Diffractive vector meson production from proton proton to ultraperipheral heavy ion collisions

Wolfgang Schäfer¹

¹ Institute of Nuclear Physics, PAN, Kraków

Probing QCD in Photon-Nucleus Interactions at RHIC and LHC: the Path to EIC, INT Seattle Feb. 13-17, 2017

Outline

1 Central exclusive production of vector mesons in pp collisions

2 Diffractive photoproduction with diffractive and electromagnetic dissociation

S From photoproduction on the free nucleon to the nuclear target

Anna Cisek, W. S., Antoni Szczurek, JHEP 1504, 159 (2015).

Anna Cisek, W. S. and Antoni Szczurek, arXiv:1611.08210 [hep-ph].

- Iarge rapidity gaps: no exchange of charge or color. *t*-channel exchanges with the (running) spin J(t) ≥ 1.
- C-parity constraint: $C_X = C_1 \times C_2$. even: Pomeron, odd: Odderon, photon.
- we often have to deal with diffractive reactions which include excitation of incoming protons. Instead of fully inclusive final states: gap cross sections, gap vetos or even only vetos on additional tracks(!) from a production vertex.

Color dipole/ k_{\perp} -factorization approach

Color dipole representation of forward amplitude:

$$\begin{split} \mathsf{M}(\gamma^*(Q^2)\boldsymbol{p} \to V\boldsymbol{p}; W, t = 0) &= \int_0^1 dz \, \int d^2 \boldsymbol{r} \, \psi_V(z, \boldsymbol{r}) \, \psi_{\gamma^*}(z, \boldsymbol{r}, Q^2) \, \sigma(x, \boldsymbol{r}) \\ \sigma(x, \boldsymbol{r}) &= \frac{4\pi}{3} \alpha_S \, \int \frac{d^2 \kappa}{\kappa^4} \frac{\partial G(x, \kappa^2)}{\partial \log(\kappa^2)} \Big[1 - e^{i\boldsymbol{\kappa}\boldsymbol{r}} \Big] \,, \, x = M_V^2/W^2 \end{split}$$

- impact parameters and helicities of high-energy q and \bar{q} are conserved during the interaction.
- scattering matrix is "diagonal" in the color dipole representation.

Diffractive Photoproduction $\gamma p \rightarrow V p$

- $J/\psi = c\bar{c}$, $\Upsilon = b\bar{b}$: (almost) nonrelativistic bound states of heavy quarks. Wavefunctions constrained by their leptonic decay widths.
- Large quark mass \rightarrow hard scale necessary for (perturbative) QCD.
- $\mathcal{F}(x,\kappa) \equiv$ unintegrated gluon density, $x \sim M_{VM}^2/W^2$, constrained by HERA inclusive data.
- ► typical scale at which the gluon distribution is probed $\bar{Q}^2 \sim M_V^2/4$, i.e. $\bar{Q}^2 \sim 2.4 \,\text{GeV}^2$ for J/ψ and $\bar{Q}^2 \sim 20 \,\text{GeV}^2$ for Υ .
- topical subject: glue at small-x: nonlinear evolution, gluon fusion, saturation...

4 7 6 4 1 6

The production amplitude for $\gamma p \rightarrow J/\psi p$

The imaginary part of the amplitude can be written as:

$$\Im m \mathcal{M}_{\mathcal{T}}(W, \Delta^{2} = 0, Q^{2} = 0) = W^{2} \frac{c_{v} \sqrt{4\pi \alpha_{em}}}{4\pi^{2}} \int_{0}^{1} \frac{dz}{z(1-z)} \int_{0}^{\infty} \pi dk^{2} \psi_{V}(z, k^{2})$$
$$\int_{0}^{\infty} \frac{\pi d\kappa^{2}}{\kappa^{4}} \alpha_{5}(q^{2}) \mathcal{F}(\mathsf{x}_{eff}, \kappa^{2}) \left(A_{0}(z, k^{2}) W_{0}(k^{2}, \kappa^{2}) + A_{1}(z, k^{2}) W_{1}(k^{2}, \kappa^{2}) \right)$$

