Nuclear PDFs (Parton Distribution Functions)

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) J-PARC Center (J-PARC) Graduate University for Advanced Studies (SOKENDAI) http://research.kek.jp/people/kumanos/

30th Neutrino workshop "Neutrino Interaction Physics" IPMU, Tokyo University, Kashiwa, Japan https://www.icrr.u-tokyo.ac.jp/indico/event/91/

(with the project of Unification and Development of the Neutrino Science Frontier http://www-he.scphys.kyoto-u.ac.jp/nufrontier/en/index.html

February 15, 2017

Contents

- 1. Motivation, Introductory comments
- 2. Comments on Parton distributions functions (PDFs) of the nucleon
- 3. Nuclear PDFs
- 4. Comments on v DIS / nuclear modifications
- 5. Summary

6. Two-photon physics (UPC?)

Motivation & Introductory comments

Nuclear Physics: Ultimate high-density quantum many-body system bound by strong interactions

Nuclear physics is a field of investigating

- matter generation of universe,
- properties of quark-hadron many-body systems as ultimate materials.

No official update after HKN2007, busy for KEK nuclear physics textbook in 2015 (someday, it would be traslated into English.)

Hadron degrees of freedom (d.o.f.) ⇔Quark d.o.f.

Nuclei should be described by quark and gluon degrees of freedom at high energies.

Kinematical regions of neutrino-nucleus scattering

Depending on the neutrino beam energy,
different physics mechanisms contribute to the cross section.
• QE (Quasi elastic) • RES (Resonance) • DIS (Deep inelastic)

Activities at the J-PARC branch, KEK theory center http://j-parc-th.kek.jp/html/English/e-index.html Towards construction of a unified model for the neutrino-nucleus reactions, S. X. Nakamura, H. Kamano, Y. Hayato, M. Hirai, W. Horiuchi, S. Kumano, T. Murata, K. Saito, M. Sakura, T. Sato, Y. Suzuki arXiv:1610.01464, Rep. Prog. Phys. in press.

J.L. Hewett *et al.*, arXiv:1205.2671, Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier

ν flux		16%	
$\boldsymbol{\nu}$ flux and	w/o ND measurement	21.8%	
cross section	w/ ND measurement	2.7%	
v cross sectior nuclear target	due to difference of btw. near and far	5.0%	
Final or Secon Hadronic Inter	dary action	3.0%	v interaction
Super-K detect	tor	4.0%	
total	w/o ND measurement	23.5%	
	w/ ND measurement	7.7%	

A.K.Ichikawa@KEK workshop 2015

Impact-parameter-dependent nuclear modifications I

small E_T

J/ψ suppression

 $\frac{d\sigma_{J/\psi}(E_T)}{d\sigma_{DY}(E_T)}$

suppression of J/ψ cross section at large E_T in comparison with DY

 E_{T}

If the $g_A(x)$ modification is significantly different from the quark one, the suppression could be explained partially by the NPDF effect.

> Local EMC effect, SK and F.E. Close, PRC 41 (1990) 1855.

large E_T

Impact-parameter-dependent nuclear modifications II ⇔ Local EMC effect [S. Kumano and F. E. Close, Phys. Rev. C 41 (1990) 1855]

Rescaling model ¹⁹F

Binding model ¹⁹F

This workshop: Gluon shadowing ⇔ LHC/RHIC (esp. UltraPeripheral Collisions)

V. Guzey, E. Kryshen, M. Strikman, M. Zhalov, PLB 726 (2013) 290;

L. Frankfurt, V. Guzey, M. Strikman, M. Zhalov, PLB 752 (2016) 51.

Comments on Parton distribution functions in the nucleon

Recent works on unpolarized PDFs

ABKM (Alekhin, Blümlein, Klein, Moch)

ABKM-2010, 2011, S. Alekhin *et al.*, Phys. Rev. D 81 (2010) 014032; Phys. Rev. D86 (2012) 054009; ABM-2014, S. Alekhin *et al.*, Phys. Rev. D89 (2014) 054028 [D91 (2015) 094002, D94 (2016) 114038] ABMP-2016: S. Alekhin *et al.*, arXiv:1609.03327.

