Vector meson production in ultraperipheral collisions: accessing the small-x gluon

Heikki Mäntysaari

Brookhaven National Laboratory

Probing QCD in Photon-Nucleus Interactions at RHIC and LHC: the Path to EIC, February 14, 2017

2 Pb+Pb collisions

 $b\gtrsim 2R_A$: strong interactions are suppressed

J. Nystrand et al, nucl-ex/0502005

- Nucleus creates a (real) photon flux n(ω)
- Photon-nucleus scattering

$$\sigma^{AA \to AA+V} \sim n(\omega) \sigma^{\gamma A \to VA}(\omega)$$

Interesting QCD part: high-energy γ -nucleus or γ -proton scattering.

Diffractive vector meson production as a probe of small x

- Diffraction is very sensitive to (small-x) gluons!
- UPC is γp or γA collision
 - Nuclear DIS before the EIC era and at very high energies!

QCD at high energy: Color Glass Condensate

- CGC = QCD at high energies
- x (energy) dependence: BK/JIMWLK (perturbative)
- Saturation of gluon density at small *x*
- Saturation scale Q_s^2

Natural framework to describe high energy scattering.

Deep inelastic scattering at high energy: dipole picture

Optical theorem: $\sigma^{\gamma^* p} \sim \text{dipole amplitude}$

 $\sigma^{\gamma^* p \rightarrow V p} \sim |\text{dipole amplitude}|^2$

Univesal dipole amplitude

Same universal QCD evolved dipole amplitude N appears in calculations of

- DIS
- Diffraction
- Particle spectra in pp/pA

• . . .

Non-perturbative input from a fit to HERA F_2 data.

IPsat model and DIS

Use impact parameter dependent dipole amplitude (IPsat) fitted to HERA

(Kowalski, Motyka, Watt, 2006; Rezaeian et al, 2012)

$$\Pr\left[-\frac{\pi^2}{2N_c}\alpha_s xg(x,\mu^2)T_p(b)r^2\right]$$

- DGLAP evolved gluon distribution xg(x, μ²)
- Proton profile T_p Gaussian
- Very good agreement with structure function data
- Generalization for nuclei: $S_A(r, b, x) =$ $\prod_{i=1}^A S_p(r, b - b_i, x)$
- Extremely good description of the precise HERA data

- $\gamma^* \rightarrow q\bar{q}$ splitting, wave function $\Psi^{\gamma}(r, Q^2, z)$
- 2 $q\bar{q}$ dipole scatters elastically
- $q\bar{q} \rightarrow J/\Psi$, wave function $\Psi^V(r, Q^2, z)$

Diffractive scattering amplitude

$$\mathcal{A} \sim \int \mathrm{d}^2 b \mathrm{d} z \mathrm{d}^2 r \Psi^{\gamma *} \Psi^V(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b)$$

• Fourier transfer from impact parameter to transverse momentum Δ \rightarrow access to spatial structure

Still need to average over target configurations!

Target is at the same quantum state before and after the scattering (Miettinen, Pumplin, PRD 18, 1978, ...)

$$\frac{\mathrm{d}\sigma^{\gamma^* \boldsymbol{\rho} \to \boldsymbol{V} \boldsymbol{\rho}}}{\mathrm{d}t} \sim |\langle \mathcal{A}(x,Q^2,t) \rangle|^2$$

with

$$\mathcal{A} \sim \int \mathrm{d}^2 b \mathrm{d} z \mathrm{d}^2 r \Psi^* \Psi^V(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b)$$

• Coherent $t = -\Delta^2$ spectra is Fourier transfer of the **average density**

Total diffractive cross section - coherent cross section \Rightarrow target breaks up

$$rac{\mathrm{d}\sigma^{\gamma^* p o V p^*}}{\mathrm{d}t} \sim \langle |\mathcal{A}(x,Q^2,t)|^2
angle - \left| \langle \mathcal{A}(x,Q^2,t)
angle
ight|^2$$

with

$$\mathcal{A} \sim \int \mathrm{d}^2 b \mathrm{d} z \mathrm{d}^2 r \Psi^* \Psi^V(r, z, Q^2) e^{-ib \cdot \Delta} N(r, x, b)$$