where

$$\begin{split} A_0(z, k^2) &= m_c^2 + \frac{k^2 m_c}{M_{c\bar{c}} + 2m_c} , \ M_{c\bar{c}}^2 = \frac{k^2 + m_c^2}{z(1-z)} \\ A_1(z, k^2) &= \left[z^2 + (1-z)^2 - (2z-1)^2 \frac{m_c}{M_{c\bar{c}} + 2m_c} \right] \frac{k^2}{k^2 + m_c^2} , \end{split}$$

$$\begin{split} & W_0(k^2, \, \kappa^2) \quad = \quad \frac{1}{k^2 + m_c^2} - \frac{1}{\sqrt{(k^2 - m_c^2 - \kappa^2)^2 + 4m_c^2 k^2}} \, , \\ & W_1(k^2, \, \kappa^2) \quad = \quad 1 - \frac{k^2 + m_c^2}{2k^2} \left(1 + \frac{k^2 - m_c^2 - \kappa^2}{\sqrt{(k^2 - m_c^2 - \kappa^2)^2 + 4m_c^2 k^2}} \right) \, . \end{split}$$

the pure S-wave bound state. See the review I.Ivanov, N. Nikolaev, A. Savin (2005).

• E • • • • •

The full amplitude

The full amplitude, at finite momentum transfer is given by:

$$\mathcal{M}(W,\Delta^2) = (i+\rho) \Im m \mathcal{M}(W,\Delta^2 = 0, Q^2 = 0) \cdot f(\Delta^2, W),$$

The real part of the amplitude is restored from analyticity,

$$\rho = \frac{\Re e \mathcal{M}}{\Im m \mathcal{M}} = \tan\left(\frac{\pi}{2} \frac{\partial \log\left(\Im m \mathcal{M}/W^2\right)}{\partial \log W^2}\right).$$

dependence on momentum transfer $t = -\Delta^2$ is parametrized by the function $f(\Delta^2, W)$, which dependence on energy derives from the Regge slope

$$B(W) = b_0 + 2lpha'_{eff} \log\left(rac{W^2}{W_0^2}
ight),$$

with: $b_0=4.88,~\alpha_{eff}'=0.164~{\rm GeV}^{-2}$ and $W_0=90~{\rm GeV}.$ Within the diffraction cone:

$$f(t, W) = \exp\left(\frac{1}{2}B(W)t\right),$$

extension to larger $|t| \sim 1 \div 2 \, {\rm GeV}^2$: "stretched exponential" parametrization

$$f(t,W) = \exp(\mu^2 B(W)) \exp\left(-\mu^2 B(W)\sqrt{1-t/\mu^2}
ight)$$

4 E 6 4 0 6

ZEUS data on $d\sigma/dt(\gamma p \rightarrow J/\psi p)$: fit to t-dependence

Parameters/input to the diffractive amplitude

 frame-independent radial LCWF depends on the invariant

$$p^{2} = \frac{1}{4} \left(\frac{k^{2} + m_{c}^{2}}{z(1-z)} - 4m_{c}^{2} \right)$$

"Gaussian" parametrization:

$$\begin{split} \psi_{1S}(z, \mathbf{k}) &= C_1 \exp(-\frac{p^2 a_1^2}{2}) \\ \psi_{2S}(z, \mathbf{k}) &= C_2(\xi_0 - p^2 a_2^2) \exp(-\frac{p^2 a_2^2}{2}) \end{split}$$

"Coulomb" parametrization:

$$\begin{split} \psi_{1S}(z, \mathbf{k}) &= -\frac{C_1}{\sqrt{M}} \frac{1}{(1 + a_1^2 p^2)^2} \\ \psi_{2S}(z, \mathbf{k}) &= -\frac{C_2}{\sqrt{M}} \frac{\xi_0 - a_2^2 p^2}{(1 + a_2^2 p^2)^3} \end{split}$$

- parameters fixed through: leptonic decay width & orthonormality.
- unintegrated gluon distributions:
 - 1. Ivanov-Nikolaev: hybrid glue with soft and hard components. Fitted to HERA F2 data.
 - 2. Kutak-Staśto linear, a solution to BFKL-type evol. with kinematic constraints
 - 3. Kutak-Staśto nonlinear, includes a BK gluon fusion term.

