

NUCLEON STRUCTURE FROM LATTICE QCD

James Zanotti The University of Adelaide

QCDSF Collaboration

Hadron imaging at Jefferson Lab and at a future EIC September 25-29, 2017, Seattle, USA

CSSM/QCDSF/UKQCD Collaborations

- J. Bickerton (Adelaide)
- A. Chambers (Adelaide)
- R. Horsley (Edinburgh)
- Y. Nakamura (RIKEN, Kobe)
- H. Perlt (Leipzig)
- P. Rakow (Liverpool)
- G. Schierholz (DESY)
- A. Schiller (Leipzig)
- K. Somfleth (Adelaide)
- H. Stüben (Hamburg)
- R. Young (Adelaide)

Proton Imaging

Lattice QCD can play important role

 $\delta z_{\perp} \sim 1/Q$

- electromagnetic form factors
 - ► small Q² proton size (radius)
 - ► large Q² charge/magnetisation distributions
- (generalised) parton distribution functions

► decomposition of spin

$$\frac{1}{2} = \sum_{q} J_{q}(\mu^{2}) + J_{g}(\mu^{2})$$

$$J_{q} = \frac{1}{2}\Delta\Sigma_{q} + L_{q}$$

decomposition of momentum

$$1 = \sum_{q} \langle x \rangle_q + \langle x \rangle_g$$

 $f(x,r_1)$

r,

Speed of a Lattice Calculation

1000 configurations with L=2fm [Ukawa (Berlin, 2001)]

June 2007: BlueGene/L (DOE), 280 TFlops

Speed of a Lattice Calculation

1000 configurations with L=2fm [Ukawa (Berlin, 2001)]

Algorithmic improvements

Faster supercomputers

June 2007: BlueGene/L (DOE), 280 TFlops

Speed of a Lattice Calculation

[Clark (Tucson, 2006)] 1000 configurations with L=2fm [Ukawa (Berlin, 2001)] 20 Algorithmic Teraflop . Years 15 improvements $TFlops \times year$ $N_{e} = 2+1 \text{ DWF} (L_{e} = 16)$ 0.01 $N_c = 2$ Wilson $N_c = 2$ Clover $a^{-1} = 3 \text{ GeV}$ $_{2} = 2 \text{ TM}$ 0.001 $N_{e} = 2+1$ Asqtad R 5 $N_e = 2+1$ Asqtad RHMC $a^{-1} = 2 \text{ GeV}$ $N_c = 2+1$ Clover 0.0001 0.4 0.6 0.8 0.2 m_{π}/m_{0} 0 0.8 0.4 0.6 0.2 $m_{PS}^{}$ / $m_{V}^{}$ Faster supercomputers ソルシンシン引きらりまし June 2017: Sunway TaihuLight, 93 PFlops

June 2007: BlueGene/L (DOE), 280 TFlops

The Lattice Landscape – Hadron Structure

Leading sources of error:

- Unphysically large quark masses
- Finite Volume
- Several Collaborations now consider a large range of lattice parameters

[Plot from S. Collins, Lattice 2016]

The Lattice Landscape – Hadron Structure

Leading sources of error:

- Unphysically large quark masses
- ► Finite Volume
- Several Collaborations now consider a large range of lattice parameters

NUCLEON AXIAL CHARGE

Relatively simple to compute on the lattice

Good benchmark for hadron structure (understanding systematic errors)

- Some scatter in the results
- ► Underestimating g_A

[Plot from S. Syritsyn, Lattice 2013]

- Some scatter in the results
- ► Underestimating g_A

[Plot from M. Constaninou, Lattice 2014]

- Some scatter in the results
- Underestimating g_A

[Plot from S. Collins, Lattice 2016]

- Some scatter in the results
- Underestimating g_A

[Plot from S. Collins, Lattice 2016]

Some scatter in the results

- ► Some scatter in the results
- Impose "filter": $m_{\pi}L > 4$, $a < 0.1 \,\text{fm}$ [Plot from S. Collins, Lattice 2016]
- Converging on physical result
- g_A appears to be very sensitive to Lattice systematics
 - e.g. Contamination from excited states
- Lots of effort in reducing systematic errors

Most common method for determining matrix elements relevant for hadron structure calculations - 3pt function

 $G(t,\tau,\vec{p},\vec{p}') = \sum_{s,s'} e^{-E_{\vec{p}'}(t-\tau)} e^{-E_{\vec{p}'}} \Gamma_{\beta\alpha} \langle \Omega | \chi_{\alpha}(0) | N(p',s') \rangle \langle N(p',s') | \mathcal{O}(\vec{q}) | N(p,s) \rangle \langle Np,s) | \overline{\chi}_{\beta}(0) | \Omega \rangle$

For large times $1 \ll \tau$ $1 \ll t - \tau$

Extract matrix element

(remove excited states: control 2 time windows)

> Determine form factors, charges, moments, ...

