EIC PHYSICS AND CONNECTIONS TO UPC

Elke-Caroline Aschenauer

a passion for discovery

What is the EIC:

WHAT IS EIC

A high luminosity (10³³ – 10³⁴ cm-2s -1) polarized electron proton / ion collider with √sep = 20 – 100 GeV upgradable to 140 GeV

3 INT Workshop INT-17-65W E.C. Aschenauer

ONAL LABORATORY

X-Q² COVERAGE FOR DIFFERENT FACILITIES

Brookhaven Science Associates

Hadron-Hadron:

EIC'S PHYSICS IMPACT, COMPLEMEN

- \Box probe has structure as complex as the "target"
- **no clean access to parton kinematics** $p_t \rightarrow x$; $p_t^2 \rightarrow Q^2 \rightarrow x$ - Q^2 strongly correlated UPC: $M^2 \rightarrow Q^2$ can only be varied by VM
- **limited access to spatial structure of nucleons and nuclei**

- Point-like probe \rightarrow resolution
- **High precision & access to partonic kinematics through scattered lepton** $\rightarrow x$ **,** Q^2
- **Interaction governed by colorless Photon**
	- **Preserve the properties of partons in the nuclear wave function**
- **initial and final state effects can be cleanly disentangled**

BEYOND FORM FACTORS AND PDFS **Generalized Parton Distributions**

X. Ji, D. Mueller, A. Radyushkin (1994-1997)

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

the way to 3d imaging of the proton and access the orbital angular momentum L^q

$$
\int_{0}^{1} \frac{\sin 5u}{2} du = \int_{0}^{z} + J_{g}^{z} = \frac{1}{2} \Delta \Sigma + \sum_{q} \mathcal{L}_{q}^{z} + J_{g}^{z} \qquad J_{q,g}^{z} = \frac{1}{2} \left(\int_{-1}^{1} x \, dx \left(H^{q,g} + \frac{F^{q,g}}{F^{q,g}} \right) \right)_{t \to 0}
$$

responsible for orbital angular momentum

SMALL GPD PRIMER

ACCESSING GPDS: SOME CAVEATS

 $\boldsymbol{H}(\boldsymbol{x},\boldsymbol{\xi},t)$ but only ξ and t accessible experimentally

x is not accessible (integrated over):

- **apart from cross-over trajectory (x=**x**) GPDs not directly accessible: deconvolution needed ! (model dependent)**
- **GPD moments cannot be directly revealed, extrapolations t 0 are kind of model dependent**

$$
T^{DVCS} \sim \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi + i\varepsilon} dx + ... \sim P \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi} dx - i\pi H(\pm \xi, \xi, t) + ...
$$

\n
$$
H(x,\xi,0)
$$

\n
$$
H(x,\xi,0)
$$

\n
$$
T^{DVCS} \sim \frac{q(x)}{x \cos \theta}
$$

\n
$$
= 0.2
$$

\n
$$
T^{DVCS} \sim \frac{q(x)}{x \cos \theta}
$$

\n
$$
= 0.2
$$

\n
$$
T^{DVCS} \sim \frac{R(T^{\text{DVCS}})}{\cos \theta}
$$

\n
$$
= 0.5
$$

\n
$$
T^{-17-65W}
$$

\n
$$
T^{-17-65W}
$$

\n
$$
T^{-17-65W}
$$

\n
$$
T^{LV} \sim R(T^{\text{DVCS}})
$$

\n
$$
T^{DVCS} \sim Im(T^{\text{DVCS}})
$$

\n
$$
T^{LVCS} \sim Im(T^{\text{DVCS}})
$$

\n
$$
T^{LVCS} \sim \frac{1}{2}
$$

\n
$$
T^{-17-65W}
$$

\n
$$
T^{LVCS} \sim \frac{1}{2}
$$

\n
$$
T^{LVCS} \sim \frac{1
$$

PROTON STRUCTURE IMPORTANT FOR QGP IN SMALL SYSTEMS

Collective phenomena seen in pA collisions, i.e. ATLAS 1409.792 p+p (High-Multiplicity) p+Pb (High-Multiplicity) Pb+Pb (60-70%)

