Heavy quarkonium diffractive production using holographic wavefunctions

VM production in the dipole picture Talks by A. Rezaeian, H. Mantysaari

Phenomenological VM LFWFs

$$\Box \text{ Photon wavefunction}$$

$$\Psi_{h\bar{h},\lambda=0}(r,z,Q) = e_f e \sqrt{N_c} \,\delta_{h,-\bar{h}} \, 2Qz(1-z) \, \frac{K_0(\epsilon r)}{2\pi}$$

$$\Psi_{h\bar{h},\lambda=\pm 1}(r,z,Q) = \pm e_f e \sqrt{2N_c} \left\{ \mathrm{i}e^{\pm \mathrm{i}\theta_r} [z\delta_{h,\pm}\delta_{\bar{h},\mp} - (1-z)\delta_{h,\mp}\delta_{\bar{h},\pm}]\partial_r + m_f \delta_{h,\pm}\delta_{\bar{h},\pm} \right\} \frac{K_0(\epsilon r)}{2\pi}$$

Popular VM LFWFs assumptions

- a. Spin structure same as photon LFWF
- b. Replacement: $e_f e_f z(1-z) \frac{K_0(\epsilon r)}{2\pi} \longrightarrow \phi_{T,L}(r,z)$
- Successful models: boosted Gaussian, holographic AdS/QCD, etc.

Boosted Gaussian

- Gaussian in VM Rest Frame, boosted to IMF Brodsky, Huang and Lepage, 1980 $\phi_{T,L}(r,z) = \mathcal{N}_{T,L}z(1-z) \exp\left(-\frac{m_f^2 \mathcal{R}^2}{8z(1-z)} - \frac{2z(1-z)r^2}{\mathcal{R}^2} + \frac{m_f^2 \mathcal{R}^2}{2}\right)$ Constraints Nemchik, Nikolaev, Predazzi and Zakharov, 1997 1. Normalization: $1 = \sum_{h,\bar{h}} \int d^2 \vec{r} \int_0^1 \frac{dz}{4\pi} \left|\Psi_{h\bar{h},\lambda}^V(\vec{r},z)\right|^2$.
- 2. Decay constants, related to: $\phi_{T,L}(r,z)|_{r=0}$.
- Strength: same width for L&T, boost invariant, proper short-distance limit in the massless limit, successful in explaining diffractive processes.

Holographic AdS/QCD VM LFWF

□ Semi-classical QCD on the light-front

$$\psi(x,\zeta,\varphi) = e^{iL\varphi}X(x)\frac{\phi(\zeta)}{\sqrt{2\pi\zeta}}, \zeta = \sqrt{x(1-x)\mathbf{b}_{\perp}^2}$$

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + U(\zeta)\right)\phi(\zeta) = M^2\phi(\zeta)$$

Brodsky, Teramond, Dosch and Erlich, 2015 $\phi(\zeta)$: probability amplitude, determines the hadronic mass spectrum.

 \Box $U(\zeta)$: encodes all QCD interactions beyond valence Fock sector.

 \Box AdS/QCD: quadratic dilaton $U(\zeta) = \kappa^4 \zeta^2$.

Holographic AdS/QCD VM LFWF

 Strength: contains no free parameters, predicts spectrum on Reggie trajectory, explains light meson diffractive production. Forshaw and R. Sandapen, 2012 Ahmady, R. Sandapen and Sharma, 2016

Limitations:

- a. Works in massless (small mass) limit,
- b. Difficult to describe higher excited states,
- c. Spin-structure relies on photon LFWF.

Longitudinal Confinement \implies Heavy

Generalizing the holographic AdS/QCD to 3D

$$U(\zeta) = \kappa^4 \zeta^2 + \frac{\kappa^4}{4m_q^2} \partial_z \left(z(1-z)\partial_z \right)$$

□ Strength:

Li, Maris, Zhao and Vary, PLB 758, 118, 2016

- a. Works for both heavy and light system,
- b. Consistent with pQCD asymptotic $\phi^{DA}(z) \sim z^{\alpha}(1-z)^{\beta}$,
- c. Analytically solvable,
- d. Proper massless and NR limits.
- □ Weakness: higher excited states not well-determined.

