### Theoretical Status of UPC Quarkonia Production: pp, pA and AA

Maria Beatriz Gay Ducati <br/><br/>cbeatriz.gay@ufrgs.br>

INT Workshop INT-17-65W

Feb 13-17



## Outlook

#### Introduction

- Introduction
- Cross Section Calculation
- Results
- Summary

#### $\rightarrow$ Quarkonium production mechanisms

- $\rightarrow$  Hadroproduction and Photoproduction
- $\rightarrow$  Exclusive photoproduction  $\rightarrow$  Pomeron exchange

#### • Vector mesons production in pp and PbPb collisions

- ightarrow Theoretical framework of the dipole formalism
- $\rightarrow$  Vector mesons wave function
- $\rightarrow$  Dipole cross section model
- Results for  $\Psi(1S, 2S)$  and Y(1S, 2S, 3S) production
  - $\rightarrow$  Rapidity and Transverse momentum distribution
- Ultraperipheral to Peripheral
  - $\rightarrow$  The effective photon flux
  - → Preliminary results
- Summary

Instituto de Física - IF/GFPAE



## Why to Investigate the Quarkonium Production?

#### Introduction

Cross Section Calculation Results

Summary

#### In pp collision

- → Heavy-quark mass acts as a long distance cut-off
  - $\rightarrow$  pQCD reliable up to low transverse momenta ( $p_T$ ).
- $\rightarrow\,$  Test for both perturbative(partonic cross section) and

non-perturbative ( $Q\bar{Q} \rightarrow$  meson state) aspects of QCD calculations.

In nuclear collision

 $\rightarrow\,$  Open and hidden heavy-flavour production constitutes a sensitive probe of the QGP.

 $\rightarrow$  The in-medium dissociation probability of these states are expected to provide an estimate of the initial temperature reached in the collisions.

 $\rightarrow$  The nuclear modification of the PDFs can also be studied using quarkonium photoproduction in ultra-peripheral nucleus–nucleus collisions.



### **Quarkonium Production in pp**

#### Introduction

Cross Section Calculation Results Summary The cross section for quarkonium production can be written as

$$d\sigma^Q = f_a(x_a) f_b(x_b) \times d\hat{\sigma}^{q\bar{q}}_{ab} \times \langle O^Q_{q\bar{q}} \rangle$$
 (1)

#### where

 $f_{a/b}(x_{a/b})$  are partonic distribution functions, obtained from other experiments as DIS.

 $d\hat{\sigma}_{ab}^{q\bar{q}}$  is the partonic cross section which describes how to produce the heavy quark pair (calculable with pQCD).

 $\langle O^Q_{q\bar{q}} \rangle$  describes the evolution of the heavy quark pair into the quarkonium state Q. It is commonly represented by the models CSM, CEM or NRQCD.



#### Hadroproduction

- Colour Singlet Model (CSM) <sup>1</sup>
- Introduction
- Cross Section Calculation
- Results
- Summary



Figure extracted from arXiv:1208.5506v3 [hep-ph].

- $\rightarrow |R_H(0)|^2$  is the square of wave function state *H* calculated in the origin.
- ightarrow Heavy quark pair with the same quantum numbers as the final meson.
- → Disregards the factorization → Direct production of state meson.

Instituto de Física - IF/GFPAE - 5 -

<sup>&</sup>lt;sup>1</sup> E. Braaten, S. Fleming and T. C. Yuan, Ann. Rev. Nucl. Part. Sci. 46, 197, 1996



### Hadroproduction

• Colour Octet Model (NRQCD)<sup>2</sup>

#### Introduction

- Cross Section Calculation
- Results
- Summary





Figure extracted from arXiv:1208.5506v3 [hep-ph].

- → Both colorless and colored states of the heavy quark pairs are considered.
- $\rightarrow\,$  The relative contribution of the states is parametrized.

 $^2 \rm W\!.$  E. Caswell and G. P. Lepage, Phys. Lett. B 167, 437, 1986

Instituto de Física - IF/GFPAE



#### Hadroproduction

• Colour Evaporation Model (CEM) <sup>3,4</sup>

Introduction

- Cross Section Calculation
- Results
- Summary





Figure extracted from Georges Aad et al., Nucl. Phys. B850, 387, 2011

- → Cross section of a given quarkonium is proportional to the heavy quark pair cross section.
- → Soft interactions randomise the colour charges → quakonium production is independent of the color.
  - <sup>3</sup>H. Fritzsch, Phys. Lett. B 67, 217, 1977
  - <sup>4</sup>C. B. Mariotto, M. B. Gay Ducati and G. Ingelman, Eur.Phys.J. C 23, 527, 2002

Instituto de Física - IF/GFPAE - 7 -



#### Photoproduction

#### Introduction

Cross Section Calculation

Results

Summary

#### • Colour Dipole Model <sup>5</sup>

 $\rightarrow\,$  The deep-inelastic scaterring is viewed as the interaction of a color dipole with the target.

 $\rightarrow\,$  Dipole lifetime is much longer than the lifetime of its interaction with the target.

