac{11}{12} + \mathcal{O}(\omega)$$

Difference of about 7% at most

b=11/12

Scale choices

HE factorization for the cross section

BFKL equation for the gluon Green's function

$$\sigma_{AB}(s;Q,Q_0) = \int \frac{d\omega}{2\pi i} \frac{d^2 \boldsymbol{k}}{\boldsymbol{k}^2} \frac{d^2 \boldsymbol{k}_0}{\boldsymbol{k}_0^2} \left(\frac{s}{QQ_0}\right)^{\omega} h_{\omega}^A(Q,\boldsymbol{k}) \mathcal{G}_{\omega}(\boldsymbol{k},\boldsymbol{k}_0) h_{\omega}^B(Q_0,\boldsymbol{k}_0)$$

$$\omega \mathcal{G}_{\omega}(\boldsymbol{k},\boldsymbol{k}_{0}) = \delta^{2}(\boldsymbol{k}-\boldsymbol{k}_{0}) + \int \frac{d^{2}\boldsymbol{k}'}{\pi} \, \mathcal{K}_{\omega}(\boldsymbol{k},\boldsymbol{k}') \, \mathcal{G}_{\omega}(\boldsymbol{k}',\boldsymbol{k}_{0})$$

Scale choices

HE factorization for the cross section

BFKL equation for the gluon Green's function

$$\sigma_{AB}(s;Q,Q_0) = \int \frac{d\omega}{2\pi i} \frac{d^2 \mathbf{k}}{\mathbf{k}^2} \frac{d^2 \mathbf{k}_0}{\mathbf{k}_0^2} \left(\frac{s}{QQ_0}\right)^{\omega} h_{\omega}^A(Q,\mathbf{k}) \mathcal{G}_{\omega}(\mathbf{k},\mathbf{k}_0) h_{\omega}^B(Q_0,\mathbf{k}_0)$$

$$\omega \mathcal{G}_{\omega}(\boldsymbol{k},\boldsymbol{k}_{0}) = \delta^{2}(\boldsymbol{k}-\boldsymbol{k}_{0}) + \int \frac{d^{2}\boldsymbol{k}'}{\pi} \, \mathcal{K}_{\omega}(\boldsymbol{k},\boldsymbol{k}') \, \mathcal{G}_{\omega}(\boldsymbol{k}',\boldsymbol{k}_{0})$$

Different possible scale choices:

symmetric (ex. two jets)

$$\nu_0 = kk_0 \qquad \qquad k \sim k_0$$
$$\nu_0 = k^2 \qquad \qquad k \gg k_0$$
$$\nu_0 = k_0^2 \qquad \qquad k \ll k_0$$

DIS type configuration

Scale choices

HE factorization for the cross section

BFKL equation for the gluon Green's function

$$\sigma_{AB}(s;Q,Q_0) = \int \frac{d\omega}{2\pi i} \frac{d^2 \mathbf{k}}{\mathbf{k}^2} \frac{d^2 \mathbf{k}_0}{\mathbf{k}_0^2} \left(\frac{s}{QQ_0}\right)^{\omega} h_{\omega}^A(Q,\mathbf{k}) \mathcal{G}_{\omega}(\mathbf{k},\mathbf{k}_0) h_{\omega}^B(Q_0,\mathbf{k}_0)$$

$$\omega \mathcal{G}_{\omega}(\boldsymbol{k}, \boldsymbol{k}_0) = \delta^2(\boldsymbol{k} - \boldsymbol{k}_0) + \int rac{d^2 \boldsymbol{k}'}{\pi} \, \mathcal{K}_{\omega}(\boldsymbol{k}, \boldsymbol{k}') \, \mathcal{G}_{\omega}(\boldsymbol{k}', \boldsymbol{k}_0)$$

Different possible scale choices:

symmetric (ex. two jets)

DIS type configuration

$$\nu_0 = kk_0 \qquad \qquad k \sim k_0$$
$$\nu_0 = k^2 \qquad \qquad k \gg k_0$$
$$\nu_0 = k_0^2 \qquad \qquad k \ll k_0$$

Similarity transformation

 \mathcal{G}_{ω}

$$\rightarrow \left(\frac{k_{\geq}}{k_{\leq}}\right)^{\omega} \mathcal{G}_{\omega} \qquad \qquad \mathcal{K}_{\omega}(k,k') \rightarrow \mathcal{K}_{\omega}^{u}(k,k') = \mathcal{K}_{\omega}(k,k') \left(\frac{k}{k'}\right)^{\omega}, \qquad \nu_{0} = k^{2}, \\ \mathcal{K}_{\omega}(k,k') \rightarrow \mathcal{K}_{\omega}^{l}(k,k') = \mathcal{K}_{\omega}(k,k') \left(\frac{k'}{k}\right)^{\omega}, \qquad \nu_{0} = k'^{2},$$