One-gluon exchange \implies excited

□ Finding spectrum using light-front Hamiltonian

 $H_{LF}|\psi_h\rangle = M_h^2|\psi_h\rangle, \quad (H_{LF} \equiv P^+ \hat{P}_{LF}^- - \vec{P}_{\perp}^2)$ \Box Effective Light-front Hamiltonian

 $H_{\text{eff}} = \underbrace{\frac{k_{\perp}^{2} + m_{q}^{2}}{z(1-z)}}_{\text{LF kinetic energy}} + \underbrace{\kappa^{4}\zeta_{\perp}^{2} - \frac{\kappa^{4}}{4m_{q}^{2}}\partial_{z}\left[z(1-z)\partial_{z}\right]}_{\text{confinement}} - \underbrace{\frac{C_{F}4\pi\alpha_{s}}{Q^{2}}\bar{u}_{s'}(k')\gamma_{\mu}u_{s}(k)\bar{v}_{\bar{s}}(\bar{k})\gamma^{\mu}v_{\bar{s}'}(\bar{k}')}_{\text{one-gluon exchange}}$ Li, Maris, Zhao and Vary, PLB 758, 118, 2016 Parameter m_{q} and κ fixed by quarkonia spectra in the BLFQ framework. Vary et al '10, Honkanen et al '11 X. Zhao et al. , '14 P. Wiecki et al., '15

Heavy Quarkonium Spectroscopy

Li, Maris, Zhao and Vary, PLB 758, 118, 2016

Visualizing LFWF: J/Ψ Y. Li, arXiv:1612.01295

9N7-17-65W, Seattle, 2017

2|16|17

BLFQ LFWF predictions

□ Decay constants Li, Maris, Zhao and Vary, PLB 758, 118, 2016

□ Also predict radii and charge form factor!

Mini sum: BLFQ LFWF

- Effective Hamiltonian: confinement + one-gluon exchange,
- □ Parameters fitted by spectrum, r.m.s. deviation ~ 50 MeV,
- Could describe both heavy and light system,
- Generate spin-structure through one-gluon exchange, including S, P, D waves,
- □ Excited states without any additional assumptions,
- □ Predict various physics observables.
- Q: compatible with diffractive VM production? Yes!

HERA: cross section ZEUS, 2004. H1, 2006.

GC, Li, Maris, Tuchin and Vary, arXiv:1610.04945

HERA: cross-section ratio ZEUS, 2016. Tuchin and Vary arXiv:1610.04945 H1, 2006.

GC, Li, Maris, Tuchin and Vary, arXiv:1610.04945

bCGC, Rezaeian and Schmidt, PRD88, 074016 (2013). Boosted Gaussian I, Armesto and Rezaeian, PRD90, 054003 (2014). Boosted Gaussian II, Kowalski et al., PRD74, 074016 (2006).

Pb-Pb UPC at LHC

GC, Li, Maris, Tuchin and Vary, arXiv:1610.04945

bCGC, Rezaeian and Schmidt, PRD88, 074016 (2013). Boosted Gaussian I, Armesto and Rezaeian, PRD90, 054003 (2014). Boosted Gaussian II, Kowalski et al., PRD74, 074016 (2006).

ALICE, 2013.

CMS, 2016.

J/Ψ in γp at LHC

GC, Li, Maris, Tuchin and Vary, in preparation

2/16/17

$\Psi(2s)$ in γp at LHC

GC, Li, Maris, Tuchin and Vary, in preparation

bSat, Rezaeian et al., Phys. Rev. D 87, 034002 (2013). bCGC, Rezaeian and Schmidt, PRD88, 074016 (2013).

2|16|17

$\Upsilon(1s)$ in γp at LHC

GC, Li, Maris, Tuchin and Vary, in preparation

2|16|17

9M7-17-65W, Seattle, 2017

Cross section ratio, revisit ZEUS, 2016.

GC, Li, Maris, Tuchin and Vary, arXiv:1610.04945

bCGC, Rezaeian and Schmidt (2013), Soyez (2006). bSat, Rezaeian et al. (2013), Kowalski et al. (2006). Boosted Gaussian II, Kowalski et al., PRD74, 074016 (2006).

Cross section ratio, Upsilons

GC, Li, Maris, Tuchin and Vary, in preparation

bCGC, Rezaeian and Schmidt (2013), Soyez (2006). bSat, Rezaeian et al. (2013), Kowalski et al. (2006).

Cross section ratio, Upsilons

GC, Li, Maris, Tuchin and Vary, in preparation

bSat, Rezaeian et al. (2013), Kowalski et al. (2006).

Summary

- The BLFQ LFWFs give reasonable fit to the diffractive heavy quarkonium production data at HERA, RHIC and LHC, including higher excited states!
- The cross-section ratios of higher excited states over ground states reveal significant independence of model parameters ⇒ useful for understanding heavy quarkonium LFWFs,
- □ Future work: charmonium and bottomonium production at EIC, both coherently and incoherently.