 $\rightarrow\,$  Photoproduction cross section is the factorized in photon-meson wave function and dipole cross section.

#### $A \propto \Psi^{\gamma} \otimes \sigma^{q\bar{q}} \otimes \Psi^{V}$

 $\rightarrow\,$  Enables to include nuclear effects and the parton saturation phenomenon.

<sup>5</sup>M. B. Gay Ducati, F. Kopp, M. V. T. Machado and S. Martins, Phys.Rev. D 94, 094023, 2016

Instituto de Física - IF/GFPAE



### Photoproduction in UPC - Theoretical Motivation

Introduction

Cross Section Calculation Results Summary The photoproduction is dominant in ultra-peripheral scattering ( $b_{impact} > 2R_A$ ).



From Weizsäcker-Williams method, the total cross section can be given by

$$\sigma_X = \int d\omega \frac{dN(\omega)}{d\omega} \sigma_X^{\gamma}(\omega)$$

where,

$$\frac{dN(\omega)}{d\omega} \rightarrow Photon Flux$$

 $\sigma_{\chi}^{\gamma}(\omega) \rightarrow \text{Photoproduction Cross Section}$ 





Cross Section Calculation Results Summary

## Exclusive vector meson photoproduction

- $\gamma + p \rightarrow V + p \rightarrow$  has been investigated experimentally and theoretically as it allows to test perturbative Quantum Chromodynamics.
- The quarkonium masses  $(m_c, m_b)$ , give a perturbative scale for the problem even at  $Q^2 = 0$ .
- The photoproduction of mesons in the high energy regime is a possibility to investigate the Pomeron exchange.



 $Pomeron \rightarrow two \ gluons \ (vacuum \ quantum \ numbers)$ 

- $x(x') \rightarrow$  gluon momentum fraction;
- $z \rightarrow$  quark momentum fraction;

Instituto de Física - IF/GFPAE



Cross

Section Calculation Results Summary

## Diffractive production of meson at t = 0

- An important class of diffractive reactions where we can use a perturbative treatment is the vector meson production in DDIS:  $\gamma^* p \rightarrow Vp$ .
- Two gluons exchange diagrams that contribute to the amplitude of the vector meson leptoproduction are shown in the figure below:



In the color dipole formalism, the amplitude can be written as:

 $A \propto \Psi^{\gamma} \otimes \sigma^{q\bar{q}} \otimes \Psi^{V} ,$ 

Instituto de Física - IF/GFPAE



Cross Section Calculation

Results

Summary

## Diffractive production of meson at t = 0

$$A_T(W^2, t=0) = -4\pi^2 i\alpha_s W^2 \int \frac{dk^2}{k^4} \left(\frac{1}{l^2 - m_l^2} - \frac{1}{l^2 - m_l^2}\right) f(x, k^2) e_c g_V M_V \quad (2)$$

 $g_V^2=3\Gamma_{ee}M_V/64\pi a^2 
ightarrow$  specifies the q ar q coupling to the vector meson

 $\Gamma_{ee} \rightarrow$  width decay  $V \rightarrow e^+ e^-$ 

$$e_c 
ightarrow rac{2}{3}$$
 for  $\psi_{(1S),(2S)}$  and  $rac{1}{3}$  for  $Y_{(1S),(2S)}$ 

 $f(x, k^2) \rightarrow$  unintegrated gluons distribution.

 $k, l(l') \rightarrow$  gluons transverse momentum and quark (antiquark) momentum

 $m_f, m_V \rightarrow$  quark mass ( $m_c$  or  $m_b$ ) and vector meson mass, respectively.

The complete differential cross section (T+L) in the  $\ln \tilde{Q}^2$  dominant is:

$$\frac{d\sigma^{\gamma^{(*)}\rho \to V\rho}}{dt}\bigg|_{t=0} = \frac{16\Gamma_{e^+e^-}^V M_V^3 \pi^3}{3\alpha_{em}(Q^2 + M_V^2)^4} \left[\alpha_s(\tilde{Q}^2) x g(x, \tilde{Q}^2)\right]^2 \left(1 + \frac{Q^2}{M_V^2}\right)$$

 $xg(x, \tilde{Q}^2) \rightarrow$  grows in small -  $x \rightarrow$  undetermined <u>Dipole formalism  $\rightarrow$  can restrict  $xg(x, \tilde{Q}^2) \rightarrow$  includes gluon saturation <sup>6</sup>M. G. Ryskin, Z. Phys. C 57, 89, 1993 Instituto de Física - IF/GFPAE - 12 - Maria Beatriz Gav Ducati (UFRGS)</u>



#### **Dipole Formalism**

Introduction

Cross Section Calculation

Results

Summary

 $\bullet$  In the LHC energy domain hadrons and photons can be considered as color dipoles in the light cone representation  $^7.$ 

• The scattering process is characterized by the color dipole cross section representing the interaction their with the target.



 $r \rightarrow$  dipole separation.

 $z(1-z) \rightarrow$  quark(antiquark) momentum fraction.

