

Measurements of Ultra-Peripheral Collisions with ATLAS

Aaron Angerami

Probing QCD with Photon Nucleus Interactions at RHIC and the LHC Institute for Nuclear Theory Seattle, Washington Monday February 13, 2017

Ultra-Peripheral Collisions

- At the LHC, ion beams are accompanied by large equivalent photon flux
 - Photons that can be emitted by entire nucleus are enhanced by Z^2

 $k_{\perp \gamma} \sim \hbar c / 2R_N \sim 15 \text{ MeV}, k_{z \gamma} = \gamma_{\text{boost}} \times k_{\perp \gamma} \sim 40 \text{ GeV}$

- Reactions possible at large impact parameter
 - Event characteristics are qualitatively different than usual AA collisions
- Substantial rate for two photon reactions
 - Mostly exclusive processes
 - Opportunity to study light-by-light scattering
- Can study nPDFs with photo-nuclear jet production
 - Proposal by Strikman, Vogt and White: hep-ph/0508296
 - Very clean probe of target, a la DIS

ATLAS Detector

Slide from M. Dyndal's QM2017 talk

- Important baseline for other UPC measurements
 - Control over photon flux and its relationship to nuclear breakup modes
- Analysis: <u>ATLAS-CONF-2016-025</u>
 - **–** Two opposite signed muons $p_T > 4$ GeV, $|\eta| < 2.4$ and $m_{\mu\mu} > 10$ GeV
 - Reconstructed vertex with zero additional tracks
 - 12069 total di-muon pairs
- Comparison to STARlight 1.1 (EPA+LO QED)
- Total cross section:
 - $-\sigma_{meas.} = 32.2 \pm 0.3$ (stat.) ± 4.0 (syst.) μ b
 - $\sigma_{\text{starlight}} = 31.6 \,\mu\text{b}$

$\gamma \gamma \rightarrow \mu^+ \mu^-$: Cross Sections

• Both $d\sigma/dM_{\mu\mu}$ and $d\sigma/dY_{\mu\mu}$ in reasonably good agreement with prediction

$\gamma \gamma \rightarrow \mu^+ \mu^-$: Acoplanarity

- Background or QED radiation?
 Influences systematics
- Could use theoretical input for how much of broadening comes from radiation

$\gamma\gamma \rightarrow \gamma\gamma$: Measurement

- Process is forbidden in classical electrodynamics but is a basic prediction of QED
- Has not been directly observed*
 - As particle-like scattering of two photons of well-defined momenta
- Process also sensitive to quartic gauge couplings and potentially new BSM particles

 $\gamma\gamma \rightarrow \gamma\gamma$: **Results**

- ATLAS paper: <u>arxiv:1702.01625</u>, 4.4 σ obs (3.8 SM)
- Cross section: $\sigma_{meas.}=70 \pm 20$ (stat.) ± 17 (syst.) nb
 - $E_{T_{\gamma}} > 3 \text{ GeV}, |\eta_{\gamma}| < 2.37$
 - $m_{\gamma\gamma}$ < 6 GeV, $p_{T\gamma\gamma}$ < 2 GeV, Aco = 1- $\Delta \phi/\pi$ < 0.01

Nuclear Parton Distributions

- Recent CTEQ analysis of nuclear PDFs with comparisons to other fits
- "Old" problem of the lowx behavior
 - Large uncertainties
 - Not so much progress because little/no new data

Measurement Coverage

Measurement Coverage

1612.05741 [hep-ph]

• <u>ATLAS-CONF-2017-011</u>

Event Topology: "Direct"

Event Topology: "Resolved"

The Measurement: Event Selection

- Using 2015 Pb+Pb data; √s_{NN}=5.02 TeV
 - Events selected with ZDC (+jet) triggers, 0.38 nb⁻¹
- Use ZDC to select "OnXn" events (fiducial)
 - No correction for photon emitter breakup
- Physics backgrounds
 - Ordinary Pb+Pb jet production
 - Remove with <u>minimum</u> gap requirement in γ direction: $\Sigma_{\gamma} \Delta \eta > 2$
 - Central diffraction, $\gamma\gamma \to e^+e^-\,, \tau^+\tau^-\,, q\bar{q}$
 - Not usually OnXn
 - ► Remove with <u>maximum</u> gap requirement in A direction: $\Sigma_A \Delta \eta < 3$
 - Cross sections corrected for inefficiency introduced by gap requirements

Event topology: *0nXn*

- Events selected ZDC "XOR" trigger
- Red: photon-going direction, On
- Black: nuclear direction, Xn

Event Topology: Gaps vs Multiplicity

- Left: $\Sigma_{\gamma} \Delta \eta$ vs N_{trk} for OnXn
 - See clear difference between events with, w/o gaps
- Right: comparison of N_{trk} distributions for events with ($\Sigma_{\gamma} \Delta \eta > 2$) and without ($\Sigma_{\gamma} \Delta \eta < 1$) gaps.