CTEQ (Coordinated Theoretical-Experimental Project on QCD) CTEQ6.6, P. M. Nadolsky *et al.*, Phys. Rev. D 78 (2008) 013004. CT10, H.-L. Lau *et al.*, Phys. Rev. D 82 (2010) 074024. CT12, J. F. Owens *et al.*, Phys. Rev. D 87 (2013) 094012. CT14, S. Dulat *et al.*, Phys. Rev. D 93 (2016) 033006.

GJR (Glück, Jimenez-Delgado, Reya) GJR-2008, M. Gluck *et al.*, Eur. Phys. J. C 53 (2008) 355; PRD79 (2009) 074023; JR-2014, Phys. Rev. D89 (2014) 074049.

HERA (H1 and ZEUS collaborations) HERAPDF, F. D. Aaron *et al.*, JHEP 01 (2010) 109: Eur. Phys. J. C73 (2013) 2311; H Abramowicz *et al.*, Phys. Rev. D 93 (2016) 092002; I. Abt *et al.*, Phys. Rev. D 94 (2016) 052007.

MSTW (Martin, Stirling, Thorne, Watt, L. A. Harland-Lang, P. Motylinski) MSTW2008, A. D. Martin *et al.*, Eur. Phys. J. C 63 (2009) 189; MMHT2014, A. Harland-Lang *et al.*, Eur. Phys. J. C (2015) 75.

Neural Network (Ball, Bertone, Carrazza, Del Debbio, Forte, Guffanti, Hartland, Latorre, Rojo, Ubiali, ...) NNPDF, R. D. Ball *et al.*, Nucl. Phys. B 838 (2010) 136; B855 (2012) 153; B867 (2013) 244; B874 (2013) 36; B877 (2013) 290; JHEP 04 (2015) 040; JHEP 1509 (2015) 191; arXiv:1605.06515.

CTEQ14

Functional form: $Q_0^2 = (1.3)^2 \text{ GeV}^2$ $xf(x,Q_0^2) = x^{a_1}(1-x)^{a_2}P(x)$ used to be $P(x) = \exp\left(a_0 + a_3\sqrt{x} + a_4x + a_5x^2\right)$ Expansion by Bernstein polynomials:

$$P(x) = \sum_{i=0}^{n} d_i p_i (y = \sqrt{x}), \ p_0(y) = (1 - y)^4,$$

$$p_1(y) = 4y(1 - y)^3, \ p_2(y) = 6y^2(1 - y)^2,$$

$$p_3(y) = 4y^3(1 - y), \ p_4(y) = y^4$$

CT14, S. Dulat et al., PRD93 (2016) 033006

HERMES semi-inclusive measurement

Huge Fe target (690 ton) Issue: nuclear corrections

Strange-quark distribution with LHC measurements

S. Alekhin *et al.*, PRD 91 (2015) 094002.

Neutrino: $s + W \rightarrow c$ LHC: $g + s \rightarrow W + c$

Nuclear Parton Distribution Functions

Our studies:

M. Hirai, S. Kumano, M. Miyama, Phys. Rev. D64 (2001) 034003. First chi2 analysis on nuclear PDFs

M. Hirai, S. Kumano, T.-H. Nagai, Phys. Rev. C70 (2004) 044905. First error analysis on nuclear PDFs

M. Hirai, S. Kumano, and T. -H. Nagai, Phys. Rev. C 76 (2007) 065207. NLO with F2 and Drell-Yan

Nuclear modifications of structure function F_2

Functional form Nuclear PDFs "per nucleon"

If there were no nuclear modification

 $Au^{A}(x) = Zu^{p}(x) + Nu^{n}(x), Ad^{A}(x) = Zd^{p}(x) + Nd^{n}(x)$ p = proton, n = neutron

Isospin symmetry: $u^n = d^p \equiv d$, $d^n = u^p \equiv u$

$$\rightarrow u^{A}(x) = \frac{Zu(x) + Nd(x)}{A}, \qquad d^{A}(x) = \frac{Zd(x) + Nu(x)}{A}$$