 $b \rightarrow$  impact parameter.

<sup>7</sup>N. N. Nikolaev, B. G. Zakharov, Z. Phys. C 49, 607, 1991 Instituto de Física - IF/GFPAE - 13 -



Introduction Cross Section Calculation

Results Summarv

### Quarkonium production in pp collisions

The rapidity distribution for quarkonium photoproduction is given by

$$\frac{d\sigma}{dy}(pp \to p \otimes \psi \otimes p) = S_{gap}^2 \left[ \omega \frac{dN_{\gamma}}{d\omega} \sigma(\gamma p \to \psi(nS) + p) + (y \to -y) \right]$$

Photon flux: 8

$$\frac{dN_{\gamma}(\omega)}{d\omega} = \frac{\alpha_{em}}{2\pi\omega} \left[ 1 + \left(1 - \frac{2\omega}{\sqrt{s}}\right)^2 \right] \times \left( \ln\xi - \frac{11}{6} + \frac{3}{\xi} - \frac{3}{2\xi^2} + \frac{1}{3\xi^3} \right) \quad (3)$$

 $\omega 
ightarrow$  photon energy

 $S^2_{gap}$  = 0.8 <sup>9</sup>  $\rightarrow$  represents the absorptive corrections due to spectator interactions between the two hadrons <sup>10</sup> - Average

<sup>8</sup>C. A. Bertulani, S. R. Klein and J. Nystrand, Ann. Rev. Nucl. Part. Sci. 55, 271, 2005

<sup>9</sup> W. Schafer and A. Szczurek, Phys. Rev. D 76, 094014, 2007

<sup>10</sup> A. D. Martin, M. G. Ryskin and V. A. Khoze, Phys. Rev. D56, 5867, 1997. E. Gotsman, E. M. Levin and U. Maor, Phys. Lett. B309, 199, 1993.

Instituto de Física - IF/GFPAE



#### $\gamma p$ cross section

#### Introduction

Cross Section Calculation

Results

Summary

$$\sigma_{\gamma^* \rho \to V \rho}(s, Q^2) = \frac{1}{16\pi B_V} \left| \mathscr{A}(x, Q^2, \Delta = 0) \right|^2, \tag{4}$$

where the amplitude is <sup>11</sup>

Instituto de Física - IF/GFPAE

$$\mathscr{A}(x,Q^{2},\Delta) = \sum_{h,\bar{h}} \int dz \, d^{2}r \, \Psi^{\gamma}_{h,\bar{h}} \, \mathscr{A}_{q\bar{q}}(x,r,\Delta) \, \Psi^{V*}_{h,\bar{h}}, \tag{5}$$

$$\begin{split} B_V(W_{\gamma p}) &= b_{el}^V + 2\alpha' \log \left(\frac{W_{\gamma p}}{W_0}\right)^2 \rightarrow \text{diffractive slope parameter} \\ \alpha' &= 0.25 \text{ GeV}^{-2} \\ W_0 &= 95 \text{ GeV} \\ b_{el}^{\psi(1S)} &= 4.99 \pm 0.41 \text{ GeV}^{-2} \text{ and } b_{el}^{\psi(2S)} = 4.31 \pm 0.73 \text{ GeV}^{-2} \end{split}$$

- 15 -

<sup>11</sup> N. N. Nikolaev, B. G. Zakharov, Phys. Lett. B 332, 184, 1994



#### Light cone wave functions

#### Introduction

Cross Section Calculation

Results

Summary

The light cone wave functions of the meson are written as  $^{\mbox{\tiny 12}}$ 

$$\Psi_{h,\bar{h}}^{V,L}(r,z) = \sqrt{N_c} \delta_{h,-\bar{h}} \frac{1}{M_V z(1-z)} \times [z(1-z)M_V^2 + \delta(m_f^2 - \nabla_r^2)]\phi_L(r,z)$$

$$\nabla_r^2 = (1/r)\partial_r + \partial_r^2$$

$$\begin{split} \Psi_{h,\bar{h}}^{V,T(\gamma=\pm)}(r,z) &= \pm \frac{\sqrt{2N_c}}{z(1-z)} \{ i e^{\pm i\theta_r} [z \delta_{h\pm,\bar{h}\mp} - (1-z) \delta_{h\mp,\bar{h}\pm}] \partial_r \\ &+ m_f \delta_{h\pm,\bar{h}\mp} \} \phi_T(r,z) \end{split}$$

 $N_c \rightarrow ext{color}$  number.  $h, \bar{h} = \pm \frac{1}{2} \rightarrow ext{quarks}$  helicity.

