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The aim of my talk is to explain basic theoretical ideas and related 
phenomena relevant for the diffractive processes  in the 
collisions of sufficiently energetic composite particles .

Convenient for a theoretical description  is the target rest 
frame where directions of particles momenta of the system 
X and of the target fragmentation are different.  On the 
contrary in  the  IMF  only one direction so difficult to 
visualize diffractive processes.

h(photon) + T ! X + T
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Coherence of high energy processes:   

                       
Wave function of a  projectile in the target rest frame  is 
prepared long before hitting a target  and interacts with all 
matter of the target at given impact parameter at the same 
time. Quantum mechanical  picture of consequent collisions 
-Glauber description of scattering process of projectile is 
invalid in the kinematics where inelastic processes
dominate in the cross section. 
        This has been understood  by several generations of 
scientists who developed  framework for the calculation of 
diffractive processes and experimentalists who observed 
variety of new striking phenomena.

h(�) + T ! X
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Coherence of high energy processes follows from 3 
well understood fundamental properties of QCD.

1.As the consequence of uncertainty principle and Lorentz slowing 
down of interaction high energy projectile stays in a  frozen 

configuration of constituents at the distances: Lcoh =cΔt

At LHC for                                       Lcoh ~ 107 fm>> 2RA>> 2rN

L has been derived for DIS using structure function of a 
nucleon evaluated within the parton model or by analyzing 
DIS data (Ioffe 1970}

Large L explored in  the theoretical analysis of elastic 
photoproduction of vector mesons off nuclei. (Yennie,Bauer.....1970)

L
con

⇡ 1/�E ⇡ 2E/(m2
int

�m2
h

)

For DIS 
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 Implications of large L.

• The contribution of planar diagrams relevant for the formulae of 
semiclassical approximation within the quantum mechanics    is 
cancelled out completely.  PreQCD prove explores the feasibility 
to move contour of integration in the complex energy plane and 
analytic properties of amplitude in the energy plane=causality.  
S.Mandelstam1963,V.Gribov1972 

Complimentary reasoning. In the kinematical domain where 
cross section of hN scattering  is dominated by inelastic 
processes planar eikonal diagrams violate energy-momentum 
conservation in the case of nuclear shadowing or saturation.  A 
projectile hadron with energy E  produces n  inelastic processes 
with the same energy and total energy is n E.   
                                             Blok and Frankfurt 2006
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Illustration-planar diagram.

E
intermediate

= 2E
projectile
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This result demonstrates the inapplicability of quantum mechanical  
description of the scattering process , of the eikonal approximation, of 
the Glauber description of shadowing phenomenon at the energies 
when  inelastic processes dominate in the total cross section .  The 
contribution of consequent rescatterings of projectile -Glauber 
approximation is completely cancelled out in the regime when  
inelastic processes dominated in the cross section.   

Non planar diagrams give non zero contribution. The contribution of 
non planar diagrams  have no discussed above drawbacks.  Use of 
duality between s and t channels allows to rewrite the contribution 
of non planar diagrams in the form which includes Gribov inelastic 
shadowing in addition to the more familiar Glauber shadowing. 
Thus correct formulae are somewhat different from that in the  
quantum mechanics  but the interpretation is completely different. 
Formulae for the nuclear shadowing without inelastic shadowing 
are selfcontradictive  and incorrect at high energies.
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IMF=parton model  produces:

��⇤T (x,Q
2) = c(x)/Q2

Question: what phenomenon is relevant for for such a 
behaviour in the target rest frame?  CONSPIRACY  
between hard and soft QCD. Bjorken

               

�⇤

Quarks with small transverse momenta interact as 
hadrons. But probability of such configurations is small ⇡ 1/Q2

Thus fluctuations of strengths of interaction is organic property 
of QCD.

2. Fluctuations of overall strengths of high energy  interaction

transforms into quark-antiquark pair long before the 
target. Configurations where  quarks have large 
transverse momenta interact as  in IMF.
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In pQCD strength of interaction of white small  system is proportional to 
the area occupied by color (holds qualitatively in the soft regime as well) 

QCD factorization theorem for  the interaction of small size 
color singlet wave package of quarks and gluons. 