Exclusive Photoproduction in Hadronic Collisions Born Level Amplitude

$$\begin{split} \boldsymbol{M}(\boldsymbol{p}_{1},\boldsymbol{p}_{2}) &= e_{1}\frac{2}{z_{1}}\frac{\boldsymbol{p}_{1}}{t_{1}}\mathcal{F}_{\lambda_{1}^{\prime}\lambda_{1}}(\boldsymbol{p}_{1},t_{1})\mathcal{M}_{\gamma^{*}h_{2}\rightarrow Vh_{2}}(s_{2},t_{2},Q_{1}^{2}) \\ &+ e_{2}\frac{2}{z_{2}}\frac{\boldsymbol{p}_{2}}{t_{2}}\mathcal{F}_{\lambda_{2}^{\prime}\lambda_{2}}(\boldsymbol{p}_{2},t_{2})\mathcal{M}_{\gamma^{*}h_{1}\rightarrow Vh_{1}}(s_{1},t_{1},Q_{2}^{2}). \end{split}$$

- $p_1, p_2 = \text{transverse momenta of outgoing (anti-) protons.}$
- Interference induces azimuthal correlation $e_1e_2(\boldsymbol{p}_1 \cdot \boldsymbol{p}_2)$.

• E • • • • •

$pp ightarrow p \; J/\psi(\psi') \; p$ with absorptive corrections

 absorption is accounted at the amplitude level and strongly depends on kinematics.

- elastic rescattering is only the simplest option – we will allow for an enhancement of absorption by a factor 1.4.
- possible competing mechanism: the Pomeron-Odderon fusion.

structure of e.m. current:

- pointlike fermion: γ_{μ} vertex conserves helicity at high energies.
- proton has also Pauli-coupling, which leads to a nonvanishing spin-flip at high energies.
- For photons with $z \ll 1$ we can write:

$$\langle p_{1}', \lambda_{1}' | J_{\mu} | p_{1}, \lambda_{1} \rangle \epsilon_{\mu}^{*}(q_{1}, \lambda_{V}) = \frac{(e^{*(\lambda_{V})}q_{1})}{\sqrt{1-z_{1}}} \frac{2}{z_{1}} \cdot \chi_{\lambda'}^{\dagger} \Big\{ F_{1}(Q_{1}^{2}) - \frac{i\kappa_{p}F_{2}(Q_{1}^{2})}{2m_{p}} (\sigma_{1} \cdot [q_{1}, n]) \Big\} \chi_{\lambda}$$

< ∃ > < □ >

Comparison to LHCb data

- ▶ R. Aaij et al. (LHCb collaboration), J.Phys. G41 (2014) 055002
- ▶ the band shows variation in strength of absorption. Substantial uncertainty in the large *p*_t region.
- all the gluons shown here do describe the Tevatron data!

Extrapolation of the HERA data

Cross section for $\gamma p \to J/\psi p$ parametrized in the power-like form fitted to HERA data

Excited state ψ'

R. Aaij et al. (LHCb collaboration), J.Phys. G41 (2014) 055002

• note: the ratio of $\psi(2S)/J/\psi$ is reasonably well described by all the gluon distributions.

Exclusive Υ in *pp*

LHCb Collaboration, JHEP 1509 (2015) 084

diffractive slope of γp → γp known only with large uncertainty.

• E • • • • •

A soft process: $pp \rightarrow pp\omega$

- "Bremsstrahlung"-type mechanism contributes in proton fragmentation regions
- t-channel exchange becomes reggeized
- ▶ subleading Regge pole, but large ωNN coupling, $g_{\omega NN}^2/4\pi \sim 10$.

A soft process: $pp \rightarrow pp\omega$

- dashed: without absorption, solid: with absorption
- need to go to very large energies to "dig out" photoproduction.
- A. Cisek, P. Lebiedowicz, WS, A. Szczurek Phys. Rev. D83 (2011)

Diffractive production with electromagnetic dissociation

$$\frac{d\sigma(pp \to XVp;s)}{dyd^2p} = \int \frac{d^2\boldsymbol{q}}{\pi \boldsymbol{q}^2} \mathcal{F}^{(\mathrm{in})}_{\gamma/p}(\boldsymbol{z}_+, \boldsymbol{q}^2) \frac{1}{\pi} \frac{d\sigma^{\gamma^*p \to Vp}}{dt}(\boldsymbol{z}_+s, t = -(\boldsymbol{q} - \boldsymbol{p})^2) + (\boldsymbol{z}_+ \leftrightarrow \boldsymbol{z}_-)$$

 $z_{\pm} = e^{\pm y} \sqrt{\boldsymbol{p}^2 + m_V^2} / \sqrt{s}$

- generalization of the Weizsäcker-Williams flux to dissociative processes.
- must in principle add contributions of longitudinal photons. Negligible for heavy mesons as long as $Q^2 \ll m_V^2$.