12 H. Kowalski, L. Motyka and G. Watt, Phys. Rev. D 74, 074016, 2006 Instituto de Física - IF/GFPAE - 16 -



#### Light cone wave functions

#### Introduction

Cross Section Calculation

Results

Summary

## **Boosted Gaussian Wavefunction** $\Psi(1S)$ and Y(1S):

$$\phi_{T,L}^{1S}(r,z) = \mathcal{N}_{T,L} z(1-z) \exp\left\{-\frac{m_{t}^{2} \mathscr{R}_{1S}^{2}}{8z(1-z)} - \frac{2z(1-z)r^{2}}{\mathscr{R}_{1S}^{2}} + \frac{m_{t}^{2} \mathscr{R}_{1S}^{2}}{\mathscr{R}_{1S}^{2}}\right\}$$

#### $\Psi(2S)$ and Y(2S):

$$\begin{split} \phi_{T,L}^{2S}(r,z) &= \mathscr{N}_{T,L} z(1-z) \exp\left\{-\frac{m_{I}^{2}\mathscr{R}_{2S}^{2}}{8z(1-z)} - \frac{2z(1-z)r^{2}}{\mathscr{R}_{2S}^{2}} + \frac{m_{I}^{2}\mathscr{R}_{2S}^{2}}{2}\right\} \left[1 + \alpha_{2S,1} g_{2S}(r,z)\right] \\ & \textbf{Y(3S):} \end{split}$$

$$\begin{split} \phi_{T,L}^{3S}(r,z) &= \mathscr{N}_{T,L} z (1-z) \exp\left\{-\frac{m_{l}^{2} \mathscr{R}_{3S}^{2}}{8 z (1-z)} - \frac{2 z (1-z) r^{2}}{\mathscr{R}_{3S}^{2}} + \frac{m_{l}^{2} \mathscr{R}_{3S}^{2}}{2}\right\} \\ &\times \left\{1 + \alpha_{3S,1} g_{3S}(r,z) + \alpha_{3S,2} \left[g_{3S}^{2}(r,z) + 4\left(1 - \frac{4 z (1-z) r^{2}}{R_{3S}^{2}}\right)\right]\right\} \end{split}$$

where 
$$g_{nS}(r,z) = 2 - m_t^2 \mathscr{R}_{nS}^2 + \frac{m_t^2 \mathscr{R}_{nS}^2}{4z(1-z)} - \frac{4z(1-z)r^2}{\mathscr{R}_{nS}^2}$$

Instituto de Física - IF/GFPAE



#### Light cone wave functions

#### Introduction

#### Cross Section Calculation

Results

Summary

| $\mathcal{N}_{T,L}, \mathscr{R}^2_{nS}, \alpha_{2S} \rightarrow$ parameters from the wave functions orthogonality condition | 13, 11, |
|-----------------------------------------------------------------------------------------------------------------------------|---------|
| 14                                                                                                                          |         |

| Meson      | m <sub>f</sub> (GeV) | NL   | $\mathscr{N}_{T} \; \text{GeV}$ | $\mathscr{R}^2$ (GeV <sup>-2</sup> ) | $\alpha_{nS,1}$ | $\alpha_{nS,2}$ | $M_V$ (GeV) | Γ <sup>exp</sup> <sub>e<sup>+</sup>e<sup>-</sup></sub> (KeV) | $\Gamma_{\theta^+\theta^-}$ (KeV) |
|------------|----------------------|------|---------------------------------|--------------------------------------|-----------------|-----------------|-------------|--------------------------------------------------------------|-----------------------------------|
| $J/\psi$   | 1.4                  | 0.57 | 0.57                            | 2.45                                 | 0               | 0               | 3.097       | 5.55±0.14                                                    | 5.54                              |
| $\psi(2S)$ | 1.4                  | 0.67 | 0.67                            | 3.72                                 | -0.61           | 0               | 3.686       | $2.37{\pm}0.04$                                              | 2.39                              |
| Y(1S)      | 4.2                  | -    | 0.481                           | 0.567                                | 0               | 0               | 9.46        | $1.34{\pm}0.018$                                             | 1.34                              |
| Y(2S)      | 4.2                  | -    | 0.624                           | 0.831                                | -0.555          | 0               | 10.023      | $0.612{\pm}0.011$                                            | 0.611                             |
| Y(3S)      | 4.2                  | -    | 0.668                           | 1.028                                | -1.219          | 0.217           | 10.355      | $0.443{\pm}0.011$                                            | 0.443                             |

 $^{13}\mathrm{N.}$  Armesto and Amir H. Rezaeian, Phys. Rev. D90, 054003, 2014

<sup>14</sup>B. E. Cox, J. R. Forshaw and R.Sandapen, JHEP06, 034, 2009

Instituto de Física - IF/GFPAE



#### **Dipole Cross Section - GBW**

#### Introduction

Cross Section Calculation

Results

Summary

The GBW (Golec-Biernat and Wusthoff) parametrization is given by: <sup>15</sup>

$$\sigma_{dip}(x, \vec{r}; \gamma) = \sigma_0 \left[ 1 - \exp\left(-rac{r^2 Q_{sat}^2}{4}
ight)^{\gamma_{
m eff}} 
ight]$$

 $\gamma_{\rm eff} = 1$ Saturation scale  $\rightarrow Q_{sat}^2(x) = \left(\frac{x_0}{x}\right)^{\lambda}$ 