13

Feynman-Hellmann Theorem

simple excited state removal

- Provides an alternative method for determining hadronic matrix elements $\langle H | \mathcal{O} | H \rangle$ from energy shifts
- 1. Modify Lagrangian by

 $\mathcal{L}
ightarrow \mathcal{L} + \lambda \mathcal{O}$

- 2. Measure hadron energy while changing λ $G(\lambda; \vec{p}; t) = \int dx \, e^{-\vec{p} \cdot \vec{x}} \langle \chi'(x) \chi(0) \rangle \overset{\text{large } t}{\propto} e^{-E_H(\lambda, \vec{p})t}$
- 3. Calculate matrix element from energy shifts

$$\frac{\partial E_H(\lambda, \vec{p})}{\partial \lambda} \bigg|_{\lambda=0} = \frac{1}{2E_H(\vec{p})} \langle H(\vec{p}) | \mathcal{O}(0) | H(\vec{p}) \rangle$$

Calculation of matrix elements \equiv hadron spectroscopy

Feynman-Hellmann Theorem

- ► Can modify fermion action in 2 places:
 - quark propagators

• fermion determinant

Connected

 $g_{A}, \Delta \Sigma$ [PRD90 (2014)]

 G_E, G_M [1702.01513]

Disconnected (Requires new gauge configurations) ∆s [PRD92 (2015)]

OPE [PRL118 (2017)]

Talk by R.Young (Tuesday)

Demonstration: Axial Charges

(Connected only)

> Want $\langle N_s(\vec{p}) | \bar{q}(0) \gamma_{\mu} \gamma_5 q(0) | N_s(\vec{p}) \rangle = 2i s_{\mu} \Delta q$ $q \in (u, d)$

Recent g_A Calculation

[CalLat, 1704.01114]

- ► Feynman-Hellman-inspired
 - ► High-statistics
 - Multiple lattice spacings
 - Physical quark masses

Electromagnetic Form Factors

 $\langle p', s' | J^{\mu}(\vec{q}) | p, s \rangle = \bar{u}(p', s') \left[\gamma^{\mu} F_1(q^2) + i\sigma^{\mu\nu} \frac{q_{\nu}}{2m} F_2(q^2) \right] u(p, s)$

$$F_1(0) = Q$$

 $F_1(0) + F_2(0) = \mu$

Radii:
$$r_i^2 = -6 \frac{dF_i(q^2)}{dq^2}\Big|_{q^2=0}$$

 $q^2 > 0$: "Look inside" hadron

$$Q_p = 1, \ Q^n = 0$$

 $\mu_p = 2.79\mu_N, \ \mu_n = -1.91\mu_N$

Large Q²

- Large momentum transfer region a challenge on Lattice
- Recent developments:
 - ► Feynman-Hellmann
 - Boosted quark operators (momentum smearing)

(can be used together - next year)

Feynman-Hellmann Theorem (Non-Forward Case)

- ► Form factors extend to non-forward FH
- 1. Modify Lagrangian

$$\mathcal{L}(x) \to \mathcal{L}(x) + \lambda \left(e^{i\vec{q}\cdot\vec{x}} + e^{-i\vec{q}\cdot\vec{x}} \right) \mathcal{O}(x)$$

2. Measure hadron energy while changing λ

$$G(\lambda; \vec{p}'; t) \stackrel{\text{large } t}{\propto} e^{-E_H(\lambda, \vec{p}')t}$$

3. Calculate matrix element from energy shifts

~Requires Breit frame

$$\frac{\partial E_H(\lambda, \vec{p'})}{\partial \lambda} \bigg|_{\lambda=0} = \frac{1}{2E_H(\vec{p'})} \langle H(\vec{p'}) | \mathcal{O}(0) | H(\vec{p}) \rangle$$

