Probing the Saturation Physics via UPC

Amir Rezaeian UTFSM, Valparaiso

INT Workshop (INT-17-65W), Seattle, February 13 - 17, 2017

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Outline:

DIS and exclusive VM production at small-x.

□ Signature of gluon saturation/CGC in UPCs at HERA and the LHC.

Exclusive dijet production in coherent diffractive processes in UPCs.

Unified description of inclusive & exclusive processes in color-dipole factorization

Exclusive diffractive process: $\psi_{q\bar{q}}^{\gamma} \otimes \mathcal{N} \otimes \phi_{q\bar{q}}^{V}$

 $t_{\text{life}}^{q\bar{q}} >> t_{\text{int}}^{qq}$

contains all small-x physics, multiple scatterings

$$A_{T,L}^{\gamma^* p \to Vp}(x, Q, \Delta) = 2i \int d^2 \vec{r} \int_0^1 dz (\Psi_E^* \Psi)_{T,L} \int d^2 \vec{b} e^{-i[\vec{b} - (1-z)\vec{r}] \cdot \vec{\Delta}} N(x, r, b)$$

$$\frac{d\sigma_{T,L}^{\gamma^* p \to Ep}}{dt} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^* p \to Ep} \right|^2 \qquad t = -\Delta^2$$

• With corrections from the real part of the amplitude and skewedness effect $x \neq x'$

• $(b \rightarrow 1/|t|)$: t-distributions access impact-parameter distribution of interactions

Inclusive deep-inelastic scattering (DIS): $\psi_{a\bar{a}}^{\gamma} \otimes \mathcal{N} \otimes \psi_{a\bar{a}}^{\gamma}$

$$\begin{aligned} \gamma^{*p}_{L,T}(Q^{2},x) &= \lim \mathcal{A}_{T,L}^{\gamma^{*}p \to \gamma^{*}p}(x,Q,\Delta=0) \\ &= 2 \int d^{2}\vec{r} \int_{0}^{1} dz |\Psi_{L,T}(r,z;Q^{2})|^{2} \int d^{2}\vec{b} N(x,r,b) \end{aligned}$$

DIS is less sensitive to the b-dependence compared to exclusive diffractive process

and does not probe $b \approx 0$, but $b \approx 2 \div 3 \, {\rm GeV}^{-1}$.

Unified description of inclusive & exclusive processes in color-dipole factorization

Exclusive diffractive process: $\psi_{q\bar{q}}^{\gamma} \otimes \mathcal{N} \otimes \phi_{q\bar{q}}^{V}$

 $t_{\text{life}}^{q\bar{q}} >> t_{\text{int}}^{q\bar{q}}$

$$\mathcal{A}_{T,L}^{\gamma^* p \to Vp}(x, Q, \Delta) = 2i \int d^2 \vec{r} \int_0^1 dz (\Psi_E^* \Psi)_{T,L} \int d^2 \vec{b} e^{-i[\vec{b} - (1-z)\vec{r}] \cdot \vec{\Delta}} N(x, r, b)$$
$$\frac{d\sigma_{T,L}^{\gamma^* p \to Ep}}{dt} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^* p \to Ep} \right|^2 \qquad t = -\Delta^2$$

- With corrections from the real part of the amplitude and skewedness effect $x \neq x'$
- $(b \rightarrow 1/|t|)$: t-distributions access impact-parameter distribution of interactions

b-dependence of saturation scale and t-distribution of diffractive processes

- At a fixed Q², the typical dipole size is bigger for lighter vector meson validity of the above asymptotic expression is postponed to a higher Q².
- t-slope B_D gives the width of saturation scale distribution in proton.

A unified description of combined inclusive HERA data & diffractive data in CGC

Rezaeian, Siddikov, Van de Klundert, Venugopalan, arXiv:1212.2974; Rezaeian, Schmidt, arXiv:1307.0825

The dipole scattering amplitude is the main ingredient with 3 or 4 free parameters fixed via a fit to the reduced cross-section.