 $\begin{array}{l} GBW_{\text{old}} \ ^9 \rightarrow Q_{sat}^2(x) = \left(\frac{x_0}{x}\right)^{\lambda} \ \sigma_0 = 29.12, \, x_0 = 0.41 \times 10^{-4} \text{ and } \lambda = 0.277 \\ GBW_{new} \ ^{16} \text{ (consider the effect of the gluon number fluctuations)} \rightarrow \sigma_0 = 31.85, \\ x_0 = 0.0546 \times 10^{-4} \text{ and } \lambda = 0.225 \end{array}$ 

<sup>16</sup>M. Kozlov, A. Shoshi and W. Xiang, JHEP 0710, 020, 2007

Instituto de Física - IF/GFPAE

<sup>&</sup>lt;sup>15</sup>K. Golec-Biernat and M. Wusthoff, Phys. Rev. D 59, 014017, 1999



#### **Dipole cross section - CGC**

#### Color Glass Condensate parametrization (CGC): 17

#### Introduction

Cross Section Calculation

Results

Summary

$$\sigma_{q\bar{q}}^{CGC}(x,r) = \sigma_0 \times \begin{cases} N_0 \left(\frac{rQ_s}{2}\right)^{2(\gamma_s + (1/\kappa\lambda Y)\ln(2/rQ_s))}, & rQ_s \leq 2\\ 1 - e^{-A\ln^2(BrQ_s)}, & rQ_s > 2 \end{cases}$$

$$\begin{split} &Q_s^{CGC} = (x_0/x)^{\lambda/2} GeV \rightarrow \text{saturation scale} \\ &\gamma_s = 0.63, \ \kappa = 9.9 \rightarrow \text{fixed to their LO BFKL values} \\ &R, \ x_0, \ \lambda, \ N_0 \rightarrow \text{free parameters of the fit} \\ &A = \frac{-N_0 \gamma_s^2}{(1-N_0)^2 \ln(1-N_0)}, \ B = \frac{1}{2}(1-N_0)^{-(1-N_0)/N_0} \gamma_s \\ &\frac{CGC_{old}^{18} \rightarrow \ \sigma_0 = 27.33, \ x_0 = 0.1632 \times 10^{-4}, \ \lambda = 0.2197 \ \text{and} \ \gamma_s = 0.7376}{CGC_{new}^{19} \rightarrow \ \sigma_0 = 21.85, \ x_0 = 0.6266 \times 10^{-4}, \ \lambda = 0.2319 \ \text{and} \ \gamma_s = 0.762} \\ &\frac{17}{17} \text{E. lancu, K. Itakura and S. Munier, Phys. Lett. B 590, 199, 2004} \\ &18 \text{G. Soyez, Phys. Lett. B 655,32, 2007} \\ &\frac{19}{\text{A.H. Rezaeain and I. Schmidt, Phys. Rev. D 88, 074016, 2013} \\ &\text{Instituto de Fisica - IF/GFPAE} \\ & -20 - & \text{M} \end{split}$$



Introduction Cross

Section Calculation Results Summary

#### **Dipole cross section - BCGC**

#### Color Glass Condensate parametrization (b-CGC): 20

## $\sigma_{q\bar{q}}^{bCGC}(x,r) = 2 \times \begin{cases} N_0 \left(\frac{rQ_s}{2}\right)^{2(\gamma_s + (1/\kappa\lambda Y)\ln(2/rQ_s))}, & rQ_s \leq 2\\ 1 - e^{-A\ln^2(BrQ_s)}, & rQ_s > 2 \end{cases}$

$$\begin{split} &Q_s^{bCGC} = (x_0/x)^{\lambda/2} \left[ \exp\left(-\frac{b^2}{2B_{CGC}}\right) \right]^{1/2\gamma_s} GeV \rightarrow \text{saturation scale} \\ &B_{CGC} = 7.5 GeV^{-2} \\ &\gamma_s = 0.46, \ \kappa = 9.9 \rightarrow \text{fixed to their LO BFKL values} \\ &R, \ x_0, \ \lambda, \ N_0 \rightarrow \text{free parameters of the fit} \\ &A = \frac{-N_0 \gamma_s^2}{(1-N_0)^2 \ln(1-N_0)}, \ B = \frac{1}{2} (1-N_0)^{-(1-N_0)/N_0 \gamma_s} \\ &b - CGC_{old}^{14} \rightarrow \ x_0 = 0.0184 \times 10^{-4}, \ \lambda = 0.119 \text{ and } \gamma_s = 0.46 \end{split}$$

20 G. Watt and H. Kowalski,Phys. Rev. D 78, 014016, 2008 Instituto de Física - IF/GFPAE - 21 -



## $\Psi(1S)$ and $\Psi(2S)$ rapidity distribution



Cross Section Calculation

Results

Summary



Figure: The rapidity distribution of  $\Psi(1S)$  and  $\Psi(2S)$  photoproduction at  $\sqrt{s} = 7 TeV$ .