⇤(d, x) =
⇥2

3
�s(Q2

eff )d2

�
xGN (x, Q2

eff ) +
2
3
xSN (x, Q2

eff )
⇥

Q2
eff = �/d2, � = 4÷ 10

Baym, Blättel, Frankfurt, ;
 Strikman,Miller, 93

compare:   σ(d, x) = cd2 in QED or two gluon exchange model of 
Low - Nussinov (1975)

For quark - antiquark dipole: 

In the soft QCD additional fluctuations of strengths:              
parton densities in the central  and peripheral collisions differ etc. 



10

Coherent phenomena follow from the necessity to account for the 
coherence of interactions of produced diffractive states.   Time 
formation phenomena are a particular case of coherent phenomena. 
So third condition is the necessity to guarantee legitimacy of exploring 
closure over diffractively produced states  in the calculation of coherent 
phenomena . This condition is applicable for the forward scattering only.     
Will be explained later.

First conclusions which follow from the general properties  of 
QCD:

Constituents of projectile are frozen during of collisions.

Fluctuations of strengths of interaction is the property of 
gauge theory QCD and QED (atomic collisions).  



High energies = Gribov -Glauber model

A A A A

p p p p

+

X

Glauber model 
in rescattering diagrams proton propagates 
in intermediate state - zero at high energy  - 
cancelation of planar diagrams (Mandelstam 
& Gribov)- no time for a proton to come 
back between interactions.

p ppp

A A AA

+

p

X= set of frozen intermediate states 
the same as in pN diffraction

�2 /
Z

dtF 2
A(t)

d�(p+ p ! p+X(p+ inel diff))

dt
11

deviations from Glauber are small for Einc < 
10 GeV as inelastic diffraction is still small.

Account of large lcoh ➟ p A scattering  is described by different set of diagrams:

practically model independent 
for  scattering off two nucleons (ν=2)



Extend to arbitrary number of interactions ν: introduce quantity - P(σ)  -probability 
that a hadron/photon interacts with cross section σ with the target.   

dσ(pp!X+p)
dt

dσ(pp!p+p)
dt | t = 0

=
�

(� � �tot)2P (�)d�

�2
tot

⇥ ⇥� variance
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∫P(σ)d σ= 1, ∫ σ P(σ)d σ=σtot, 

Pumplin  &Miettinen

∫ (σ - σtot)3 P(σ)d σ= 0,                   Baym et al from pD diffraction

P (�)|�!0 / �nq�2 Baym et al 1993 -  QCD counting rules  probability for all 
constituents to be in a small transverse area

+ additional consideration that for a many body system fluctuations near average value should be Gaussian 

model and the Monte Carlo calculations which take into account finite radius of the NN

interaction neglected in the optic model.

IV. EFFECTS OF FLUCTUATIONS IN THE MONTE CARLO MODEL

An additional source of event-by-event fluctuations of the number of wounded nucleons

comes from the fluctuations in the number of nucleons at a given impact parameter. These

fluctuations are present already on the level of the Glauber model [8]. These fluctuations

decrease with increase of σtot(NN) due to an increase of the overall number of interacting

nucleons, N , at a given impact parameter. In the case when no fluctuations of σ are present,

we have:

⟨N(σinel)⟩ = ⟨N⟩
σinel

⟨σinel⟩
. (14)

In this case we can write
〈

N(σinel)
2
〉

= ⟨N⟩2 (1 + ωρ) , (15)

where ωρ is the quantity calculated for dispersion in the case of no color fluctuations. The

dependence of ωρ on σinel(NN) is presented in Fig. 1 for b = 0 and b = 4. In the calculation

we use the event generator [8]. The event generator includes short-range correlations between

nucleons, however this effect leads to a very small correction for the discussed quantity.