Shift of poles

Shift of poles (symmetric case)

$$\chi_n^{\omega}(\gamma) = \chi_{nL}^{\omega}(\gamma + \frac{\omega}{2}) + \chi_{nR}^{\omega}(1 - \gamma + \frac{\omega}{2})$$

LL case with shifts

$$\chi_0^{\omega} = 2\psi(1) - \psi(\gamma + \frac{\omega}{2}) - \psi(1 - \gamma + \frac{\omega}{2})$$

Shifts are equivalent to the kinematical constraints imposed on the transverse momenta in the ladder

Expansion reproduces higher order poles:

$$\chi_0^{\omega} \simeq \chi_0^0 - \frac{1}{2\gamma^3} - \frac{1}{2(1-\gamma)^3} + \dots$$

symmetric scale choice

All the calculations are actually done in momentum space

Resummed kernel

Additional subtraction needed to satisfy the momentum sum rule. All the calculations are actually done in momentum space

Frozen coupling features

$$\bar{\alpha}_s \chi_\omega(\gamma, \bar{\alpha}_s) = \bar{\alpha}_s(\chi_0^\omega + \omega \chi_c^\omega) + \bar{\alpha}_s^2 \tilde{\chi}_1^\omega$$

Effective characteristic function:

$$\omega = \bar{\alpha}_s \chi_{\text{eff}}^{(0)}(\gamma, \bar{\alpha}_s)$$

Gluon Green's function

000000

000000

Solution to the BFKL equation (gluon Green's function)

Single channel: gluons only.

Gluon Green's function

Splitting function

- Deconvolution of the integral equation.
- Calculate the integrated density: $xg(x,Q^2) = \int^{Q^2} dk_T^2 G^{(s_0=k_T^2)}(x;k_T,k_{0T})$
- Solve numerically for the splitting function:

$$\frac{dg(x,Q^2)}{d\log Q^2} = \int \frac{dz}{z} P_{\text{eff}}(z,Q^2) g(\frac{x}{z},Q^2)$$

At large values of Q^2 the results should be independent of the regularization of the coupling and the choice of k_0 .

Factorization in Q^2 of the non-perturbative and perturbative contributions.

Splitting function

Splitting function

Resummed splitting function

- Small x growth delayed to much smaller values of x (beyond HERA)
- Interesting feature: a dip seen at around $~x\simeq 10^{-3}$
- Is this universal feature ?
- Need to understand the origin of the dip.

Resummed splitting function

The same feature visible in other schemes of resummation Bonvini, Marzani, Peraro based on Altarelli, Ball, Forte scheme

Summary and outlook

- Resummation schemes at low x based on collinear improvements: kinematical effects, matching to DGLAP
- Stability of the results demonstrated for scale changes and model changes.
- Characteristic features: reduced Pomeron intercept and small x growth delayed by several units of rapidity. Dip of the splitting function and dip in the Green's function.
- Impact on saturation: lowering the saturation scale.
- EIC : kinematic range where strong preasymptotic effects present. Still, increased luminosity and possibility of F_{L} measurement can help.
- Need NLO impact factors, and possibly resummation thereof to increase accuracy of theoretical predictions.

Backup

Where the dip comes from?

Initial decrease seems to be consistent with the small x NNLO term.

Resummed kernel in x,k_T

$$\int_{x}^{1} \frac{dz}{z} \int dk'^{2} \tilde{\mathcal{K}}(z;k,k') f(\frac{x}{z},k')$$

= $\int_{x}^{1} \frac{dz}{z} \int dk'^{2} \left[\bar{\alpha}_{s}(q^{2}) K_{0}^{\text{kc}}(z;k,k') + \bar{\alpha}_{s}(k_{>}^{2}) K_{c}^{\text{kc}}(z;k,k') + \bar{\alpha}_{s}^{2}(k_{>}^{2}) \tilde{K}_{1}(k,k') \right] f(\frac{x}{z},k')$