Unintegrated photon fluxes in the high energy limit

$$\mathcal{F}_{\gamma/p}^{(\mathrm{el})}(z,\boldsymbol{q}^2) = \frac{\alpha_{\mathrm{em}}}{\pi}(1-z) \left[\frac{\boldsymbol{q}^2}{\boldsymbol{q}^2 + z^2 m_p^2}\right]^2 \frac{4m_p^2 G_E^2(Q^2) + Q^2 G_M^2(Q^2)}{4m_p^2 + Q^2}$$

$$\mathcal{F}_{\gamma/p}^{(\mathrm{inel})}(z, \boldsymbol{q}^2) = \frac{\alpha_{\mathrm{em}}}{\pi} (1-z) \int_{M_{\mathrm{thr}}^2}^{\infty} \frac{dM_X^2 F_2(x_{Bj}, Q^2)}{M_X^2 + Q^2 - m_\rho^2} \Big[\frac{\boldsymbol{q}^2}{\boldsymbol{q}^2 + z(M_X^2 - m_\rho^2) + z^2 m_\rho^2} \Big]^2$$

$$Q^2 = rac{1}{1-z} \Big[oldsymbol{q}^2 + z(M_X^2 - m_
ho^2) + z^2 m_
ho^2 \Big], x_{Bj} = rac{Q^2}{Q^2 + M_X^2 - m_
ho^2}$$

→ Ξ > + □ >

Diffractive dissociation of one of the protons

 Dissociation into nucleon resonances/low mass continuum states. Dominated by N*(1680), J^P = ⁵/₂⁺, N*(2220), J^P = ⁹/₂⁺, N*(2700), J^P = ¹³/₂⁺. A model by L.L. Jenkovszky, O.E. Kuprash, J.W. Lämsa, V.K. Magas and R. Orava (2011).

 large p_T: diffractive scattering off partons, as in the large-t mechanism of Ryskin, Forshaw et al. Large diffractive masses are possible here.

Ratio of dissociative to exclusive cross section

Figure : R(y) as a function of J/ψ rapidity for different ranges of M_X . Both electromagnetic and diffractive excitations are included here.

Results for LHCb cuts

► Clear emergence of two different slopes. Electromagnetic dissociation dominates!

VM photoproduction from nucleon to nucleus:

- ▶ for heavy nuclei rescattering/absorption effects are enhanced by the large nuclear size
- $q\bar{q}$ rescattering is easily dealt with in impact parameter space
- the final state might as well be a (virtual) photon (total photoabsorption cross section) or a $q\bar{q}$ -pair (inclusive low-mass diffraction).
- Color-dipole amplitude

$$\Gamma(\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{r}) = 1 - \frac{\langle A | Tr[S_q(\boldsymbol{b})S_q^{\dagger}(\boldsymbol{b} + \boldsymbol{r})] | A \rangle}{\langle A | Tr[\mathbf{1}] | A \rangle}$$

- - E > - D >

Nuclear unintegrated glue at $x \sim x_A$

• at not too small $x \sim x_A = (R_A m_p)^{-1} \sim 0.01$ only the $\bar{q}q$ state is coherent over the nucleus, and $\Gamma(\mathbf{b}, x, \mathbf{r})$ can be constructed from Glauber-Gribov theory:

$$\Gamma(\boldsymbol{b}, \mathsf{x}_{A}, \boldsymbol{r}) = 1 - \exp[-\sigma(\mathsf{x}_{A}, \boldsymbol{r}) T_{A}(\boldsymbol{b})/2] = \int d^{2} \boldsymbol{\kappa} [1 - e^{i\boldsymbol{\kappa}\cdot\boldsymbol{r}}] \phi(\boldsymbol{b}, \mathsf{x}_{A}, \boldsymbol{\kappa}).$$