Is the CGC perturbative approach reliable & systematic at the small-x? Is the saturation scale large enough?

The impact-parameter b and x- dependence of the saturation scale for proton

Rezaeian and Schmidt, arXiv:1307.0825

b-independent saturation models significantly overestimate Q_s.

Proton saturation scale:

HERA : $Q_s < 1 \text{ GeV}$ LHC : $Q_s \leq 1 - 2 \text{ GeV}$ FCC : $Q_s \leq 2 - 4 \text{ GeV}$

• Nuclear saturation scale: $Q_{sA}^2 \approx A^{1/3}Q_s^2 \approx 6 Q_s^2$ EIC : $Q_{sA} < 2.5 \,\mathrm{GeV}$

CGC (IP-Sat v. b-CGC) description of combined HERA data

Photo-vector-meson production in ultra-peripheral collisions at LHC

• Ultra-Peripheral Collision: limit $Q^2 = 0$

UPC's give a strong constraint on gluons at small x (10-3-10-5), but ...

pQCD:

- Factorization theorem (is not universal) for exclusive cross section $\sim xg(x,Q^2)^2$.
- No full NLO calculation, scheme dependent (scale,...)
- Cannot currently be used in a global PDF analysis.
 CGC:
- Factorization is universal for different vector mesons.
- No full NLO calculation.
- Can be used to constrain small-x physics.

Photonuclear vector meson production in ultra-peripheral collisions at LHC

Rebyakova, Strikman and Zhalov (RSZ): the nuclear gluon distribution in the leading twist approximation, PLB 710 (2012) 647.

> ALICE conclusión (arXiv:1209.3715):

The cross section cannot be understood from a simple scaling of the nucleon cross section neglecting nuclear effects. Best agreement is seen with models which include nuclear gluon shadowing.

Photonuclear vector meson production in ultra-peripheral collisions at LHC

> ALICE conclusión (arXiv:1209.3715):

The cross section cannot be understood from a simple scaling of the nucleon cross section neglecting nuclear effects. Best agreement is seen with models which include nuclear gluon shadowing.

Photo-production of J/ψ from HERA to the LHC

The LHCb and ALICE data seem to favor the CGC/Saturation predictions.

The uncertainties related to the charm mass is very large.

Photonuclear $\Psi(2S)$ production in ultra-peripheral collisions at LHC

Ψ(2S) wave function has a node and is heaver than J/Ψ
 Large suppression compared to J/Ψ.
 The Ψ(2S) wave function is less known.

Data remain to be understood?

Photonuclear $\Psi(2S)$ production in ultra-peripheral collisions at LHC

The ratio is certainly energy-dependent!.
 The energy-dependence of the ratio can be a good test of the color-dipole picture!.

Diffractive dijet v. inclusive dijet in UPC

Diffractive (averaging over color at amplitude level): $\sigma \propto |\langle \mathcal{M} \rangle_{\rho}|^2$ **Inclusive** (averaging over color at cross-section level): $\sigma \propto \langle |\mathcal{M}|^2 \rangle_{\rho}$

 In contrast to inclusive dijet production, diffractive dijet production only depends on the dipole amplitude (not WW gluon distribution) at LO. Diffractive Dijet production in the CGC: $\gamma^* + p(A) \rightarrow q\bar{q} + p(A)$

ヘロア 人間 アメボア 人間ア

َ ∎ 17

Diffractive dijet production is a sensitive probe of the color-dipole orientation.

Diffractive dijet production as a probe of color-dipole orientation

Inspired by "saturation domain" picture of Kovner & Lublinsky (2011)

$$\mathcal{N}(\mathbf{r},\mathbf{b}) = \mathcal{N}(r,b,\theta_r-\theta_b) = 1 - e^{-\frac{Q_s^2(b)}{4}r^2\left(1 + \mathbf{A}\cos^2(\theta_r - \theta_b)\right)}$$