LL BFKL with consistency constraint

$$\int_{x}^{1} \frac{dz}{z} \int dk'^{2} \left[\bar{\alpha}_{s}(\boldsymbol{q}^{2}) K_{0}^{\mathrm{kc}}(z;\boldsymbol{k},\boldsymbol{k}') \right] f(\frac{x}{z},k')$$
$$= \int_{x}^{1} \frac{dz}{z} \int \frac{d^{2}\boldsymbol{q}}{\pi \boldsymbol{q}^{2}} \bar{\alpha}_{s}(\boldsymbol{q}^{2}) \left[f(\frac{x}{z},|\boldsymbol{k}+\boldsymbol{q}|)\Theta(\frac{k}{z}-k')\Theta(k'-kz) - \Theta(k-q)f(\frac{x}{z},k) \right]$$

non-singular DGLAP with consistency constraint

$$\begin{split} \int_{x}^{1} \frac{dz}{z} \int dk'^{2} \ \bar{\alpha}_{s}(k_{>}^{2}) K_{c}^{kc}(z;k,k') f(\frac{x}{z},k') \\ &= \int_{x}^{1} \frac{dz}{z} \int_{(kz)^{2}}^{k^{2}} \frac{dk'^{2}}{k^{2}} \ \bar{\alpha}_{s}(k^{2}) z \frac{k}{k'} \tilde{P}_{gg}(z\frac{k}{k'}) f(\frac{x}{z},k') \\ &+ \int_{x}^{1} \frac{dz}{z} \int_{k^{2}}^{(k/z)^{2}} \frac{dk'^{2}}{k'^{2}} \ \bar{\alpha}_{s}(k'^{2}) z \frac{k'}{k} \tilde{P}_{gg}(z\frac{k'}{k}) f(\frac{x}{z},k') \ , \end{split}$$

Resummed kernel in x,kT

NLL BFKL with subtractions

$$\begin{split} \int_{x}^{1} \frac{dz}{z} \int dk'^{2} \ \bar{\alpha}_{s}^{2}(k_{>}^{2}) \tilde{K}_{1}(k,k') f(\frac{x}{z},k') \\ &= \frac{1}{4} \int_{x}^{1} \frac{dz}{z} \int dk'^{2} \ \bar{\alpha}_{s}^{2}(k_{>}^{2}) \Big\{ \\ &\left(\frac{67}{9} - \frac{\pi^{2}}{3}\right) \frac{1}{|k'^{2} - k^{2}|} \left[f(\frac{x}{z},k'^{2}) - \frac{2k_{<}^{2}}{(k'^{2} + k^{2})} f(\frac{x}{z},k^{2}) \right] + \\ &\left[-\frac{1}{32} \left(\frac{2}{k'^{2}} + \frac{2}{k^{2}} + \left(\frac{1}{k'^{2}} - \frac{1}{k^{2}} \right) \log\left(\frac{k^{2}}{k'^{2}}\right) \right) + \frac{4\text{Li}_{2}(1 - k_{<}^{2}/k_{>}^{2})}{|k'^{2} - k^{2}|} \right] \\ &- 4A_{1}(0)\text{sgn}(k^{2} - k'^{2}) \left(\frac{1}{k^{2}} \log\frac{|k'^{2} - k^{2}|}{k'^{2}} - \frac{1}{k'^{2}} \log\frac{|k'^{2} - k^{2}|}{k^{2}} \right) \\ &- \left(3 + \left(\frac{3}{4} - \frac{(k'^{2} + k^{2})^{2}}{32k'^{2}k^{2}} \right) \right) \int_{0}^{\infty} \frac{dy}{k^{2} + y^{2}k'^{2}} \log|\frac{1 + y}{1 - y}| \\ &+ \frac{1}{k'^{2} + k^{2}} \left(\frac{\pi^{2}}{3} + 4\text{Li}_{2}(\frac{k_{<}^{2}}{k_{>}^{2}}) \right) \right] f(\frac{x}{z}, k') \Big\} \\ &+ \frac{1}{4} 6\zeta(3) \int_{x}^{1} \frac{dz}{z} \ \bar{\alpha}_{s}^{2}(k^{2})f(\frac{x}{z}, k) \,. \end{split}$$

Gluon Green's function

- Resummation identical to the single channel case in gg part.
- qg channel suppressed by factor of the coupling.
 Quarks are generated radiatively therefore growth in Y follows gg channel.
- Small difference between two resummation schemes:NLx-NLO and NLx-NLO. +

Momentum sum rule

		NL <i>x</i> -NLO		NL <i>x</i> -NLO ⁺	
$lpha_{ m s}$	$Q \; [\text{GeV}]$	$\sum_{j} \Gamma_{jq}(1)$	$\sum_{j} \Gamma_{jg}(1)$	$\sum_{j} \Gamma_{jq}(1)$	$\sum_{j} \Gamma_{jg}(1)$
0.20	6	0.0079	-0.0059	0.0074	-0.0055
0.15	20	0.0021	-0.0015	0.0018	-0.0012
0.10	220	0.00012	-0.00003	0.00006	0.00002

Momentum sum rule satisfied to very good accuracy. Residual Q dependence (higher twist, non-perturbative regularization?)

Results on splitting function

The onset of small x rise delayed to x<0.0001. Characteristic dip at around x=0.001. Universal feature of the resummed approaches.

Results on splitting function