When both fluctuations are included average N does not change. Hence the dispersion

of the distribution over N including both effects can be calculated as follows:

〈

N2
〉

=
∫

dσinelP (σinel) ⟨N⟩2
(

σinel

⟨σinel⟩

)2

(1 + ωρ) . (16)

Now we can calculate the total dispersion. The first term in (1 + ωρ) gives simply ωσ. The

second term takes into account the dependence of ωρ on σinel:

ωtot = ωσ +
∫

dσinelP (σinel)

(

σinel

⟨σinel⟩

)2

ωρ . (17)

As a result the overall dispersion is somewhat smaller that ωσ+ωρ(σtot) since the the integral

in the second term is dominated by σ > σtot. In order to perform numerical analysis we

follow [10], and take the probability distribution for σtot as [16]:

Ph(σtot) = r
σtot

σtot + σ0
exp{−

σtot/σ0 − 1

Ω2
} , (18)

7

( )2

N

Practical test:  calculation of coherent diffraction off nuclei: π A→XA, p A→XA 
 through Ph(σ) -works 

P�(�)|�!0 / ��1 γ =mix of small qq and mesonic configurations-
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ν wounded nucleons

spectator nucleons

PN(σ)  provides constructive  way to account for coherence of the high-energy dynamics
 Fluctuations of interaction cross section formalism: Color fluctuation model

Classical low energy picture of 
inelastic h A collisions 

implemented in Glauber model  
based Monte Carlos 

+
High energy picture of inelastic 
h A collisions consistent with 

the Gribov - Glauber model but 
more microscopic  

Frozen configuration - same strength of interaction with 
different nucleons along the path essentially semiclassical  picture!!!

2

positronium can be captured in a larger (smaller) con-63

figuration by selecting events in which with more (fewer)64

excited atoms in the target were excited.65

In QCD, fluctuations in the interaction strength of a66

hadron h and with a nucleon originate from fluctuations67

in both the transverse size and in the number of con-68

stituents of the hadron. Generically, we will We refer to69

both generically contributions as color fluctuations (CF).70

CF e↵ects can be accounted for by introducing a proba-71

bility distribution, P
h

(�), that describes the probability72

for the projectile h to be found in a configuration with73

inelastic cross-section � for interacting with of scatter-74

ing o↵ a nucleon., and which obeys the The sum rules75 R
P

h

(�)d� = 1 and
R
P

h

(�)�d� = h�i follow from prob-76

ability conservation and from the definition of where h�i77

is the configuration-averaged cross section. The vari-78

ance �

!

of the distribution is given by the optical theo-79

rem [8, 9]80

!

�

= (
⌦
�

2
↵
/ h�i2 � 1) =

d�(h+p!X+p)
dt

d�(h+p!h+p)
dt

�����
t=0

, (2)

where a sum over di↵ractively produced states X, in-81

cluding the triple Pomeron contribution [20], is implied.82

Eq. 2 follows directly from the optical theorem and the83

definition of P
h

(�), and was first derived in [8] using the84

approach of [9].[DVP: I simplified this and put it before85

the equation.] Analyses of fixed Fixed target data [11]86

indicate that !

�

for the proton first grows with energy,87

reaching !

�

⇠ 0.3 for
p
s ⇠ 100 GeV. At higher energies88

the variance decreases and reaches , then decreases at89

higher energies to !

�

⇠ 0.1 at the LHC energies [20].90

Several considerations constrain the shape of91

P

h

(�) [11]. For values � ⇠ h�i, P

h

(�) is expected92

to be Gaussian due to small fluctuations in the number93

of, or transverse area occupied by, partons, a claim94

supported by measurements of coherent di↵raction in95

proton–deuteron collisions [10, 11, 11]. For � ⌧ h�i,96

configurations with a small number constituents, n

q

,97

should dominate, leading to P
h

(�) / �

n

q

�2. For protons,98

the The resulting form of P
h

(�) was chosen to represents99

a smooth interpolation smoothly interpolate between100

both regimes with parameters chosen to reproduce while101

reproducing measurements of the first three moments of102

the distribution, and is given by as given by the data.103

For the proton case104

P

N

(�
tot

) =
⇢

�0

✓
�

tot

�

tot

+ �0

◆
exp

⇢
� (�

tot

/�0 � 1)2

⌦2

�
.