- Predictions to rapidity distribution at LHC (7*TeV*), for pp collisions;
- The models GBW, CGC and b-CGC were considered for the dipole cross section;
- The relative normalization and overall behavior on rapidity is quite well reproduced in the forward regime;
- LHCb data:

(J. Phys. G 40, 045001, 2013);

(J. Phys. G 41, 055002, 2014).



## Y(1S) and Y(2S) rapidity distribution

Introduction

Cross Section Calculation

Results

Summary



• Predictions to rapidity distribution at LHC (7*TeV*) for Y(1S,2S), for pp collisions; <sup>*a*</sup>

• The models GBW, CGC and b-CGC were considered for the dipole cross section;

<sup>a</sup>M. B. Gay Ducati, F. Kopp, M. V. T. Machado and S. Martins, Phys.Rev. D 94, 094023, 2016

Figure: The rapidity distribution of Y(1S) and Y(2S)

photoproduction at  $\sqrt{s} = 7 \, TeV$ 



### Y(3S) rapidity distribution

• The rapidity distribution of Y(3S) photoproduction at  $\sqrt{s} = 7 TeV$ 



Introduction

Cross Section Calculation

Results



### Total cross section for forward region

Introduction

Cross Section Calculation

Results

Summary

#### Our prediction:

Table: Total cross section in the rapidity region  $2.0 < \eta < 4.5$  (in units of *pb*) for photoproduction of the  $\psi(1S,2S)$  (corrected for acceptance) and  $\Upsilon(1S,2S,3S)$  states in *pp* collisions at  $\sqrt{s} = 7$  TeV compared to the LHCb data <sup>21,22</sup> (errors are summed into quadrature).

| $\sigma_{ m pp  ightarrow J/\psi  ightarrow \mu^+\mu^-}$ | GBW    | CGC <sup>old</sup> | CGC <sup>new</sup> | BCGC <sup>old</sup> | GBW <sup>ksx</sup> | LHCb measure  |
|----------------------------------------------------------|--------|--------------------|--------------------|---------------------|--------------------|---------------|
| ψ(1 <i>s</i> )                                           | 277.60 | 213.69             | 199.58             | 154.57              | 170.81             | $291\pm20.24$ |
| $\psi(2s)$                                               | 8.40   | 5.94               | 5.98               | 4.13                | 4.39               | $6.5\pm0.98$  |
| Ύ(1 <i>s</i> )                                           | 25.05  | 20.45              | 20.02              | 19.12               | 12.5               | $9.0\pm2.7$   |
| Ƴ(2 <i>s</i> )                                           | 4.32   | 3.8                | 3.70               | 3.9                 | 2.05               | $1.3\pm0.85$  |
| Ƴ(3 <i>s</i> )                                           | 0.35   | 0.32               | 0.31               | 0.33                | 0.17               | -             |

<sup>21</sup> (J. Phys. G 41, 055002, 2014)

22<sub>(JHEP 1509, 084, 2015)</sub>

Instituto de Física - IF/GFPAE



## $\Psi(2S)/\Psi(1S)$ ratio

Our prediction:

Introduction

Cross Section Calculation

Results

Summary

$$[\psi(2S)/\psi(1S)]_{2 < y < 4.5} = \overset{\text{gbw}}{0.03}, \overset{\text{cgc}^{\text{old}}}{0.027}, \overset{\text{cgc}^{\text{new}}}{0.03}, \overset{\text{bcgc}^{\text{old}}}{0.027}, \overset{\text{gbw}^{\text{ksx}}}{0.026}$$

LHCb determination (J. Phys. G 41, 055002, 2014):

 $[\psi(2S)/\psi(1S)](2.0 < \eta_{\mu} < 4.5) = 0.022$ 

Instituto de Física - IF/GFPAE



## **Rapidity Distribution in pA Collisions**

- Introduction
- Cross Section Calculation
- Results
- Summary

• We also estimates the rapidity distribution for  $\Psi(1S,2S)$  in pA collisions at  $\sqrt{s} = 8.2 \, \text{TeV}$ ,





## **Rapidity Distribution in pA Collisions**

Introduction

Cross Section Calculation

Results

Summary

• For Y(1S,2S), were obtained the results





### **Rapidity Distribution in pA Collisions**

• For Y(3S), we obtained



Introduction

Cross Section Calculation

Results



Cross Section Calculation Results Summary

## Transverse momentum distribution in pp collisions

- $p_T^2$ -distributions of the vector meson processes are an important source of information on the proton in the low-*x* region.
- It is common to parameterize this distribution as

$$\frac{d\sigma}{dt} \propto \exp\left(-B_D|t|\right)$$

 $B_D$  (effective slope) is a parameter that characterizes the area size of the interaction region.

