Ultra-peripheral collisions with the STAR detector

Jaroslav Adam On behalf of STAR Collaboration

Creighton University, Omaha

College of Arts and Sciences

February 13 - 17, 2017

Probing QCD in Photon-Nucleus Interactions at RHIC and LHC: the Path to EIC Institute for Nuclear Theory, University of Washington, Seattle

Jaroslav Adam (STAR experiment)

Ultra-peripheral collisions with the STAR detector

Ultra-peripheral collisions

- A ultra-peripheral collision (UPC) is a collision of ions at impact parameter greater than the sum of the nuclear radii: R1 + R2
- It is mediated by electromagnetic forces and photon-Pomeron interactions
- It is possible to study photon-proton and photon-nucleus interactions
- Coherent photoproduction photon interacts with whole nucleus
- Incoherent photoproduction interaction on a single nucleon
- Coherent p_T is much lower than incoherent

The STAR Experiment

• Central tracking and particle identification, forward counters and neutron detection

- TPC: tracking in $|\eta| < 1$, particle identification by dE/dx
- TOF: multiplicity trigger and pile-up track removal
- BBC: forward counter in 2.1 $< \eta < 5.2$
- ZDC: detection of very forward neutrons

Trigger using forward neutrons

- Mutual Coulomb excitation
- Process independent of vector meson photoproduction
- Excited nuclei emit neutrons

- Would be problematic otherwise due to cosmic and beam-gas background
- Events with one neutron in each side (1n1n) used to normalize cross sections

Requirement for 1-5 neutrons in each ZDC together with exclusivity selection for UPC events

Neutron spectrum

Spectrum of Analog-to-Digital counts from ZDC

- Excitation leading to one emitted neutron is a result of Giant Dipole Resonance
- Peaks of one and two neutrons clearly visible
- Distribution of number of neutrons not well known, therefore 1n1n events are used for normalization

Photoproduction of $\pi^+\pi^-$ pairs Au+Au @ $\sqrt{s_{\rm NN}}$ = 200 GeV

Selection criteria for $\pi^+\pi^-$ pairs

- Transverse momentum of selected $\pi^+\pi^-$ candidates:
- Requirements for tracks:
 - Pseudorapidity $|\eta| < 1$
 - At least 14 hits in TPC (out of 45 possible)
 - TPC dE/dx consistent with pions within 3σ
 - Both tracks need a hit in TOF to select those from a given bunch crossing

- Like-sign $\pi^{\pm}\pi^{\pm}$ pairs provide background sample, which is subtracted
- Efficiency is obtained using STARLIGHT embedded in unbiased data

STARLIGHT: Comp. Phys. Comm. 212C (2017) 258, https://starlight.hepforge.org/

Description of $\pi^+\pi^-$ invariant mass spectrum

- Selection criteria take 384 000 $\pi^+\pi^-$ pairs
- Contributions by ρ^0 , ω^0 and direct $\pi^+\pi^-$ pairs
- Processes can not be distinguished on event basis, fit by added amplitudes:

$$rac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi^+\pi^-}} \propto \left| oldsymbol{A}_
ho rac{\sqrt{M_{\pi\pi}M_
ho}\Gamma_
ho}{M_{\pi\pi}^2 - M_
ho^2 + iM_
ho\Gamma_
ho} + oldsymbol{B}_{\pi\pi} + oldsymbol{C}_\omega oldsymbol{e}^{i\phi_\omega} rac{\sqrt{M_{\pi\pi}M_\omega}\Gamma_\omega}{M_{\pi\pi}^2 - M_\omega^2 + iM_\omega}
ight|^2 + oldsymbol{f}_
ho$$

- Parameters of the fit:
 - ρ⁰ mass and width
 - ω⁰ mass and width
 - Amplitudes of ρ^0 , ω^0 and direct $\pi^+\pi^-$
 - Quadratic polynomial to handle remaining background