(3)
An analysis [11] of the measurements of coherent105

di↵raction in proton–deuteron collisions with E

p

=106

400 GeV [10] show that P
N

(�
tot

) is approximately sym-107

metric around � = �

tot

[11], in agreement with the Gaus-108

sian expectation. [DVP: simplified and moved above] In109

practice, the results presented here depend mainly on !

�

110

and only weakly on the exact form of P
h

(�) as long as111

the variance is fixed [12].112

To determine the cross-section �

⌫

for the proton to113

interact with ⌫ nucleons, the standard Gribov formal-114

ism [13] at high energies can be generalized to include115

CF e↵ects [14]. Previously, the formulae for the num-116

ber of collisions, ⌫, su↵ered by the projectile hadron in117

hadron-nucleus collisions at high energies were derived118

within the Gribov formalism neglecting CF e↵ects [13]. It119

is straightforward to generalize these results for hadron–120

nucleus interactions to include CF e↵ects in a manner121

similar to the QED example above [14]. [DVP: simplify-122

ing this, and also merging paragraphs] When the impact123

parameters in nucleon-nucleon (NN) interactions are124

small compared to the typical distance between neigh-125

boring nucleons, the formulae are126

�

hA

in

=
AX

⌫=1

�

⌫

, (4)

�

⌫

=

Z
d�P

h

(�) · A!

(A� ⌫)! ⌫!
· (5)

Z
db (�T (b)/A)⌫ [1� �T (b)/A]A�⌫

,

where T (b) =
R1
�1 dz⇢(z, b) and ⇢ is the nuclear den-127

sity distribution normalized such that
R
dr ⇢ = A. In128

the limit of no CF e↵ects (, P

h

(�) = �(� � �

in

), and129

Eq. 4 reduces to the Glauber model. The distribution130

over ⌫ can be calculated with a Monte Carlo Glauber131

procedure, which by its nature includes NN correlations132

and finite size e↵ects [12]. A probabilistic interpretation133

of this picture may be implemented in a Monte Carlo134

Glauber procedure which includes NN correlations and135

finite size e↵ects in the proton–nucleon interactions. [12].136

Note that Although the Glauber approximation ignores137

energy-momentum conservation in the inelastic interac-138

tion of the proton with multiple nucleons. Accounting139

for energy-momentum conservation within the CF ap-140

proach , this does not modify the calculation of the re-141

sulting total and inelastic cross sections or of the hadron142

multiplicity at rapidities close to the nuclear fragmenta-143

tion region [20]. However, including energy-momentum144

conservation may be important for evaluating hadron145

multiplicities at forward and central rapidities.[DVP: I146

think forward/central yields aren’t relevant] Finally, we147

note that Eq. 4 properly This approach also accounts148

both for inelastic shadowing [7] and for the possibility149

of intermediate di↵ractive states between successive col-150

lisions [11, 20].151

[DVP: streamlined and merged these two paragraphs]152

Generally the tail of P
N

(�) for � > h�i leads to a broad-153

ening of the ⌫ distribution in pA and AA collisions [14].154

Recently, ATLAS has studied the role of CF e↵ects in155
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FIG. 1: The cross section distribution P (σ, s) at different energies: the solid curve corresponds to
√

s = 9 TeV (LHC); the dashed curve corresponds to
√

s = 1.8 TeV (Tevatron); the dot-dashed

curve corresponds to
√

s = 200 GeV (RHIC).

IV. RESULTS AND DISCUSSION

Using Eqs. (15) and (18), we calculate the total, elastic and diffractive dissociation cross

sections for proton-208Pb scattering as a function of
√

s. The result is given in Fig. 2.

In our numerical analysis, we used the following parameterization of the nucleon distri-

bution ρA(r⃗)

ρA(r⃗) =
ρ0

1 + exp ((r − c)/a)
, (22)

where c = RA − (π a)2/(3 RA) with RA = 1.145 A1/3 fm and a = 0.545 fm; the constant ρ0

is chosen to provide the normalization of ρA(r⃗) to unity.