Take account of nuclear effects by $w_i(x, A)$

$$u_{\nu}^{A}(x) = w_{u_{\nu}}(x,A) \frac{Zu_{\nu}(x) + Nd_{\nu}(x)}{A}, \quad d_{\nu}^{A}(x) = w_{d_{\nu}}(x,A) \frac{Zd_{\nu}(x) + Nu_{\nu}(x)}{A}$$

$$\bar{u}^{A}(x) = w_{\bar{q}}(x,A) \frac{Z\bar{u}(x) + N\bar{d}(x)}{A}, \quad \bar{d}^{A}(x) = w_{\bar{q}}(x,A) \frac{Z\bar{d}(x) + N\bar{u}(x)}{A}$$

$$\bar{s}^{A}(x) = w_{\bar{q}}(x,A)\bar{s}(x)$$

$$g^{A}(x) = w_{g}(x,A)g(x) \quad \text{at } Q^{2} = 1 \text{ GeV}^{2}(\equiv Q_{0}^{2})$$

Nuclear modifications and constraints

$$f_i^A(x,Q_0^2) = w_i(x,A)f_i(x,Q_0^2)$$
 $i = u_v, d_v, \bar{u}, \bar{d}, \bar{s}, g$

Note: The region *x* > 1 cannot be described by this parametrization.

A simple function = cubic polynomial

Three constraints

Nuclear charge:
$$Z = A \int dx \left[\frac{2}{3} \left(u^A - \bar{u}^A \right) - \frac{1}{3} \left(d^A - \bar{d}^A \right) - \frac{1}{3} \left(s^A - \bar{s}^A \right) \right] = A \int dx \left[\frac{2}{3} u_v^A - \frac{1}{3} d_v^A \right]$$

Baryon number: $A = A \int dx \left[\frac{1}{3} \left(u^A - \bar{u}^A \right) + \frac{1}{3} \left(d^A - \bar{d}^A \right) + \frac{1}{3} \left(s^A - \bar{s}^A \right) \right] = A \int dx \left[\frac{1}{3} u_v^A + \frac{1}{3} d_v^A \right]$
Momentum: $A = A \int dx \left[u^A + \bar{u}^A + d^A + \bar{d}^A + s^A + \bar{s}^A + g \right]$
 $= A \int dx \left[u_v^A + d_v^A + 2 \left(\bar{u}^A + \bar{d}^A + \bar{s}^A \right) + g \right]$

Global analyses on nuclear PDFs

HKN

I may miss some papers.

- M. Hirai, S. Kumano, and T. -H. Nagai, Phys. Rev. C 76 (2007) 065207.
- Charged-lepton DIS, DY.

EPS

- K. J. Eskola, H. Paukkunen, and C. A. Salgado, JHEP 04 (2009) 065; arXiv:1612.05741.
- Charged-lepton DIS, DY, π^0 production in dAu, Neutrino

nCTEQ

- I. Schienbein, J. Y. Yu, C. Keppel, J. G. Morfin, F. I. Olness, J. F. Owens, Phys. Rev. D 77 (2008) 054013; D80 (2009) 094004;
 - K. Kovarik et al., PRL 106 (2011) 122301; PoS DIS2013 (2013) 274;
 - PoS DIS2014 (2014) 047; Phys. Rev. D 93 (2016) 085037.
- Neutrino DIS, Charged-lepton DIS, DY.

DSZS

- D. de Florian, R. Sassot, P. Zurita, M. Stratmann, Phys. Rev. D85 (2012) 074028.
- Charged-lepton DIS, DY, RHIC-π
 - See also L. Frankfurt, V. Guzey, and M. Strikman, Phys. Rev. D 71 (2005) 054001; Phys. Lett. B687 (2010) 167; Phys. Rept. 512 (2012) 255; Phys. Lett. B726 (2013) 290; B752 (2016) 51. [⇐ Relevant for this workshop.]
 - S. A. Kulagin and R. Petti, Phys. Rev. D 76 (2007) 094023; C 82 (2010) 054614; C 90 (2014) 045204; D 94 (2016) 113013.
 - A. Bodek and U.-K. Yang, arXiv:1011.6592.