• Incoherent cross section is proportional to the amount of fluctuations in the impact parameter space

Cross section for incoherent γA diffraction: T. Lappi, H.M, 1011.1988

Going to small x with nuclei

- Currently there is basically no small-x nuclear DIS data
- Momentum fraction $x = M_V e^y / \sqrt{s}$
- Midrapidity J/Ψ at the LHC: $x \sim 10^{-3}$
 - Forward J/Ψ at the LHC $x\sim 10^{-2}$ and $x\sim 10^{-5}$

Signal of nuclear effects seen in γA diffraction

Impulse approximation = scaled γp

• Clear nuclear effects seen (e.g. saturation, shadowing)

CMS, 1605.06966

Coherent diffraction, model comparison

ALICE, 1305.1467

Shadowing/saturation needed, compare e.g. AB-MSTW08 and AB-EPS09 (nuclear pdf) / LM-fIPsat (saturation)

Coherent and incoherent diffraction

Dipole model calculation (LM-fIPsat): ok simultaneous description

- More LHC data coming
 - $\sqrt{s} = 5.02 \,\mathrm{TeV}$: *x* dependece of the gluon density
 - Spectra differentially in t
 ightarrow Geometric structure and fluctuations
 - **QM2017:** Neutron tagging \Rightarrow large x/small x separation

T. Lappi, H.M., 1301.4095

"Theory uncertainties" are still large

- Dipole-nucleus amplitude
 - No nuclear DIS data to fit
 - But other data, e.g. R_{pA}
- Vector meson wave function (thin-thick lines)
 - Constrained mainly by the leptonic decay width = wave function at origin!
- Large phenomenological corrections
 - Especially skewedness
 (2 gluons, x ≪ x')
 is large ~ 50%

• NLO???

T. Lappi, H.M., 1301.4095

"Theory uncertainties" are still large

- Dipole-nucleus amplitude
 - No nuclear DIS data to fit
 - But other data, e.g. R_{pA}
- Vector meson wave function (thin-thick lines)
 - Constrained mainly by the leptonic decay width = wave function at origin!
- Large phenomenological corrections
 - Especially skewedness
 - (2 gluons, $x \ll x'$)
 - is large, $\sim 50\%$

• NLO???

T. Lappi, H.M., 1301.4095

"Theory uncertainties" are still large

- Dipole-nucleus amplitude
 - No nuclear DIS data to fit
 - But other data, e.g. R_{pA}
- Vector meson wave function (thin-thick lines)
 - Constrained mainly by the leptonic decay width = wave function at origin!
- Large phenomenological corrections
 - Especially skewedness
 (2 gluons, x ≪ x')
 - is large, $\sim 50\%$

• NLO???

T. Lappi, H.M., 1301.4095

"Theory uncertainties" are still large

- Dipole-nucleus amplitude
 - No nuclear DIS data to fit
 - But other data, e.g. R_{pA}
- Vector meson wave function (thin-thick lines)
 - Constrained mainly by the leptonic decay width = wave function at origin!
- Large phenomenological corrections
 - Especially skewedness
 - (2 gluons, $x \ll x'$)
 - is large, $\sim 50\%$
- NLO???