H. Mäntysaari & B. Schenke arXiv:1607.01711

In a hydro-picture (used in AA) fluctuations in the proton are crucial to understand the seen pA@LHC behaviors

Only EIC can map out the spatial quark and gluon structure of the proton in x and Q2

DISENTANGLE DIFFERENT GPDs

Vary electron and proton beam spin directions:

WHAT WILL WE LEARN ABOUT 2D+1 STRUCTURE OF THE PROTON

GPD H and E as function of t, \times **and** \mathbb{Q}^2

[arXiv:1304.0077](http://arxiv.org/abs/arXiv:1304.0077)

E.C. Aschenauer

13

INT Workshop INT-17-65W

GET A FIRST LOOK ON EG

Remember:

responsible for orbital angular momentum

J/Ψ production in transversely polarized p↑Au / p↑p UPC

world wide only access to gluon GPD E

$$
t = \frac{M_{J/\gamma}^2}{S}
$$

What is measured:

Single-spin transverse asym. ¹ ^N/L ^N/L P1 $A_N =$ **^N/L + N/L**

where \uparrow (\downarrow) are defined with **respect to reaction plane**

Stat. Unc. $\sim 1/(P_1/N)$

Run-15 p [↑]Au: 7000 J/Ψ photon emitted by Au trigger on e+e- in Barrel-ECal no requirement on n in ZDC

WHAT ABOUT NUCLEI?

Brookhaven Science Associates

THE INFLUENCE OF THE INITIAL STATE IN AA

KEY OBSERVABLES FOR SATURATION **Diffraction:**

Diffractive events are indicative of a color neutral exchange between the virtual photon and the proton or nucleus over several units in rapidity.

- **M^X ²: Squared mass is the diffractive final state**
- x_{IP} : Momentum fraction of the "Pomeron" with respect to the hadron. **The rapidity gap between produced particles and the proton or** nucleus is $Y \sim \ln(1/x_{TP})$

1950-60: Measurement of charge (proton) distribution in nuclei Ongoing: Measurement of neutron distribution in nuclei EIC ⇒ **spatial gluon distribution in nuclei Saturated or non-saturated ? Method:**

Diffractive vector meson production: e + Au → e′ + Au′ + J/ψ, φ, ρ

 \triangleright Momentum transfer $t = |\mathbf{p}_{\text{Au}} - \mathbf{p}_{\text{Au}}|^2$ conjugate to $b\tau$

3D-IMAGING OF NUCLEI

Only eRHIC has enough phase space to map out the 3d gluon distribution in the saturation regime

Brookhaven Science Associates 20

EIC: SPATIAL GLUON DISTRIBUTION FROM d

HOW TO ACCESS GLUONS IN DIS

Gluons manifest themselves through

1. the scaling violation of the cross section as function of x and Q² dF2(x,Q²)/dlnQ² G(x,Q²)

SUMMARY: EIC PHYSICS PROGRA **How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?**

-
- **How do the nucleon properties emerge from these distributions?**

How do quarks and gluons form the hadronic final states and create nuclear binding?

Does it saturate, giving rise to a gluonic matter component with universal properties in all nuclei, even the proton? What happens to the gluon density in nuclei at high energy?

24 INT Workshop INT-17-65W E.C. Aschenauer How does the nuclear environment affect quark and gluon distributions and interactions inside nuclei? Do the abundant low-momentum gluons remain confined within nucleons inside nuclei?

q

e

e

akutip D

eRHIC: SPATIAL GLUON DISTRIBUTION FROM dI/dt

Diffractive Measure meson production procon) distribution Au 2nuclei 1, 1, 1 Ongoing: Measurement of neutron distribution in nuclei EIC ⇒ **Gluon distribution in nuclei**

Brookhaven Science Associates

Brookhaven Science Associates 27

EIC MACHINE D

FORWARD PROTON TAGGING UPGRADE