Functional form of initial distributions at Q_0^2

Initial nuclear PDFs at

 $f_i^A(x) = \frac{1}{A} \Big[Z f_i^{p/A}(x) + (A - Z) f_i^{n/A}(x) \Big] \qquad f_i^{N/A}(x): \text{ PDF of bound nucleon in the nucleus}$ Isospin symmetry is assumed: $u \equiv d^n = u^p, d \equiv u^n = d^p$

Functional forms

• HKN07 ($Q_0^2 = 1 \text{ GeV}^2$)

$$f_i^A(x) = w_i(x, A, Z) \frac{1}{A} \Big[Z f_a^p(x) + (A - Z) f_a^n(x) \Big], \quad w_i(x, A, Z) = 1 + \left(1 - \frac{1}{A^{1/3}} \right) \frac{a_i + b_i x + c_i x^2 + d_i x^3}{(1 - x)^{0.1}}$$

- EPS09 $(Q_0^2 = 1.69 \text{ GeV}^2)$ $f_i^{N/A}(x) \equiv R_i^A(x) f_i^{\text{CTEQ6.IM}}(x, Q_0^2), R_i^A(x) = \begin{cases} a_0 + (a_1 + a_2 x)[\exp(-x) - \exp(-x_a)] & (x \le x_a : \text{shadowing}) \\ b_0 + b_1 x + b_2 x^2 + b_3 x^3 & (x_a \le x \le x_e : \text{antishadowing}) \\ c_0 + (c_1 - c_2 x)(1 - x)^{-\beta} & (x_e \le x \le 1 : \text{EMC}\&\text{Fermi}) \end{cases}$
- **CTEQ-08** ($Q_0^2 = 1.69 \text{ GeV}^2$)

$$xf_{i}^{N/A}(x) = \begin{cases} A_{0}x^{A_{1}}(1-x)^{A_{2}}e^{A_{3}x}(1+e^{A_{4}}x)^{A_{5}} & :i = u_{v}, d_{v}, g, \overline{u} + \overline{d}, s, \overline{s} \\ A_{0}x^{A_{1}}(1-x)^{A_{2}} + (1+A_{3}x)(1-x)^{A_{4}} & :i = \overline{d} / \overline{u} \end{cases}$$

• DSZS12
$$(Q_0^2 = 1.0 \text{ GeV}^2)$$

 $f_i^{N/A}(x) \equiv R_i^A(x) f_i^{MSTW 2009}(x, Q_0^2), R_v^A(x) = \varepsilon_1 x^{\alpha_v} (1-x)^{\beta_1} [1+\varepsilon_2 (1-x)^{\beta_2}] [1+a_v (1-x)^{\beta_3}]$
 $R_s^A(x) = R_v^A(x) \frac{\varepsilon_s}{\varepsilon_1} \frac{1+a_s x^{\alpha_s}}{1+a_s}, R_g^A(x) = R_g^A(x) \frac{\varepsilon_g}{\varepsilon_1} \frac{1+a_g x^{\alpha_g}}{1+a_g}$

Comparison with F_2^{Ca}/F_2^{D} & $\sigma_{DY}^{pCa}/\sigma_{DY}^{pD}$ data

(Rexp-Rtheo)/Rtheo at the same Q² points

Comparison with F_2^A/F_2^D data: Light nuclei

Scaling Violation and Gluon Distributions

Review on neutrino interactions (arXiv: 1610.01464)

Towards a Unified Model of Neutrino-Nucleus Reactions for Neutrino Oscillation Experiments

S.X. Nakamura¹, H. Kamano^{2,3}, Y. Hayato⁴, M. Hirai⁵, W. Horiuchi⁶, S. Kumano^{2,3}, T. Murata¹, K. Saito^{7,3}, M. Sakuda⁸, T. Sato^{1,3}, Y. Suzuki^{9,10}