Fit to $\pi^+\pi^-$ invariant mass

• Fit in 320 bins per 2.5 MeV, χ^2 /NDF = 314/297

- Mass and width of ρ^0 consistent with PDG
- Contribution from ω^0 is needed for good χ^2/NDF

Relative amplitudes

• $\pi^+\pi^-/\rho^0$ (B/A) consistent with previous results by STAR, ALICE and also HERA

- ω^0/ρ^0 (C/A) consistent with experimental cross section $\gamma \pi \to \omega p$, STARLIGHT(Glauber approach), PDG BR($\omega^0 \to \pi^+\pi^-$) and DESY
- The only previous data on ρ^0 - ω^0 interference are from much lower photon energies 5-7 GeV (DESY-MIT, fixed target)
- Observe nonzero phase of ω^0 consistent with DESY experiments STAR 2008: PRC 77, 034910 (2008), ALICE: JHEP 1509, 095 (2015), DESY-MIT: PRL 27, 888 (1971)

Jaroslav Adam (STAR experiment)

ρ^0 cross section as a function of rapidity

- STARLIGHT is in good agreement with the data
- 1n1n cross section is compatible with STARLIGHT within systematic uncertainties
- XnXn cross section is scaled from 1n1n using STARLIGHT
- Scaling is necessary because distribution in number of neutrons is not well known

t-dependence of ρ^0 cross section ($-t \simeq p_T^2$)

- Data: mixture of coherent (whole nucleus) and incoherent (single nucleon) ρ⁰
- Coherent ρ⁰ obtained by subtracting incoherent contribution
- Fit over incoherent region $|t| > 0.2 \text{ GeV}^2$
 - Fit formula: $F(t) = A/(Q_0^2 + |t|^2)$
 - ▶ Q₀² = 0.099 GeV²
 - Separate fits done for 1n1n and XnXn

Coherent ρ^0 cross section

- Characteristic diffraction dips visible, positions:
 - ▶ 1^{st} : $-t = 0.018 \pm 0.005 \text{ GeV}^{-2}$
 - ▶ 2^{nd} : $-t = 0.043 \pm 0.01 \text{ GeV}^{-2}$
- Expected when approaching black disk limit
- Partially washed out due to photon p_T distribution and detector resolution
- Consistent with Normalized nuclear form factor, mVMD-GGM lower by ${\sim}1\sigma$
- Interference between the two production nuclei makes downturn at |t| < 10⁻³ GeV²

Norm nucl form factor: Atom. Data Nucl. Data Tabl. 36, 495 (1987), mVMD-GGM: Phys. Lett. B 752, 51 (2016), calculations: arXiv:1611.05471

From ρ^0 cross section to nuclear spatial distribution

 Fourier 2-D (Hankel) transformation relates d²σ/dydt to the spacial distribution in target Au nucleus integrated over z

• Transformation prescription:

$${\cal F}(b) \propto {1 \over 2\pi} \int_0^\infty {
m d} p_T \, p_T J_0(b p_T) \sqrt{{
m d} \sigma \over {
m d} t}$$

- Blue band provides effect of varying $|t|_{max}$
- Negative values on the sides are attributed to interference between the two production nuclei

Production of $\pi^+\pi^-$ pairs at higher masses

- High mass tail of the ρ^0 distribution
- Data from 2010+2011, slightly modified selection criteria
- Rejection at $|y_{\pi^+\pi^-}| < 0.04$ against cosmic ray background

• Description by fit to ρ^0 high mass tail, Gaussian peak and flat background

Fit to $\pi^+\pi^-$ at higher masses

- Like-sign background subtracted
- Mass and width of Gaussian peak: $M_X = 1653 \pm 10$ MeV, $\Gamma_X = 164 \pm 15$ MeV (stat only)

• $\chi^2/\text{NDF} = 37.7/34$

 Cross section consistent (to order-of-magnitude) with one previous measurement of ρ₃(1690)