nuclear coherent glue per unit area in impact parameter space:

$$\phi(\boldsymbol{b}, \mathsf{x}_{A}, \boldsymbol{\kappa}) = \sum w_{j}(\boldsymbol{b}, \mathsf{x}_{A}) f^{(j)}(\mathsf{x}_{A}, \boldsymbol{\kappa}), \ f^{(1)}(\mathsf{x}, \boldsymbol{\kappa}) = \frac{4\pi\alpha_{S}}{N_{c}} \frac{1}{\kappa^{4}} \frac{\partial G(\mathsf{x}, \boldsymbol{\kappa}^{2})}{\partial \log(\kappa^{2})}$$

collective glue of j overlapping nucleons :

$$f^{(j)}(\mathsf{x}_{\mathsf{A}},\boldsymbol{\kappa}) = \int \Big[\prod_{i=1}^{j} d^{2} \kappa_{i} f^{(1)}(\mathsf{x}_{\mathsf{A}},\boldsymbol{\kappa}_{i})\Big] \delta^{(2)}(\boldsymbol{\kappa}-\sum_{i} \kappa_{i})$$

probab. to find j overlapping nucleons

$$w_j(\boldsymbol{b}, \boldsymbol{x}_A) = \frac{\nu_A'(\boldsymbol{b}, \boldsymbol{x}_A)}{j!} \exp[-\nu_A(\boldsymbol{b}, \boldsymbol{x}_A)], \ \nu_A(\boldsymbol{b}, \boldsymbol{x}_A) = \frac{1}{2}\alpha_S(\boldsymbol{q}^2) \sigma_0(\boldsymbol{x}_A) T_A(\boldsymbol{b}),$$

• impact parameter $\boldsymbol{b} \rightarrow$ effective opacity ν_{A} , q^2 = the relevant hard scale.

Small-x evolution: adding $q\bar{q}(ng)$ Fock-states

- ▶ the effect of higher qāg-Fock-states is absorbed into the x-dependent dipole-nucleus interaction Nikolaev, Zakharov, Zoller / Mueller '94
- ▶ evolution of unintegrated glue Balitsky Kovchegov '96 –' 98:

$$\frac{\partial \phi(\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{p})}{\partial \log(1/\boldsymbol{x})} = \mathcal{K}_{BFKL} \otimes \phi(\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{p}) + \mathcal{Q}[\phi](\boldsymbol{b}, \boldsymbol{x}, \boldsymbol{p})$$

- corresponds to taking the contribution to shadowing from high-mass diffraction into account \leftrightarrow Gribov's unitarity relation between nuclear shadowing and diffraction on the nucleon.
- contains a "gluon mass" $\mu_{G} \sim .7 \, {\rm GeV}$.

4 7 8 4 10 8

Properties of the nonlinear term:

 first piece of the nonlinear term looks like a diffractive cut of a triple-Pomeron vertex Nikolaev & WS '05:

$$\int d^{2}\boldsymbol{q}d^{2}\boldsymbol{\kappa}\phi(\boldsymbol{b},\boldsymbol{x},\boldsymbol{q})\Big[\boldsymbol{K}(\boldsymbol{p}+\boldsymbol{\kappa},\boldsymbol{p}+\boldsymbol{q})-\boldsymbol{K}(\boldsymbol{p},\boldsymbol{\kappa}+\boldsymbol{p})-\boldsymbol{K}(\boldsymbol{p},\boldsymbol{q}+\boldsymbol{p})\Big]\phi(\boldsymbol{b},\boldsymbol{x},\boldsymbol{\kappa})$$
$$=-2\boldsymbol{K}_{0}\Big|\int d^{2}\boldsymbol{\kappa}\phi(\boldsymbol{b},\boldsymbol{x},\boldsymbol{\kappa})\Big[\frac{\boldsymbol{p}}{\boldsymbol{p}^{2}+\mu_{G}^{2}}-\frac{\boldsymbol{p}+\boldsymbol{\kappa}}{(\boldsymbol{p}+\boldsymbol{\kappa})^{2}+\mu_{G}^{2}}\Big]\Big|^{2}$$