Recent analysis by nCTEQ15: data set

data

20

12

32

6.63

1.41

8.04

Ref. # data after cuts γ^2

21

13

34

K. Kovarik et al., PRD 93 (2016) 085037

Charged-lepton DIS

F_2^A/F_2^D					# data		
21 2					after		
Observable	Experiment	ID	Ref.	# data	cuts	χ^2	
D	NMC-97	5160	[48]	292	201	247.73	
He/D	Hermes	5156	[49]	182	17	13.45	
	NMC-95,re	5124	[50]	18	12	9.78	
	SLAC-E139	5141	[51]	18	3	1.42	
Li/D	NMC-95	5115	[52]	24	11	6.10	
Be/D	SLAC-E139	5138	[51]	17	3	1.37	
C/D	FNAL-E665-95	5125	[53]	11	3	1.44	
	SLAC-E139	5139	[51]	7	2	1.36	
	EMC-88	5107	[54]	9	9	7.41	
	EMC-90	5110	[55]	9	0	0.00	
	NMC-95	5113	[52]	24	12	8.40	
	NMC-95,re	5114	[50]	18	12	13.29	
N/D	Hermes	5157	[49]	175	19	9.92	
	BCDMS-85	5103	[56]	9	9	4.65	
Al/D	SLAC-E049	5134	[57]	18	0	0.00	
	SLAC-E139	5136	[51]	17	3	1.14	
Ca/D	NMC-95,re	5121	[50]	18	12	11.54	
	FNAL-E665-95	5126	[53]	11	3	0.94	
	SLAC-E139	5140	[51]	7	2	1.63	
	EMC-90	5109	[55]	9	0	0.00	
Fe/D	SLAC-E049	5131	[58]	14	2	0.78	
	SLAC-E139	5132	[51]	23	6	7.76	
	SLAC-E140	5133	[59]	10	0	0.00	
	BCDMS-87	5101	[60]	10	10	5.77	
	BCDMS-85	5102	[56]	6	6	2.56	
Cu/D	EMC-93	5104	[61]	10	9	4.71	
	EMC-93(chariot)	5105	[61]	9	9	4.88	
	EMC-88	5106	[54]	9	9	3.39	
Kr/D	Hermes	5158	[49]	167	12	9.79	
Ag/D	SLAC-E139	5135	[51]	7	2	1.60	
Sn/D	EMC-88	5108	[54]	8	8	17.20	
Xe/D	FNAL-E665-92	5127	[62]	10	2	0.72	
Au/D	SLAC-E139	5137	[51]	18	3	1.74	
Pb/D	FNAL-E665-95	5129	[53]	11	3	1.20	
Total:				1205	414	403.70	

Pion-production in dA

ID

PHENIX [67]

[68]

 $R^{\pi}_{dAu}/R^{\pi}_{pp}$:

dAu/pp

Total:

Observable Experiment

PHENIX

STAR-2010 STAR

DA (DA						
F_2^n/F_2^n Observable	Experiment	ID	Ref.	# data	# data after cuts	χ^2
C/Li	NMC-95,re	5123	[50]	25	7	5.56
Ca/Li	NMC-95,re	5122	[50]	25	7	1.11
Be/C	NMC-96	5112	[63]	15	14	4.08
Al/C	NMC-96	5111	[63]	15	14	5.39
Ca/C	NMC-95,re	5120	[50]	25	7	4.32
	NMC-96	5119	[63]	15	14	5.43
Fe/C	NMC-96	5143	[63]	15	14	9.78
Sn/C	NMC-96	5159	[64]	146	111	64.44
Pb/C	NMC-96	5116	[63]	15	14	7.74
Total:				296	202	107.85

Drell-Yan

$\sigma_{DV}^{pA}/\sigma_{DV}^{pA'}$:					# data	
Observable	Experiment	D	Ref.	# data	after cuts	χ^2
C/H2	FNAL-E772-90	5203	[65]	9	9	7.92
Ca/H2	FNAL-E772-90	5204	[65]	9	9	2.73
Fe/H2	FNAL-E772-90	5205	[65]	9	9	3.17
W/H2	FNAL-E772-90	5206	[65]	9	9	7.28
Fe/Be	FNAL-E886-99	5201	[66]	28	28	23.09
W/Be	FNAL-E886-99	5202	[66]	28	28	23.62
Total:				92	92	67.81

- DIS: Q > 2 GeV and W > 3.5 GeV
- \bullet DY: $2 < M < 300~{\rm GeV}$
- π^0 production: $p_T > 1.7 \text{ GeV}$