Photoproduction of J/ψ Au+Au @ $\sqrt{s_{\rm NN}}$ = 200 GeV

Photoproduction of J/ψ and selection criteria

- 2-gluon exchange
- Scale given by mass of J/ψ
- Sensitivity to gluon distribution at x \approx 0.01
- Independent mutual Coulomb excitation
- Trigger:
 - 2 6 hits in TOF
 - 1 4 neutrons in each ZDC
 - Empty BBC
- Selection criteria for the J/ψ :
 - At least 15 points in TPC (out of 45 possible)
 - Both tracks have a corresponding hit in TOF
 - Vertex in STAR center formed out of 2 or 3 tracks
 - Rejection at rapidity |y| < 0.02 to prevent cosmic background

Mass and p_T distribution of selected candidates

- Band around mass of the J/ψ and low p_T
- Sign of incoherent J/ψ at $p_T > 0.1 \text{ GeV}$
- Band of dielectrons at lower masses and p_T
- Clear peak of the J/ψ
- Signal extracted by subtracting like sign background and side bands off the peak

Coherent J/ψ cross section

RELDIS: PRC C64, 024903 (2001) & PPN 42, 215 (2011)

J/ψ cross section as a function of p_T

- Coherent peak and incoherent tail falling to zero
- STARLIGHT normalized to the data in region of $p_T < 0.15 \text{ GeV/c}$
- Width of coherent peak consistent with the data

Outlook for J/ψ measurements

- RHIC Run 2014: trigger from EM calorimeter for $J/\psi \rightarrow e^+e^-$
- RHIC Run 2016:
 - Drop of neutron ZDC requirement
 - Data sample larger by factor of 30-50
 - Measurement with and without Coulomb dissociation
- J/ψ photoproduction on polarized protons
 - p+A and p+p
 - J/ψ transverse asymmetry
 - Roman Pot system to tag scattered protons
 - Data on J/\u03c6 to measure Generalized Parton Distributions

Photoproduction of e^+e^- pairs Au+Au @ $\sqrt{s_{\rm NN}}$ = 200 GeV

Two-photon production of electron-positron pairs

- Test of QED using ultra-peripheral collisions
- Enhanced in Au+Au by high photon fluxes ($\sim Z^2$)
- Measured at mid-rapidity using trigger from TOF, BBC and ZDC
- Cross section for pair at mass *W* is given by Breit-Wheeler formula:*

$$\sigma(\gamma\gamma \to l^+ l^-) = \frac{4\pi\alpha^2}{W^2} \left\{ \left(2 + \frac{8m^2}{W^2} - \frac{16m^4}{W^4} \right) \ln \left[\frac{W + \sqrt{W^2 - 4m^2}}{2m} \right] - \sqrt{1 - \frac{4m^2}{W^2}} \left(1 + \frac{4m^2}{W^2} \right) \right\}$$

*Phys. Rev. D4, 1532 (1971)

Jaroslav Adam (STAR experiment)

Selection criteria for e^+e^- pairs and performance

- Selection criteria for *e*⁺*e*⁻ pairs:
 - Two tracks in vertex
 - Both tracks have a corresponding hit in TOF
 - ► |z_{vertex}| < 30 cm</p>
 - Pair p_T < 0.1 GeV/c and |y| < 0.8</p>
 - Pair TPC dE/dx in 2σ for electron (tracks added in quadratures)
- Summary on selected candidates:
 - ▶ \sim 13 000 e^+e^- candidates
 - ► ~10 like-sign pairs
 - Shape of p_T distribution matches expectation for γγ → e⁺e⁻

Conclusions

- High statistics sample of photoproduced $\pi^+\pi^-$ pairs
- Observation of ρ^0 , ω^0 and direct $\pi^+\pi^-$
- Diffraction pattern in cross section *t*-dependence
- Fourier 2-D transform for spacial image of nucleus
- Measurement of coherent J/ψ
- Clear coherent and incoherent contributions
- Data sample 30-50 times larger now in progress
- Upcoming measurement on polarized protons
- Data on $\gamma\gamma \rightarrow e^+e^-$ pairs
- Work in progress towards the cross section