• at large p^2 the nonlinear term is dominated by the 'anticollinear' region $\kappa^2 > p^2$. (see also Bartels & Kutak (2007)) It cannot be written as a square of the integrated gluon distribution.

$$\begin{aligned} \mathcal{Q}[\phi](\boldsymbol{b},\boldsymbol{x},\boldsymbol{p}) &\approx -\frac{2K_0}{\boldsymbol{p}^2} \left| \int_{\boldsymbol{p}^2} \frac{d^2\kappa}{\kappa^2} \phi(\boldsymbol{b},\boldsymbol{x},\kappa^2) \right|^2 \\ &- 2K_0 \phi(\boldsymbol{b},\boldsymbol{x},\boldsymbol{p}^2) \int_{\boldsymbol{p}^2} \frac{d^2\kappa}{\kappa^2} \int_{\kappa^2} d^2 \boldsymbol{q} \phi(\boldsymbol{b},\boldsymbol{x},\boldsymbol{q}^2) \end{aligned}$$

 in that regard it differs from the earlier Mueller-Qiu and Gribov-Levin-Ryskin gluon fusion corrections.

Coherent diffractive production of $J/\Psi, \psi(2S), \Upsilon$ on ^{208}Pb

Ieft panel A. Cisek, WS, A. Szczurek Phys. Rev C86 (2012) 014905.

Ratio of coherent production cross section to impulse approximation

$$R_{\rm coh}(W) = \frac{\sigma(\gamma A \to VA; W)}{\sigma_{IA}(\gamma A \to VA; W)}, \ \sigma_{IA} = 4\pi \int d^2 b T_A^2(b) \frac{d\sigma(\gamma N \to VN)}{dt}_{|t=0}$$
Wolfang Schäfer
Diffractive vector meson production from proton proton to ultraperipheral h

The putative gluon shadowing: $\sqrt{R_{\rm coh}}$

- ▶ an extraction of $\sqrt{R_{\rm coh}}$ from ALICE $PbPb \rightarrow J/\psi PbPb$ data by Guzey et al. (2013).
- ▶ in the collinear approach: "gluon shadowing": $R_{\rm coh} \sim [g_A(x, \bar{Q}^2)/(A \cdot g_N(x, \bar{Q}^2))]^2$.
- the putative "gluon shadowing": $R_G = \sqrt{R_{\rm coh}(x \sim 10^{-3})} \sim 0.7$.
- Whether our result should be interpreted as a shadowing of the DGLAP evolving glue is a seperate issue.

Central ex Diffractive photoproduc From photop

- Predictions for a future EIC: $Q^2 = 1, 5, 20 \text{ GeV}^2$
- $R_A = \frac{\sigma(\gamma^* A)}{A\sigma(\gamma^* p)}$, $R_{coh} = \frac{\text{coherent diffraction}}{\text{total}}$
- calculation from Nikolaev, WS, Zoller & Zakharov '07
- dashed = $q\bar{q}$, solid = $q\bar{q} + q\bar{q}g$ contributions
- ▶ Remember, that $16\pi d\sigma(\gamma^* p \rightarrow Xp)/dt = \langle \sigma^2(\mathbf{r}) \rangle$ for low-mass diffraction \rightarrow elastic scattering of dipoles.

Summary

- ▶ The k_T -factorization approach applied to the LHCb $(pp \rightarrow p J/\psi(\psi') p)$ gives the best description when using a glue that includes nonlinear evolution.
- ▶ Absorptive corrections in $pp \rightarrow ppJ/\psi$ are a strong function of kinematics. At large p_T , relevant for Odderon searches, the Pauli coupling needs to be included. There is a sizeable uncertainty due to absorption in the p_T distribution.
- Coherent diffraction on the nucleus is a sensitive probe of the (unintegrated) gluon distribution
 of the target nucleus.
- ▶ "gluon shadowing" is included via the rescattering of higher QQg Fock states. The effective "gluon shadowing" ratio R_G(x, m_c²) ~ 0.74 ÷ 0.62. For x ~ 10⁻² ÷ 10⁻⁵. ALICE data appear to indicate a slightly stronger effect R_G(10⁻³, m_c²) ÷ 0.6.
- EIC: large coherent diffraction in DIS on large nuclei.