For J/ψ, ψ(2S), Y(1S) and Y(2S) we use the Regge expression

$$B_{V}\left(W_{\gamma 
ho}
ight)=b_{
m el}^{V}+2lpha' {
m log}\left(rac{W_{\gamma 
ho}^{2}}{W_{0}^{2}}
ight)$$

with  $\alpha' = 0.25 \text{ GeV}^{-2}$ ,  $W_0 = 90 \text{ GeV}$ ,  $b_{el}^{J/\Psi} = 4.99 \pm 0.41 \text{ GeV}^{-2}$  and  $b_{el}^{\Psi(2S)} = 4.31 \pm 0.73 \text{ GeV}^{-2}$  for  $\Psi$ 's, and  $\alpha' = 0.164 \text{ GeV}^{-2}$ ,  $W_0 = 95 \text{ GeV}$  and  $b_{el}^{V(15),(2S)} = 3.68 \text{ GeV}^{-2}$  for Y's, from J. Phys. G42 105001, (2015).

Instituto de Física - IF/GFPAE



Introduction Cross Section Calculation Results

Summarv

## $p_T^2$ - distribution in pp collisions for $J/\psi$ and $\psi(2S)$

The  $p_T^2$ -distribution for quarkonium photoproduction in central rapidity in pp collisions is given by

$$\frac{d^2\sigma}{dydp_T^2}\bigg|_{y=0} \approx \frac{d\sigma}{dy}\bigg|_{y=0} B_V(y=0)e^{-B_V p_T^2}$$
(6)

#### Our estimates:





# $p_T^2$ - distribution in pp collisions for $J/\psi$ and $\psi(2S)$

Introduction

Cross Section Calculation

Results

Summary

To  $\sqrt{s} = 13$  TeV, were obtained the results





## $p_T^2$ - distribution in pp collisions for Y(1S)and Y(2S)

For Y(1S) and Y(2S), we obtain

Introduction Cross Section Calculation

Results



## $p_T^2$ - distribution in pp collisions for Y(3S)



GFPAE

Cross Section Calculation

Results





## $p_T^2$ - distribution in pp collisions for Y(1S)and Y(2S)

Introduction

Cross Section Calculation

Results





## $p_T^2$ - distribution in pp collisions for Y(3S)



Introduction

GFPAE

Cross Section Calculation

Results

Summary

Instituto de Física - IF/GFPAE



## $V(J/\Psi, \Psi(2S), Y(1S), Y(2S))$ production in AA collisions

Introduction

Cross Section Calculation

Results

Summary

Coherent process:

 $AA \rightarrow AA + V.$ 

 $\Rightarrow$  nuclei remain intact.

Incoherent process:

 $AA \rightarrow X + V.$ 

 $\Rightarrow$  nuclei are fragmented.



#### $V(J/\Psi, \Psi(2S), Y(1S), Y(2S))$ production in AA collisions

Introduction

Cross Section Calculation

#### Results

Summary

#### Coherent cross section: 23,24

$$\begin{split} \pi^{cohe}(\gamma A \to V A) &= \int d^2 b \left\{ |\int d^2 r \int dz \Psi_V^*(r,z) \right. \\ & \times \left( 1 - \exp\left[ -\frac{1}{2} \sigma_{dip}(x,r) T_A(b) \right] \right) \Psi_{\gamma^*}(r,z,Q^2) |^2 \right\} \end{split}$$

 $\sigma_{dip} 
ightarrow$  dipole cross section.

 $\Psi_V \rightarrow$  vector meson wave function.

 $\Psi_{\gamma} \rightarrow$  photon wave function.

 $T_A(b) = \int dz \rho_A(b,z)$ 

0

 $\rho_A(b,z) \rightarrow$  nuclear thickness function.

 $b \rightarrow$  impact parameter.

Instituto de Física - IF/GFPAE

<sup>&</sup>lt;sup>23</sup>B. Z. Kopeliovich and B. G. Zakharov, Phys. Rev. D 44, 3466, 1991

<sup>&</sup>lt;sup>24</sup>M. B. Gay Ducati, M. T. Griep, M. V. T. Machado, Phys.Rev. C 88, 014910, 2013



## Transverse momentum distribution in AA collisions

Introduction

Cross Section Calculation

tion culation

Results

Summary

The  $p_T^2$ -distribution for quarkonium photoproduction in AA collisions is given by

$$\frac{d^2\sigma}{dydp_T^2}\Big|_{y=0} = \frac{\frac{d\sigma}{dy}\Big|_{y=0} \left|F(|t|=\rho_T^2)\right|^2}{\int_{-\infty}^{t_{min}} \left|F(|t|=\rho_T^2)\right|^2 dt} \quad \text{with} \quad t_{min} = \left(\frac{m_V^2}{4\omega}\right)^2 \quad (7)$$

where

$$F\left(p_{T}=\sqrt{|t|}\right)=\frac{4\pi\rho_{0}}{A\rho_{T}^{3}}\left[\sin(p_{T}R_{A})-p_{T}R_{A}\cos(p_{T}R_{A})\right]\left[\frac{1}{1+a^{2}\rho_{T}^{2}}\right]$$

with <sup>25</sup>  $\rho_0 = 0.16 \ fm^{-3}$   $A_{Pb} = 207$   $R_A = 1.2A^{1/3} \ fm$  $a = 0.7 \ fm$ .