Form factor extraction simplified for $\vec{p}' = -\vec{p}$

Energy Shifts

> Choose small λ (~10⁻⁴ - 10⁻⁵) minimise quadratic effects

- ➤ Selecting p = -p'
 - > maximises q^2 while minimising hadron momentum

minimises statistical noise

Pion Form Factor

 $m_{\pi} \approx 470 \,\,\mathrm{MeV}$ 1000-1500 measurements Breit frame

 $m_{\pi} \approx 690 \text{ MeV}$ 48,000 - 192,000 measurements Breit frame

Proton Form Factors

$m_{\pi} \approx 470 \text{ MeV}$ Breit frame

[Chambers et al. arXiv:1702.01513]

Proton Form Factors

$m_{\pi} \approx 470 \text{ MeV}$ Breit frame

[Chambers et al. arXiv:1702.01513]

3-pt functions

Proton Form Factors

$m_{\pi} \approx 470 \text{ MeV}$ Breit frame

[Chambers et al. arXiv:1702.01513]

3-pt functions

Proton Form Factors

$m_{\pi} \approx 470 \text{ MeV}$ Breit frame

∯ 3-pt. (var.) ∦ Exp. (JLab) ∳ FH

8

T^{*}

6

[Chambers et al. arXiv:1702.01513]

[Chambers et al. arXiv:1702.01513]

[Chambers et al. arXiv:1702.01513]

Flavour Form Factors

Separate form factors into individual quark contributions

Quark densities in transverse plane

$$q(b_{\perp}^2) = \int d^2 q_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp} \cdot q_{\perp}} F_1(q^2)$$

Distance of (active) quark to the centre of momentum in a fast moving nucleon

Provide information on the size and internal charge densities

 P_{γ}

 b_{\perp}

Flavour Form Factors

- Separate form factors into individual quark contributions
- ► Obtain via:
 - Assume charge symmetry
 - ► Assume strange FF=0
 - ► Decompose *p* and *n* FFs $\begin{aligned}
 \kappa_{q}^{-1}Q^{4}F_{2} \\
 G_{E/M}^{p} &= \frac{2}{3}G_{E/M}^{u} - \frac{1}{3}G_{E/M}^{d} \\
 G_{E/M}^{n} &= \frac{2}{3}G_{E/M}^{d} - \frac{1}{3}G_{E/M}^{u} \\
 \end{bmatrix}$ $\begin{aligned}
 \kappa_{q}^{-1}Q^{4}F_{2} \\
 G_{E/M}^{d} &= \frac{2}{3}G_{E/M}^{d} - \frac{1}{3}G_{E/M}^{d} \\
 \end{bmatrix}$

Flavour Form Factors

- Separate form factors into individual quark contributions
- ► On the Lattice:
 - ► Work with individual quark sectors
 - Construct hadron form factors

Perform all possible Wick contractions

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\, ar q(x) {\cal O} q(x) \,$

$$\epsilon^{abc}\epsilon^{a'b'c'} \left(u^{Ta}(x_2) \ C\gamma_5 \ d^b(x_2) \right) u^c_{\alpha}(x_2) \overline{u}(x_1) \mathcal{O}u(x_1) \overline{u}^{c'}(0) \left(\overline{d}^{b'}(0) C\gamma_5 \overline{u}^{Ta'}(0) \right)$$

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

• Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\, ar q(x) {\cal O} q(x) \,$

 $\mathcal{O} \colon \text{Combination of } \gamma \\ \text{matrices and derivatives}$

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

• Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\ \bar{q}(x)\mathcal{O}q(x)$

 \mathcal{O} : Combination of γ matrices and derivatives

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\ \bar{q}(x)\mathcal{O}q(x)$

 $\mathcal{O}\colon$ Combination of γ matrices and derivatives

• Perform all possible Wick contractions

u-quark (connected - 4 terms)

$$\epsilon^{abc}\epsilon^{a'b'c'} \left(u^{Ta}(x_2) \ C\gamma_5 \ d^b(x_2) \right) u^c_{\alpha}(x_2) \overline{u}(x_1) \mathcal{O}u(x_1) \overline{u}^{c'}(0) \left(\overline{d}^{b'}(0) C\gamma_5 \overline{u}^{Ta'}(0) \right)$$