T. Lappi, H.M., 1301.4095

 Model uncertainties mainly affect normalization, not rapidity (Bjorken-x) dependence.(?) "Theory uncertainties" are still large

- Dipole-nucleus amplitude
 - No nuclear DIS data to fit
 - But other data, e.g. R_{pA}
- Vector meson wave function (thin-thick lines)
 - Constrained mainly by the leptonic decay width = wave function at origin!
- Large phenomenological corrections
 - Especially skewedness
 (2 gluons, x ≪ x')
 - is large, $\sim 50\%$
- NLO???

$$\gamma A \rightarrow J/\Psi A$$

T. Lappi, H.M., 1011.1988 Solid line: no saturation Dashed lines: with saturation

Measure differentially in vector meson momentum $t=-\Delta^2$

- Incoherent: more sensitive to saturation effects
 - QM2017, CMS: No/small incoherent cross section at small *x*!
 - Qualitatively predicted:

T. Lappi, H. M., 1011.1988

• Coherent: extract transverse density profile of the small-*x* gluons in the nucleus

Toll, Ullrich, 1211.3048

Excited states: $\Psi(2S)/J/\Psi$

Species dependence could test our understanding of the wave function

Qualitative agreement with dipole model: node effect is damped at large Q_s^2 (contribution from large dipoles is suppressed).

Excited states: $\Psi(2S)/J/\Psi$

Species dependence could test our understanding of the wave function

Qualitative agreement with dipole model: node effect is damped at large Q_s^2 (contribution from large dipoles is suppressed). QM2017: $\sigma(2S)/\sigma(J/\Psi) = 0.166 \pm 0.011$

2 Pb+Pb collisions

Diffraction in pA collisions

ATLAS, arXiv:1409.1792

Diffraction at the TeV scale

Total coherent diffractive cross section

Total coherent cross section follows the same W^γ power law as HERA

No significant saturation effect expected, described by IPsat

Recall:

- Coherent diffraction probes average structure
- Incoherent diffraction is sensitive to amount of fluctuations

Strategy

Simultaneous description of HERA coherent and incoherent data allow us to constrain event-by-event proton structure fluctuations.

Constraining proton fluctuations

Start with a simple constituent quark inspired picture:

- Sample quark positions from a Gaussian distribution, width B_{qc}
- Small-x gluons are located around the valence quarks (width B_q).
- Combination of B_{qc} and B_q sets the degree of geometric fluctuations
- Dipole-target scattering: IPsat model fitted to F_2 data

Constraining proton fluctuations

Start with a simple constituent quark inspired picture:

- Sample quark positions from a Gaussian distribution, width B_{qc}
- Small-x gluons are located around the valence quarks (width B_q).
- Combination of B_{qc} and B_q sets the degree of geometric fluctuations
- Dipole-target scattering: IPsat model fitted to F₂ data

Now proton = 3 overlapping hot spots.

$$T_{\text{proton}}(b) = \sum_{i=1}^{3} T_q(b-b_i) \qquad T_q(b) \sim e^{-b^2/(2B_q)}$$

Lessons from the HERA data

- H1 incoherent data requires large fluctuations
- Proton-photon center-of-mass energy $W = 75 \,\text{GeV}$, probing $x \approx 10^{-3}$

Heikki Mäntysaari (BNL)

Include color charge fluctuation, parameters fitted to H1 data

• Initial condition for pA hydro, good description of v_2 and v_3 data!

Towards smaller $x \ / \ \text{larger} \ W$ in γp

ALICE measurement in $\gamma + p \rightarrow J/\Psi + p(p^*)$ collisions

$$x\sim 10^{-2}
ightarrow 2\cdot 10^{-5}$$

- Incoherent cross section not observed at small x
- Signature of smoothening at small x?
- Proton grows, diffractive slope $B_p: 4 \,\mathrm{GeV}^{-2} \to \sim 6.7 \,\mathrm{GeV}^{-2}$

ALICE arXiv:1406.7819

Proton smoothening at small x?