<sup>25</sup>V.P. Gonçalves, M.V.T. Machado, Eur. Phys. J. C 40, 519, 2005

Instituto de Física - IF/GFPAE



Introduction Cross Section

Calculation

Results

Summarv

## $p_T^2$ - distribution in Pb-Pb collisions for $J/\psi$ and $\psi(2S)$

We calculate the  $p_T^2$  – *distribution* using the same models that the case pp and obtain



Figure: The square transverse momentum distribution of  $\Psi(1S)$  and  $\Psi(2S)$  photoproduction in Pb-Pb collisions at  $\sqrt{s} = 2.76 \text{ TeV}$ 

Instituto de Física - IF/GFPAE



# $p_T^2$ - distribution in Pb-Pb collisions for $J/\psi$ and $\psi(2S)$

#### To $\sqrt{s} = 5.5$ TeV, we obtain

Cross Section Calculation

Introduction

#### Results

Summary



Figure: The square transverse momentum distribution of  $\Psi(1S)$  and  $\Psi(2S)$  photoproduction in Pb-Pb collisions at  $\sqrt{s} = 5.5$  TeV

Instituto de Física - IF/GFPAE



# $p_T^2$ - distribution in Pb-Pb collisions for Y(1S) and Y(2S)



Cross Section Calculation

Results

Summary



Figure: The square transverse momentum distribution of Y(1S) and Y(2S) photoproduction in Pb-Pb collisions at  $\sqrt{s} = 2.76 \text{ TeV}$ 

Instituto de Física - IF/GFPAE



# $p_T^2$ - distribution in Pb-Pb collisions for Y(1S) and Y(2S)



Figure: The square transverse momentum distribution of Y(1S) and Y(2S) photoproduction in Pb-Pb collisions at  $\sqrt{s} = 5.5$  TeV  $^{26}$ 

<sup>26</sup>M. B. Gay Ducati, F. Kopp, M. V. T. Machado and S. Martins, Phys.Rev. D 94, 094023, 2016 Instituto de Física - IF/GFPAE - 43 - Maria Beatriz Gay Ducati (UFRGS)

Introduction

Cross Section Calculation

Results



Introduction Cross

Section Calculation Results Summary

### **Ultraperipheral to Peripheral**

- Based on the good results of UPC, we extend the theoretical framework to peripheral collisions  $\rightarrow$  to test the robustness of the formulation.
- Modifications: change in the photon flux <sup>27</sup>

$$\frac{d\sigma}{dy} = \int_{bmin}^{bmax} d^2 b \,\omega N^{(2)}(\omega, b) \sigma_{\gamma A \to \gamma V}$$

where  $N^{(2)}(\omega, b)$  is the effective photon flux.

• In a purely geometrical picture, the impact parameter b is related to centrality as <sup>28</sup>

$$c = \frac{b^2}{4R_A^2}$$

<sup>27</sup>M. Kłusek-Gawenda and A. Szczurek, Phys. Rev. C93, 044912, 2016

<sup>28</sup>W. Broniowski and W. Florkowski, Phys. Rev. C65, 024905, 2002

Instituto de Física - IF/GFPAE



Calculation Results

Summary

Cross Section

### **The Effective Photon Flux**

#### Restrictions

 $\rightarrow$  The photon flux must reach the target nucleus;

 $\rightarrow\,$  The overlap region where nuclear effects are presented was desconsidered.



$$\mathcal{N}^{(2)}(\omega_1,b) = \int \mathcal{N}(\omega_1,b_1) rac{\Theta(R_A-b_2) imes \Theta(b_1-R_A)}{\pi R_A^2} d^2 b_1$$

where  $N(\omega_1, b_1)$  is the ordinary photon flux.

Instituto de Física - IF/GFPAE



#### **b-dependent Photon Flux**



Cross Section Calculation

#### Results

Summary



Figure: From top to bottom, the photon energies are  $\omega = 10$  MeV,

 $\omega = 1$  GeV and  $\omega = 100$  GeV.

Instituto de Física - IF/GFPAE



#### **Preliminary Results**

Using this approach, was calculated the rapidity distribution for the centrality class 70% to 90%,



Introduction

Cross Section Calculation

Results

Summary



#### **Preliminary Results**



Cross Section Calculation

Results





#### Summary

#### Introduction

Cross Section Calculation

Results

Summary

• The rapidity and  $p_T$  distributions of mesons  $\Psi(1S,2S)$  and Y(1S,2S,3S) production were calculated in pp and PbPb collisions using the dipole formalism.

• In pp, the predictions for  $\Psi(1S, 2S)$  and Y(1S) rapidity distribution and total cross section are consistent with LHCb data.

• The transverse momentum distributions of coherent production of all mesons considered were obtained in Pb-Pb collisions at  $\sqrt{s} = 7$  and  $\sqrt{s} = 13$  TeV.

• Essai to peripheral: model for effective photon flux with b-dependence, providing rapidity distributions for  $\sqrt{s} = 2.76$  TeV and  $\sqrt{s} = 5.5$  TeV. (work in progress - MBGD, S. Martins.)



Cross Section Calculation

Results

Summary

## **Thank You!**

Instituto de Física - IF/GFPAE