One sees from Fig. 2 that cross section fluctuations decrease the total and elastic cross
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bution ρA(r⃗)

ρA(r⃗) =
ρ0

1 + exp ((r − c)/a)
, (22)

where c = RA − (π a)2/(3 RA) with RA = 1.145 A1/3 fm and a = 0.545 fm; the constant ρ0

is chosen to provide the normalization of ρA(r⃗) to unity.

One sees from Fig. 2 that cross section fluctuations decrease the total and elastic cross
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Extrapolation of Guzey  & MS  before
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LHC data which are still not too accurate
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Figure 6: Cross-section probability for pions Pπ(σ) and nucleons PN(σ) as extracted from

experimental data. Pπ(σ ∼ 0) is compared with the perturbative QCD prediction.
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p
s = 30 GeV

PN(σ) nearly flat in wide range of σ. 
Elongated configurations? 
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Color fluctuations in photon - nucleus collisions

Photon is a multiscale state:  

VMqq-

P�(�) / 1/� for� ⌧ �(⇡N)

P�(�) / P⇡(�) for� > �(⇡N)

5

where P (�,W ) is taken from [23]; the coe�cient of 11/9 takes into account the ! and � contributions in the SU(3)
approximation (which somewhat overestimates the rather small contribution of � mesons). The form of P (�,W ) is
motivated by P

⇡

(�,W ) for the pion and takes into account presence of the large-mass di↵raction at high energies. It
is also constrained to describe the HERA data on ⇢ photoproduction on the proton, which requires to account for a
suppression of the overlap of the photon and ⇢ wave function as compared to the diagonal case of the ⇢ ! ⇢ transition.

The resulting P

(⇢+!+�)/�

(�) at W = 100 GeV is shown by the blue dot-dashed curve in Fig. 1.
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FIG. 1: The distributions P�(�,W ) for the photon at W = 100 GeV. The red solid curve shows the full result of the hybrid
model, see Eq. (7). The green dashed and blue dot-dashed curves show separately the dipole model and the vector meson
contributions evaluated using Eqs. (5) and (6), respectively.

We build a hybrid model of P
�

(�,W ) by interpolating between the regime of small �  10 mb, where perturbative
dipole approximation is applicable and there is no dependence on the light quark mass m

q

, and the regime of large
�, where the soft contribution due to the lightest vector meson dominates (hence we neglect the soft contribution of
configurations with the large mass and small k

t

). In particular, in our analysis we use the following expression:

P

�

(�,W ) =

8
<

:

P

dipole

�

(�,W ) , �  10 mb ,
P

int

(�,W ) , 10 mb  �  20 mb ,
P

(⇢+!+�)/�

(�,W ) , � � 20 mb .
(7)

where P

int

(�) is a smooth interpolating function. The resulting P

�

(�,W ) is shown by the red solid curve in Fig. 1.
Our model for P

�

(�,W ) satisfies the constraints of Eq. (2) and gives the good description of the total and di↵raction

dissociation photon–proton cross sections at W = 100 GeV. Indeed, for �

�p

, we obtain
R
100 mb

0

d��P

�

(�,W ) = 135
µb, which agrees with the PDG value of �

�p

= 146 µb [41]. For the cross section of di↵ractive dissociation, we obtainR
100 mb

0

d��

2

P

�

(�,W )/(16⇡) = 240 µb/GeV2. It agrees with our estimate of d�
�p!Xp

(t = 0)/dt ⇡ 220 µb/GeV2,
which is obtained by integrating the data of [42] over the produced di↵ractive masses and extrapolating the resulting
cross section to the desired W = 100 GeV.

To quantify the width of CFs, one can introduce the dispersion !

�

. For the photon, it can be introduced by the
following relation:

Z
d��

2

P

�

(�,W ) = (1 + !

�

)

✓
e

f

⇢

�̂

⇢N

◆
2

, (8)

where �̂

⇢N

is the ⇢ meson–nucleon cross section. The use of our P

�

(�,W ) in Eq. (8) gives !