nCTEQ15

 $Q^2 = (1.3)^2 \text{ GeV}^2$

nCTEQ15: Comparison with others

 $Q^2 = (2)^2 \text{ GeV}^2$

EPPS16: addition of LHC data

Experiment	Observable	Collisions	Data points	χ^2	Ref.
SLAC E139	DIS	e^{-} He(4), e^{-} D	21	12.2	[72]
CERN NMC 95, re.	DIS	μ^{-} He(4), μ^{-} D	16	18.0	[73]
CERN NMC 95	DIS	$\mu^{-}Li(6), \mu^{-}D$	15	$\begin{array}{c} 18.4 \\ 161.2 \end{array}$	[74]
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}Li(6), \mu^{-}D$	153		[74]
SLAC E139	DIS	$e^{-}Be(9), e^{-}D$	20	$\begin{array}{c} 12.9\\ 4.4\end{array}$	[72]
CERN NMC 96	DIS	$\mu^{-}Be(9), \mu^{-}C$	15		[75]
SLAC E139 CERN NMC 95 CERN NMC 95, Q^2 dep. CERN NMC 95, re. CERN NMC 95, re. FNAL E772	DIS DIS DIS DIS DIS DY	$\begin{array}{l} e^{-C}(12), e^{-D} \\ \mu^{-C}(12), \mu^{-D} \\ \mu^{-C}(12), \mu^{-D} \\ \mu^{-C}(12), \mu^{-D} \\ \mu^{-C}(12), \mu^{-Li}(6) \\ pC(12), pD \end{array}$	7 15 165 16 20 9	$\begin{array}{r} 6.4 \\ 9.0 \\ 133.6 \\ 16.7 \\ 27.9 \\ 11.3 \end{array}$	[72] [74] [73] [73] [76]
SLAC E139	DIS	e^{-} Al(27), e^{-} D	20	$13.7 \\ 5.6$	[72]
CERN NMC 96	DIS	μ^{-} Al(27), μ^{-} C(12)	15		[75]
SLAC E139	DIS	$\begin{array}{l} e^{-}{\rm Ca}(40), e^{-}{\rm D} \\ {\rm pCa}(40), {\rm pD} \\ \mu^{-}{\rm Ca}(40), \mu^{-}{\rm D} \\ \mu^{-}{\rm Ca}(40), \mu^{-}{\rm Li}(6) \\ \mu^{-}{\rm Ca}(40), \mu^{-}{\rm C}(12) \end{array}$	7	4.8	[72]
FNAL E772	DY		9	3.33	[76]
CERN NMC 95, re.	DIS		15	27.6	[73]
CERN NMC 95, re.	DIS		20	19.5	[73]
CERN NMC 96	DIS		15	6.4	[75]
SLAC E139	DIS	e^{-} Fe(56), e^{-} D	26	22.6	[72]
FNAL E772	DY	e^{-} Fe(56), e^{-} D	9	3.0	[76]
CERN NMC 96	DIS	μ^{-} Fe(56), μ^{-} C(12)	15	10.8	[75]
FNAL E866	DY	pFe(56), pBe(9)	28	20.1	[77]
CERN EMC	DIS	μ^- Cu(64), μ^- D	19	15.4	[78]
SLAC E139	DIS	e^{-} Ag(108), e^{-} D	7	8.0	[72]
CERN NMC 96	DIS	μ^{-} Sn(117), μ^{-} C(12)	15	$12.5 \\ 87.6$	[75]
CERN NMC 96, Q^2 dep.	DIS	μ^{-} Sn(117), μ^{-} C(12)	144		[79]
FNAL E772	DY	$\begin{array}{l} {\rm pW(184), \ pD} \\ {\rm pW(184), \ pBe(9)} \\ {\pi^-W(184), \ \pi^-D} \\ {\pi^+W(184), \ \pi^-W(184)} \end{array}$	9	7.2	[76]
FNAL E866	DY		28	26.1	[77]
CERN NA10*	DY		10	11.6	[52]
FNAL E615*	DY		11	10.2	[53]
CERN NA3*	DY	π^{-} Pt(195), π^{-} H	7	4.6	[51]
SLAC E139	$\frac{\text{DIS}}{\pi^0}$	e ⁻ Au(197), e ⁻ D	21	8.4	[72]
RHIC PHENIX		dAu(197), pp	20	6.9	[28]
CERN NMC 96 CERN CMS* CERN CMS* CERN ATLAS* CERN CMS* CERN CHORUS*	DIS W [±] Z dijet DIS	$\begin{array}{l} \mu^-{\rm Pb}(207),\mu^-{\rm C}(12)\\ p{\rm Pb}(208)\\ p{\rm Pb}(208)\\ p{\rm Pb}(208)\\ p{\rm Pb}(208)\\ \nu{\rm Pb}(208),\nu{\rm Pb}(208) \end{array}$	15 10 6 7 7 824	$4.1 \\ 8.8 \\ 5.8 \\ 9.6 \\ 5.5 \\ 998.6$	[75] [43] [45] [46] [34] [50]
Total			1811	1789	