 θ_r, θ_b are the angles of vectors \vec{r}, \vec{b} with respect to a reference vector, respectively. Assuming $Q_s^2 r^2 A/4 \ll 1$:

$$\int \frac{d^2 \mathbf{r}}{(2\pi)^2} \int \frac{d^2 \mathbf{b}}{(2\pi)^2} e^{-i\mathbf{b}\cdot(\mathbf{p}_0+\mathbf{p}_1)} e^{-i\mathbf{r}\cdot(\mathbf{p}_0-\mathbf{p}_1)/2} \mathcal{N}(\mathbf{r},\mathbf{b}) \mathcal{K}_0(\varepsilon|\mathbf{r}|) \simeq \int_0^{+\infty} \frac{dr}{2\pi} r \int_0^{+\infty} \frac{db}{2\pi} b J_0(b|\mathbf{p}_0+\mathbf{p}_1|) \times J_0\left(r \frac{|\mathbf{p}_0-\mathbf{p}_1|}{2}\right) \mathcal{N}(r,b,\theta_--\theta_+) \mathcal{K}_0(\varepsilon r)$$

 θ_+ , θ_- denote the angles of vectors $\vec{\Delta} = \vec{p}_0 + \vec{p}_1$ and $\vec{k} = \frac{1}{2}(\vec{p}_0 - \vec{p}_1)$ with respect to a reference vector, respectively.

A nonzero A corresponding to the existence of r̄ − b̄ correlations in the color dipole amplitude, induces azimuthal correlations between Δ̄ and k̄.

Diffractive dijet production as a probe of color-dipole orientation

A nonzero A corresponding to the existence of r̄ − b̄ correlations in the color dipole amplitude, induces sizeable azimuthal correlations for dijet between Δ̄ and k̄.

Color-dipole orientation as an origin of elliptic flow in pp and pA collisions

Color-dipole orientation as an origin of elliptic flow in pp and pA collisions

Color-dipole orientation as an origin of elliptic flow in pp and pA collisions

Iancu-Rezaeian (to show up on Archive Feb 15, 2017)

The anisotropy due to the color-dipole orientation mechanism is universal for different processes in dilute-dense scatterings.

There will be the analog of azimuthal anisotropy v_n in DIS and UPC.

Stay tuned!.

Correlations v. decorrelations

 In order to keep the color neutrality of the dijet system, required by its diffractive nature, the production becomes dominated by qq
 pairs of smaller transverse size with increasing saturation momentum.

Inclusive v. diffractive two-particle production

- Diffractive dijet photoproduction: Back-to-back correlation gets enhanced due to the saturation scale. Balance between: p_{1T}, p_{2T}, Å, Q_s
- Inclusive dijet:

Back-to-back correlation gets **suppressed** due to the saturation scale. Balance between: p_{1T} , p_{2T} , Q_s t-distribution of diffractive dijet photo-production at the LHC

Diffractive dijet photoproduction:

- |t| distribution exhibits dips for the saturation models, similar to diffractive vector mesons.
- There is NO dips for the non-saturation models (i.e. 1-Pomeron).
- The dips become stronger by increasing the saturation scale.

The origin of diffractive dips: Non-linear evolution of black-disc region

 Non-linear evolution =>> evolves any realistic profile in b, like a Gaussian or Woods-Saxon distribution, and makes it closer to a step-like function in the b-space at black-disc limit.

4 m 5 4 Al 5 4 E 5 4 E

The universality of the diffractive dip at small-x

The emergence of dip structure in the diffractive t-distribution is universal and does not depend on the details of the final-state particle wave functions. Main conclusion: Small-x gluon tomography in diffractive dijet in UPC

- + Correlations between $~ec{p_1},~ec{p_2}$ probe the effective dipole size $~rpprox 1/Q_s(b)$ •
- + Correlation between $ec{k},ec{\Delta}$ probe the color-dipole orientation and correlations between $ec{r},ec{b}$.
- + t-distribution of the diffractive dijet photo-production probes the inhomogeneity of the target.

Altinoluk, Armesto, Beuf, and Rezaeian, PLB 758 (2016) 373. Hatta, Xiao and Yuan, PRL 116 (2016) 202301.