Cepila, Contreras, Takaki (1608.07559): Number of constituent quarks $\sim x^a(1+b\sqrt{x})$, parameters fitted to HERA data

- Qualitatively expect incoherent cross section to decrease at high W
- $\bullet\,$ Still expect to see significant incoherent contribution at $\sim 1\,\, {\rm TeV}$

HERA data constrains proton structure at $x \sim 10^{-3}$. Evolve to smaller x by perturbative CGC evolution equation (JIMWLK)

B. Schenke, S. Schlichting, Phys.Lett. B739 (2014) 313-319

- Proton grows
- Proton gets smoother

Energy evolution of diffractive J/Ψ production

Work in progress / preliminary (qualitative results at this point)

- Incoherent cross section grows more slowly
 - Proton gets smoother
 - Dipole must not scatter off other constituent quarks (included in IPsat calculation T. Lappi, H.M., 1011.1988)
- We would expect to still see a large incoherent contribution at $W\sim 700\,{
 m GeV}$

- UPC: diffractive vector meson production at very high energy
- $\bullet\,$ CGC calculations compatible with both coherent and incoherent J/Ψ measurements form the LHC
- Signatures of saturation/shadowing in heavy ion collisions
 - Still largish model dependence
- pA collisions: study proton structure at high energies
 - Description of HERA data requires large proton structure fluctuations
 - LHC pA data hints for smoothening at small x
 - Fluctuations applied to hydro calculations of pA collisions: good description of the v_n measurements (backup)
- Lots of new data coming!

BACKUPS

Hydro calculations with proton fluctuations from HERA

Large v_2 and v_3 at largest centrality bins reproduced well.

In preparation with B. Schenke, C. Shen, P. Tribedy

Constrain evolution speed

Work in progress / preliminary

• F_2 data at $Q^2=4.5\ldots 18\,{
m GeV}^2\sim M_{J/\Psi}^2$ constrain $lpha_s$

• MV model does not give exactly correct Q^2 dependence

Heikki Mäntysaari (BNL)

- Obtain saturation scale $Q_s(x_T)$ from IPsat (with fluctuations)
- MV-model: Sample color charges, density $\sim Q_s(x_T)$
- Solve Yang-Mills equations to obtain the Wilson lines

$$V(x_T) = P \exp\left(-ig \int \mathrm{d}x^{-} rac{
ho(x^-, x_T)}{
abla^2 + m^2}
ight)$$

- Dipole amplitude: $N(x_T, y_T) = 1 \operatorname{Tr} V(x_T) V^{\dagger}(y_T) / N_c$
- Fix parameters B_{qc} , B_q and m with HERA data

Lumpiness matters, not details of the density profile

3 valence quarks that are connected by "color flux tubes" (Gaussian density profile, width B_q). Also good description of the data

 $\label{eq:H.M.B.Schenke, PRD94 034042} Flux tubes implementation following results from hep-lat/0606016, used also e.g. in 1307.5911$

Wave function overlap in J/Ψ production:

Differential cross section

T. Lappi, H. Mäntysaari, 1301.4095

Assuming proton profile function $T_{\rho}(b) \sim e^{b^2/(2B_{\rho})} \Rightarrow$ incoherent cross section $\sim e^{-B_{\rho}t}$: probes spatial distribution of gluons in proton!

Heikki Mäntysaari (BNL)

T. Lappi, H. Mäntysaari, 1301.4095 CMS frame

As the photon flux $\sim Z^2$, dominant process is the one where the nucleus emits the photon \Rightarrow probes mostly proton structure.

Heikki Mäntysaari (BNL)

Vector meson wave functions

 $\gamma^* \rightarrow q\bar{q}$ can be computed from QED, but $q\bar{q} \rightarrow$ vector meson requires some modelling, parameters fit to reproduce decay width.

Excited states: $\Psi(2S)$ wave function has a node (orthogonal to J/Ψ). Cross section $\sim \int d^2r \Rightarrow$ large suppression compared to J/Ψ

S matrix ~ probability not to scatter [recall: S = 1 - N]:

$$S_A(r,b,x) = \prod_{i=1}^A S_p(r,b-b_i,x)$$

Average over nucleon configurations

$$\langle \mathcal{O}(\{b_i\})\rangle_N = \int \prod_{i=1}^A \left[\mathrm{d}^2 b_i T_A(b_i)\right] \mathcal{O}(\{b_i\})$$