EIC PHYSICS AND CONNECTIONS TO UPC

Elke-Caroline Aschenauer

a passion for discovery

What is the EIC:

WHAT IS EIC

A high luminosity ($10^{33} - 10^{34}$ cm⁻²s⁻¹) polarized electron proton / ion collider with $\int s_{eb} = 20 - 100$ GeV upgradable to 140 GeV

INT Workshop INT-17-65W

AL LABORATORY E.C. Aschenquer

X-Q² COVERAGE FOR DIFFERENT FACILITIES

Brookhaven Science Associates

Hadron-Hadron:

EIC'S PHYSICS IMPACT, COMPLEMEN

- probe has structure as complex as the "target"
- no clean access to parton kinematics
 p_t → x; p_t² → Q² → x-Q² strongly correlated
 UPC: M² → Q² can only be varied by VM
- limited access to spatial structure of nucleons and nuclei

- **D** Point-like probe \rightarrow resolution
- □ High precision & access to partonic kinematics through scattered lepton → x, Q²
- Interaction governed by colorless Photon
 - preserve the properties of partons in the nuclear wave function
- initial and final state effects can be cleanly disentangled

BEYOND FORM FACTORS AND PDFs Generalized Parton Distributions

X. Ji, D. Mueller, A. Radyushkin (1994-1997)

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, quark longitudinal momentum & helicity distributions

the way to 3d imaging of the proton and access the orbital angular momentum L_q

Spin-Sum-Rule in PRF:

$$\frac{1}{2} = J_q^z + J_g^z = \frac{1}{2}\Delta\Sigma + \sum_q \mathcal{L}_q^z + J_g^z \quad J_{q,g}^z = \frac{1}{2} \left(\int_{-1}^1 x \, dx \left(H^{q,g} + \underbrace{E^{q,g}}_{} \right) \right)_{t \to 0}$$

responsible for orbital angular momentum

SMALL GPD PRIMER

ACCESSING GPDS: SOME CAVEATS

 $H(x,\xi,t)$ but only ξ and t accessible experimentally

□ x is not accessible (integrated over):

- apart from cross-over trajectory (x=ξ) GPDs not directly accessible: deconvolution needed ! (model dependent)
- □ GPD moments cannot be directly revealed, extrapolations t → 0 are kind of model dependent

$$T^{DVCS} \sim \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi + i\varepsilon} dx + \dots \sim P \int_{-1}^{+1} \frac{H(x,\xi,t)}{x \pm \xi} dx - i\pi H(\pm\xi,\xi,t) + \dots$$

PROTON STRUCTURE IMPORTANT FOR QGP IN SMALL SYSTEMS

H. Mäntysaari & B. Schenke arXiv:1607.01711

In a hydro-picture (used in AA) fluctuations in the proton are crucial to understand the seen pA@LHC behaviors

DISENTANGLE DIFFERENT GPDs

Vary electron and proton beam spin directions:

WHAT WILL WE LEARN ABOUT 2D+1 STRUCTURE OF THE PROTON

GPD H and E as function of t, x and Q^2

<u>arXiv:1304.0077</u>

LABORATORY

E.C. Aschenauer

Brookhaven Science Associates

GPD Ho: J/Y

GET A FIRST LOOK ON E

Remember:

responsible for orbital angular momentum J/ Ψ production in transversely polarized p^Au / p^p UPC

→ world wide only access to gluon GPD E

What is measured:

Single-spin transverse asym. $A_{N} \equiv \frac{1}{P_{1}} \frac{N_{\uparrow}/\mathcal{L}_{\uparrow} - N_{\downarrow}/\mathcal{L}_{\downarrow}}{N_{\uparrow}/\mathcal{L}_{\uparrow} + N_{\downarrow}/\mathcal{L}_{\downarrow}}$

where \uparrow (\downarrow) are defined with respect to reaction plane

Stat. Unc. ~ $1/(P_1 / N)$

Run-15 p[↑]Au: 7000 J/Ψ
photon emitted by Au
trigger on e+e- in Barrel-ECal
no requirement on n in ZDC

WHAT ABOUT NUCLEI?

Brookhaven Science Associates

THE INFLUENCE OF THE INITIAL STATE IN AA

KEY OBSERVABLES FOR SATURATION Diffraction:

Diffractive events are indicative of a color neutral exchange between the virtual photon and the proton or nucleus over several units in rapidity.

- M_{χ}^2 : Squared mass is the diffractive final state
- x_{IP} : Momentum fraction of the "Pomeron" with respect to the hadron. The rapidity gap between produced particles and the proton or nucleus is $Y \sim ln(1/x_{IP})$

1950-60: Measurement of charge (proton) distribution in nuclei Ongoing: Measurement of neutron distribution in nuclei EIC ⇒ spatial gluon distribution in nuclei → Saturated or non-saturated ? Method:

Diffractive vector meson production: e + Au \rightarrow e' + Au' + J/ ψ , ϕ , ρ

> Momentum transfer $t = |p_{Au}-p_{Au'}|^2$ conjugate to b_T

3D-IMAGING OF NUCLEI

Only eRHIC has enough phase space to map out the 3d gluon distribution in the saturation regime

Brookhaven Science Associates

INT Workshop INT-17-65W

E.C. Aschenauer

EIC: SPATIAL GLUON DISTRIBUTION FROM d_/dt

HOW TO ACCESS GLUONS IN DIS

E.C. Aschenauer

Gluons manifest themselves through

 the scaling violation of the cross section as function of x and Q² dF₂(x,Q²)/dlnQ² → G(x,Q²)

E.C. Aschenauer

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

How do the nucleon properties emerge from these distributions?

How do quarks and gluons form the hadronic final states and create nuclear binding?

What happens to the gluon density in nuclei at high energy? Does it saturate, giving rise to a gluonic matter component with universal properties in all nuclei, even the proton?

How does the nuclear environment affect quark and gluon distributions and interactions inside nuclei? Do the abundant low-momentum gluons remain confined within nucleons inside nuclei?

BACKUP

eRHIC: SPATIAL GLUON DISTRIBUTION FROM d_/dt

DPER-active/Newstyne-mersions/predeturgree(prozen) Alistribuztion An 2nuclei/d, h, h, hOngoing: Measurement of neutron distribution in nuclei EIC \Rightarrow Gluon distribution in nuclei

Brookhaven Science Associates

INT Workshop INT-17-65W

E.C. Aschenauer

28

INT Workshop INT-17-65W

E.C. Aschenauer

EIC MACHINE D

E.C. Aschenauer

FORWARD PROTON TAGGING UPGRADE