Comments on neutrino DIS

Neutrino deep inelastic scattering (CC: Charged Current)

$$\begin{split} d\sigma &= \frac{1}{4k \cdot p} \frac{1}{2} \sum_{spins} \sum_{X} (2\pi)^{4} \delta^{4} (k + p - k' - p_{X}) |M|^{2} \frac{d^{3}k'}{(2\pi)^{3} 2E'} \qquad \mu - \sum_{M=1}^{X} M = \frac{1}{1 + Q^{2}/M_{W}^{2}} \frac{G_{F}}{\sqrt{2}} \overline{u}(k',\lambda') \gamma^{\mu} (1 - \gamma_{5}) u(k,\lambda) < X |J_{\mu}^{cc}| p,\lambda_{p} > \sum_{\Psi^{+}} \frac{d\sigma}{dE' d\Omega} = \frac{G_{F}^{2}}{(1 + Q^{2}/M_{W}^{2})^{2}} \frac{k'}{32\pi^{2}E} L^{\mu\nu} W_{\mu\nu} \qquad \nu_{\mu} \qquad \nu_{\mu} \qquad \nu_{\mu} \qquad \nu_{\mu} \qquad N \\ L^{\mu\nu} &= 8 \left[k^{\mu} k^{\nu} + k^{\nu\mu} k^{\nu} - k \cdot k^{\nu} g^{\mu\nu} + i \varepsilon^{\mu\nu\rho\sigma} k_{p} k'_{\sigma} \right], \quad \varepsilon_{0123} = +1 \\ W_{\mu\nu} &= -W_{1} \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}} \right) + W_{2} \frac{1}{M^{2}} \left(p_{\mu} - \frac{p \cdot q}{q^{2}} q_{\mu} \right) \left(p_{\nu} - \frac{p \cdot q}{q^{2}} q_{\nu} \right) + \frac{i}{2M^{2}} \frac{W_{3}\varepsilon_{\mu\nu\rho\sigma} p^{\rho}q^{\sigma}}{MW_{1}} \\ MW_{1} &= F_{1} \ , \ \nu W_{2} = F_{2} \ , \ \nu W_{3} = F_{3} \ , \ x = \frac{Q^{2}}{2p \cdot q} \ , \ y = \frac{p \cdot q}{p \cdot k} \\ \frac{d\sigma_{\nu,\nu}^{CC}}{dx \, dy} &= \frac{G_{F}^{2} (s - M^{2})}{2\pi (1 + Q^{2}/M_{W}^{2})^{2}} \left[x \ y^{2}F_{1}^{CC} + \left(1 - y - \frac{M \ x \ y}{2E} \right) F_{2}^{CC} \pm x \ y \left(1 - \frac{y}{2} \right) F_{3}^{CC} \right] \end{split}$$

Neutrino DIS experiments

• CDHS,	H. Abramowics et al.,	Z. Phys. C 25 (1984) 29
• WA25,	D. Allasia <i>et al.</i> ,	Z. Phys. C 28 (1985) 321
• WA59,	K. Varvell <i>et al</i> .,	Z. Phys. C 36 (1987) 1
• CDHSW,	P. Berge <i>et al.</i> ,	Z. Phys. C 49 (1991) 187
• Serpukhov,	A. V. Sidorov et al.,	Eur. Phys. J. C 10 (1999) 405
• CCFR,	UK. Yang et al.,	PRL 86 (2001) 2742
• NuTeV/CCFR μ ⁺ μ ⁻ ,	M. Goncharov et al.,	PRD 64 (2001) 112006
• CHORUS,	G. Onengut et al.,	PLB 632 (2006) 65
• NuTeV,	M. Tzanov <i>et al</i> .,	PRD 74 (2006) 012008
• Minverva,	J. Mousseau <i>et al.</i> ,	PRD 93 (2016) 071101, in progress

Neutrino DIS experiments: kinematical range

Q² (GeV²) 500 ■ NuTeV • CHORUS × CDHSW 100 10 **0.01** 0.1 x

Neutrino DIS

Charged-lepton DIS

S. Kumano, Nuclear Physics (in Japanese), KEK Physics Series, Volume 2, Kyoritsu Shuppan (2015)

Analysis of CTEQ-2008 (Schienbein et al.)