Thank you!

Acknowledgement: Xingbo Zhao, Nataliia Kovalchuk, Amir Rezaeian, Ronan Mcnulty, Daniel Johnson

□ Support by Department of Energy, USA

Dipole Models

 The GBW model Golec-Biernat and Wusthoff, 1999
 σ^{GBW}_{qq̄}(x, r) = σ₀ (1 - e^{-r²Q²_s(x)/4})
 The b-Sat Model Kowalski and Teaney, 2001
 The b-CGC Model Iancu, Itakura and Munier, 2003
 An approximate solution of Balitsky-Kovchegov equation
 The rcBK Model Albacete, Armesto, Milhano, Salgado, 2009

A numerical solution of BK equation with running coupling

Photon-nucleus Dipole Model

□ For coherent production, Kowalski and Teaney, 2001

$$\left\langle \frac{d\sigma_{q\bar{q}}}{d^2b} \right\rangle_{\Omega} = 2 \left[1 - \left(1 - \frac{T_A(b)}{2} \sigma_{q\bar{q}}^p \right)^A \right]$$

□ Profile needed, e.g., Woods-Saxon.

□ No nuclear shadowing, anti-shadowing was considered. See talk by V. Guzey.

General Procedures of BLFQ

- Derive LF-Hamiltonian from Lagrangian
- \Box Construct basis states $|\alpha\rangle$, and truncation scheme
- Evaluate Hamiltonian in the basis
- Diagonalize Hamiltonian and obtain its eigen states and their LF-amplitudes
- □ Evaluate observables using LF-amplitudes
- Extrapolate to continuum limit Vary et al '10, Honkanen et al '11
 X. Zhao et al., '14
 P. Wiecki et al., '15
 Y. Li et al., '15

J/ψ production at RHIC

- \Box x_{IP} \approx 0.015, dipole model barely works at midrapidity
- □ PHENIX measurement PHENIX, 2009, Takahara, thesis 2013
- 2010: $\frac{d\sigma}{dy}|_{y=0} = 45.6 \pm 13.2(stat) \pm 6.0(sys)\mu b$ 2004+2007: $\frac{d\sigma}{dy}|_{y=0} = 55.9 \pm 13.2(stat) \pm 7.6(sys)\mu b$
- \square BLFQ calculation: 60.4 μb
- **D** Boosted Gaussian prediction: $109\mu b$ Lappi et. al, 2013

Equivalent Photon Approximation

Proton M. Drees and Zeppenfeld, '89

$$\frac{\mathrm{d}N_{\gamma}^{p}}{\mathrm{d}\omega} = \frac{\alpha_{\mathrm{em}}}{2\pi} \left[1 + (1 - \frac{2\omega}{\sqrt{s}})^{2} \right] \qquad \Omega = 1 + \frac{0.71 \mathrm{GeV}^{2}}{Q_{min}^{2}} \\ \times \left[\ln\Omega - \frac{11}{6} + \frac{3}{\Omega} - \frac{3}{2\Omega^{2}} + \frac{1}{3\Omega^{3}} \right]$$

 $\begin{aligned} \frac{\mathrm{d}N_{\gamma}^{A}}{\mathrm{d}\omega} &= \frac{2Z^{2}\alpha_{em}}{\pi\beta} \left[\xi K_{0}(\xi)K_{1}(\xi) - \frac{\xi^{2}}{2}(K_{1}^{2}(\xi) - K_{0}^{2}(\xi)) \right] \\ \xi &= \omega (R_{A1} + R_{A2})/(\gamma_{L}\beta) \end{aligned}$ Klein and Nystrand, '99

Excited States in boosted Gaussian

□ Introduce an additional term

$$\begin{aligned} & \mathcal{C}\text{ox, Forshaw and R. Sandapen, 2009} \\ \phi_{T,L}^{2s}(r,z) &= \mathcal{N}_{T,L}^{2s} z(1-z) \exp\left(-\frac{m_q^2 \mathcal{R}_{2s}^2}{8z(1-z)} - \frac{2z(1-z)r^2}{\mathcal{R}_{2s}^2} + \frac{m_q^2 \mathcal{R}_{2s}^2}{2}\right) \\ & \times \left[1 + \alpha_{2s} \left(2 + \frac{m_q^2 \mathcal{R}_{2s}^2}{4z(1-z)} - \frac{4z(1-z)r^2}{\mathcal{R}_{2s}^2} - m_q^2 \mathcal{R}_{2s}^2\right)\right] \end{aligned}$$

One more parameter, one more constraint orthogonality.