The Measurement: Jets and Kinematics

• Measure differential cross sections as vs of H_T , x_A and z_γ :

$$\begin{split} m_{\text{jets}} &\equiv \left(\sum E_i - \left|\sum \vec{p_i}\right|\right)^{1/2} \qquad y_{\text{jets}} \equiv \pm \frac{1}{2} \ln \left|\frac{\sum E_i + \sum p_{z\,i}}{\sum E_i - \sum p_{z\,i}}\right| \\ H_{\text{T}} &\equiv \sum p_{\text{T}\,i} \qquad x_{\text{A}} = \frac{m_{\text{jets}}}{\sqrt{s}} e^{-y_{\text{jets}}} \qquad z_{\gamma} = \frac{m_{\text{jets}}}{\sqrt{s}} e^{+y_{\text{jets}}} \\ \text{Sign of } z/\eta/y \text{ defined to be positive in } y \text{ direction} \\ &= \rho_{\text{T} \text{ lead}} > 20 \text{ GeV} \qquad &= |\eta| < 4.4 \\ &= \rho_{\text{T} \text{ sublead}} > 15 \text{ GeV} \qquad &= m_{\text{jets}} > 35 \text{ GeV} \end{split}$$

- Event-level observables generalize to n jet final states
- In 2 \rightarrow 2 scattering limit:
 - **–** $x_A \rightarrow x$ of struck parton in nucleus
 - $\boldsymbol{z}_{\boldsymbol{\gamma}} \rightarrow \boldsymbol{x}_{\boldsymbol{\gamma}} \boldsymbol{y}_{\boldsymbol{\gamma}}$
 - $-H_T \rightarrow 2Q$
- No unfolding; measured cross sections compared to MC Use symbol $\tilde{\sigma}$

- Pythia 6 can be used in "mu/gamma p" mode to simulate photo-nuclear processes
 - Contains mixture of direct and resolved processes
 - Does not have right photon flux
- STARlight capable of providing nuclear photon flux
 - Needs to be integrated over target
 - For small b, additional hadronic interactions cause nuclei to break up
 - No longer UPC events
 - Cannot separate photo-nuclear processes from "normal" AA collisions
- Used modified STARlight to calculate weights applied on per-event basis to Pythia sample

Monte Carlo Re-weighting

 Re-weighted Pythia in good (not perfect) agreement with data

Data-MC Comparisons

based corrections

because $z_v < x_A$

2-D Cross Sections

- Acceptance in (z_γ, x_A) strongly dependent on minimum jet system mass
 - Determined by minimum p_T in analysis
 - **Easiest way to get to low** x_A is large z_γ

- Correct for inefficiency introduced by event selection requirements
 - **– ZDC** inefficiency: can lose 0*n*1*n* contribution
 - On average: 0.98 ± 0.01
 - "EM pileup": extra neutrons from EM dissociation
 - ► 5 ± 0.5 % on overall normalization
 - Signal events removed by gap requirement
 - Evaluated in MC sample
 - ► ~1% effect except at very large z_{γ}
- Luminosity: 6.1% uncertainty
- Jet response: energy scale and resolution uncertainties

Results: *H*_T **Dependence**

Slices of XA

- Not in systematic bands: overall normalization systematic of 6.2%
- Not exactly same as F₂(x,Q²)
 - Still has ~1/Q⁴ and z_γ dependence in cross section
 - Don't expect to see scaling explicitly

 H_{T} [GeV]

Results: *z*_{*Y*} **Dependence**

Slices of H_T

- Largest disagreement with model at large and small *z*_γ where reweighting is most significant
- Can extend to lower x_A by going to higher z_γ

Results: *x*^A **Dependence**

25

UPC Jet Production: Conclusions

- Presented a measurement of photo-nuclear jet production
 - Qualitatively different than normal jet production in hadronic collisions
 - Expected features rapidity gaps and neutron distributions — observed in the data
- Measurement needs to be unfolded
 Lots of experience with this
- More rigorous comparisons to theory
- Input into new nPDF analyses
 Domain of x/Q² not covered by previous data
- Connects to day 1 measurements at EIC

- Given recent nPDF analyses, would this data actually be used in a fit?
 - e.g. recent EPPS16 analysis ignores potentially useful data like inclusive jet production
- Should we be presenting measurements of (e.g. unfolding) something closer to the structure function?
- Role of direct vs resolved photon contributions
 - Description of photon structure required for extraction of nPDF
 - How should this be handled in measurement?

Extras

Event topology: *0nXn*

- Events selected ZDC "XOR" trigger
- Red: photon-going direction, On
- Black: nuclear direction, Xn

Event topology (experimental)

Event topology (experimental)

- ZDC requirement: "OnXn" topology
- Minimum $\Sigma_{\gamma} \Delta \eta$ requirement: $\Sigma_{\gamma} \Delta \eta_{>} > 2$
- Maximum $\Sigma_A \Delta \eta_<$ requirement: $\Sigma_A \Delta \eta < 3$

Jet kinematic distributions

- Left: jet *p*[⊤] spectra
- Right: leading sub-leading Δφ distributions for different numbers of jets

Event topology: gaps

- Left: compare $\Sigma_{\gamma} \Delta \eta$ to forward edge gaps
 - See effect of resolved photons in split gaps

 $\Rightarrow \Sigma_{\gamma} \Delta \eta > \Delta \eta^{edge}$

• Right: $\Sigma_{\gamma} \Delta \eta$ vs $\Sigma_A \Delta \eta$

⇒backgrounds (e.g. $\gamma\gamma \rightarrow e^+e^-$) for large Σ_γΔη

Theoretical model (II)

Flux used by Pythia

Jet system distributions

- Distributions of the primary ingredients to the kinematic variables used in cross-section
- Data-MC description very good for variables sensitive to transverse dynamics

Event topology (idealized)