�

⇡ 0.93, which should
be compared to !

⇢

�

⇡ 0.54 for the pure ⇢ meson contribution to P

�

(�,W ) and to !

⇡

�

⇡ 0.45 for CFs in the pion [35].
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Inelastic diffraction in DIS 

The analysis of impact factor of transversely polarized photon shows that 
distribution of  quark-antiquark pair over transverse size is rather wide in 
transverse plane . Significant fluctuations  of strengths of interaction  are 
needed to keep agreement with the parton model. (Bjorken) . It follows 
from the formulae for dispersion discussed above  that QCD predicts 
significant cross section of diffraction. (Frankfurt,Strikman)  In the case of 
longitudinally polarized virtual photon the ratio of diffraction to the total 
cross section should be significantly smaller.

Significant cross section of diffraction in DIS has been discovered at 
HERA.This is rather direct experimental confirmation of the concept of 
color fluctuations.   
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Exclusive processes of vector meson production  off nuclei at LHC in 
ultraperipheral collisions allow to test theoretical expectations for small and large σ

(a)  ρ-meson production:  γ+Α →ρ+Α 

vector dominance model for scattering off proton 

Expectations: 

�(⇢N) < �(⇡N)

since overlapping integral between γ and ρ is suppressed as compared 
to  ρ →ρ case 

observed at HERA but ignored before our analysis: �(⇢N)/�(⇡N) ⇡ 0.85

❖

Analysis of Guzey, Frankfurt, MS, Zhalov 2015 (1506.07150)
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Glauber double scattering Gribov inelastic shadowing

❖  Gribov type inelastic shadowing is enhanced  in discussed process  - fluctuations grow with 
decrease of projectile - nucleon cross section. We estimate ωγ→ρ~ 0.5 and model Pγ➙ρ(σ) 

Next we use  Pγ➙ρ(σ) to calculate coherent  ρ  production.  Several effects contribute to 
suppression a) large fluctuations, b) enhancement of  inelastic shadowing is larger for smaller   
σtot.  for the same ω,   c)  effect  for coherent cross section is square of that for σtot. 

A A A

γ γρ ρ ρ ρ
MX

A

IP IP IP IP

ρ
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Variety of color coherent phenomena has been observed

Color transparency phenomena were observed  at   FNAL, 
TJNAF. Confirmed QCD factorization theorem  

Diffractive electroproduction of vector mesons observed at 
HERA. Confirmed QCD factorization theorem,CFs

Fluctuations of cross section observed at  ATLAS  are 
in line with CFs

Observation of diffraction in DIS confirmed concept of 
color fluctuations.
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Violation of coherence for non forward diffractive 
processes.

Disintegration of deuteron at moderate energies

X

pn

d�(h+ d ! h+ p+ n)/dtt=0

d�(h+ d ! h+ d)/dtt=0
= [1� F 2

d (t)]t=0 = 0

For the forward scattering 0  -no fluctuations of color.For non 
zero t  -inapplicability of logic.

Calculations were made in the impulse approximation  since 
radius of deuteron is small. 
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Violation of coherence in the hard processes

X

Z

d�(a+ T ! Y + Z)/dt/d�(a+ T ! Y + T )/dt(t = 0) =

g

2(x1, x2) > / < g(x1, x2) >
2 �1

For a hard probe  “a”  usual relation for hard processes:

Here 

< a|g(x1, x2)|n >

is non diagonal GPD

Abramowitz, LF, MS 1995

Weiss, Treleani, LF, MS 2008
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For large t  and keeping leading term in t:

proportional to the parton density-violation of coherence.

X

Z

d�(a+ T ! VM + gap+ Z)/dt = c[F 2(8)xG(x1, x2) + F

2(3)xSN (x1, x2))]
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Conclusions

Coherence phenomenon   is understood theoretically including  
kinematical region of applicability.

Variety of coherent phenomena were observed .

Time is coming to use coherent phenomena for the analysis of 
more complicated phenomena.