I. Schienbein *et al.*, PRD 77 (2008) 054013

Charged-lepton scattering

Neutrino DIS ⇔ Charged DIS issue

D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, Phys. Rev. D 85 (2012) 074028.

According to their analysis, the issue does not exist!?

Our research in progress (M. Hirai, SK, K. Saito)

We are getting a similar modification to the nCTEQ one.

N. Kalantarians: Neutrino DIS ⇔ Charged DIS

N. Kalantarians at NuInt15 JPS Conf. Proc. 12 (2016) 010028.

According to this analysis, both structure functions are same except for the small-*x* region (*x*<0.05) !?

Measurements by Minerva

B. G. Tice *et al.*, PRL 112 (2014) 231801; J. Mousseau *et al.*, PRD 93 (2016) 071101(R).

Different shadowing from charged-lepton case?!

Summary on nuclear PDFs

Global analyses for the nuclear PDFs

by using data of charged-lepton, neutrino DIS, pA, AA collisions

Valence quark: reasonably good, in progress at JLab, Minerva for large xAntiquark: good only at x = 0.1, in progress at Fermilab (E906) $x = 0.1 \sim 0.4$. Gluon: large uncertainties in the whole-x region, LHC, RHIC

Issues

- Charged-lepton DIS ⇔ Neutrino DIS
- Matching with resonance model and $Q^2 \rightarrow 0$ region
- Gluon distributions (UPC)

New experimental information

• JLab, Fermilab-DY, Minerva, LHC, ..., EIC, ILC, ...

Comments on Two-photon physics (UPC?)

H. Kawamura and S. Kumano, Phys. Rev. D 89 (2014) 054007;

S. Kumano, Q.-T. Song, and O. Teryaev, Research in progress.

Wigner distribution and various structure functions

kf(x,Q²)

0.8

 $Q^2 = 10 \text{ GeV}^2$

Generalized Parton Distributions (GPDs)

$$\frac{p+p'}{2}, \ \Delta = p'-p$$

Bjorken variable $x = \frac{Q^2}{2p \cdot q}$
Momentum transfer squared $t = \Delta^2$
Skewdness parameter $\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^+}{2p'}$

GPDs are defined as correlation of off-forward matrix:

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \overline{\psi}(-z/2) \gamma^{+} \psi(z/2) \right| p \right\rangle \Big|_{z^{+}=0, \overline{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[H(x,\xi,t) \overline{u}(p') \gamma^{+} u(p) + E(x,\xi,t) \overline{u}(p') \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u(p) \right]$$

Forward limit: PDFs

$$H(x,\xi,t)\Big|_{\xi=t=0}=f(x)$$

First moments: Form factors

Dirac and Pauli form factors F_1 , F_2 $\int_{-1}^1 dx H(x,\xi,t) = F_1(t), \int_{-1}^1 dx E(x,\xi,t) = F_2(t)$

Second moments: Angular momenta

Sum rule:
$$J_q = \frac{1}{2} \int_{-1}^{1} dx \, x \Big[H_q(x,\xi,t=0) + E_q(x,\xi,t=0) \Big], \ J_q = \frac{1}{2} \Delta q + L_q$$

Simple function of GPDs $H_q^h(x,t) = f(x)F(t,x)$

M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhaeghen, PRD 72, 054013 (2005).

Longitudinal-momentum distribution (PDF) for valence quarks: $f(x) = q_v(x) = c_n x^{\alpha_n} (1-x)^{\beta_n}$

- Valence-quark number sum rule (charge and baryon numbers): $\int_{0}^{1} dx f(x) = n$
- Constituent conting rule at $x \to 1$: β_n (*n* = number of constituents)
- Momentum carried by quarks $\langle x \rangle_q \simeq \int_0^1 dx \, x f(x)$

Two-dimensional form factor

Summary on two-photon physics

Hadron tomography (3-dimensional structure) studies are in progress mainly by GPDs (Generalized Parton Distributions) and TMDs (Transverse-Momentum-Dependent parton distributions).

It is possible to investigate GDAs (Generalized Distribution Amplitudes) = s-t crossed functions to GPDs in principle by two-photon processes of UPCs.

It is especially interesting to study tomography for exotic-hadron candidates because they cannot be investigated in the GPDs (no fixed target for unstable hadrons).

The End

The End