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

• Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\ ar{q}(x)\mathcal{O}q(x)$

 $\mathcal{O}\colon$ Combination of γ matrices and derivatives

• Perform all possible Wick contractions

d-quark (connected - 2 terms)

$$\epsilon^{abc}\epsilon^{a'b'c'} \left(u^{Ta}(x_2) \ C\gamma_5 \ d^b(x_2) \right) u^c_{\alpha}(x_2) \overline{d}(x_1) \mathcal{O}d(x_1) \overline{u}^{c'}(0) \left(\overline{d}^{b'}(0) C\gamma_5 \overline{u}^{Ta'}(0) \right)$$

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\ \bar{q}(x)\mathcal{O}q(x)$

 $\mathcal{O}\colon$ Combination of γ matrices and derivatives

• Perform all possible Wick contractions

$$d-quark (connected - 2 terms)$$

$$\epsilon^{abc} \epsilon^{a'b'c'} (u^{Ta}(x_2) C\gamma_5 d^b(x_2)) u^c_{\alpha}(x_2) \overline{d}(x_1) \mathcal{O}d(x_1) \overline{u}^{c'}(0) (\overline{d}^{b'}(0) C\gamma_5 \overline{u}^{Ta'}(0))$$

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

• Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\ \bar{q}(x)\mathcal{O}q(x)$

 $\mathcal{O}\colon$ Combination of γ matrices and derivatives

Perform all possible Wick contractions

u-quark (disconnected)

$$\epsilon^{abc}\epsilon^{a'b'c'} \left(u^{Ta}(x_2) \ C\gamma_5 \ d^b(x_2) \right) u^c_{\alpha}(x_2) \overline{u}(x_1) \mathcal{O}u(x_1) \overline{u}^{c'}(0) \left(\overline{d}^{b'}(0) C\gamma_5 \overline{u}^{Ta'}(0) \right)$$

proton

$$G_{\Gamma}(t,\tau;\vec{p}',\vec{p}) = \sum_{\vec{x}_2,\vec{x}_1} e^{-i\vec{p}'\cdot(\vec{x}_2-\vec{x}_1)} e^{-i\vec{p}\cdot\vec{x}_1} \Gamma_{\beta\alpha} \langle \Omega | T \left[\chi_{\alpha}(t,\vec{x}_2) \mathcal{O}(\tau,\vec{x}_1) \,\overline{\chi}_{\beta}(0) \right] \left| \Omega \right\rangle$$

• Use the following interpolating operator to create a proton

$$\chi_{\alpha}(x) = \epsilon^{abc} \left(u^{Ta}(x) \ C\gamma_5 \ d^b(x) \right) u^c_{\alpha}(x)$$

- And insert the local operator (quark bi-linear) $\ \bar{q}(x)\mathcal{O}q(x)$

 $\mathcal{O}\colon$ Combination of γ matrices and derivatives

Perform all possible Wick contractions

u-quark (disconnected)

$$\epsilon^{abc}\epsilon^{a'b'c'}\left(u^{Ta}(x_2)\ C\gamma_5\ d^b(x_2)\right)u^c_{\alpha}(x_2)\overline{u}(x_1)\mathcal{O}u(x_1)\overline{u}^{c'}(0)\left(\overline{d}^{b'}(0)C\gamma_5\overline{u}^{Ta'}(0)\right)$$

proton

Flavour Form Factors (Connected)

Preliminary

 $m_{\pi} \approx 470 \text{ MeV}$

▶ (Unit charged) u and d contributions to G_E

Preliminary

Flavour Form Factors (Connected)

$m_{\pi} \approx 470 \text{ MeV}$

Impact Parameter Gpds

No momentum

transfer in

longitunidal

direction

Quark densities in the transverse plane

Quark (charge) distribution in the transverse plane

$$q(b_{\perp}^2) = \int d^2 q_{\perp} \, \mathrm{e}^{-i\vec{b}_{\perp} \cdot q_{\perp}} F_1(q^2)$$

• Probabilistic interpretation of GPDs, e.g. $H(x, \xi, q^2)$ at $\xi \stackrel{\checkmark}{=} 0$

$$q(x, b_{\perp}^2) = \int d^2 q_{\perp} e^{-i\vec{b}_{\perp} \cdot \vec{q}_{\perp}} H(x, 0, q_{\perp}^2)$$

Distance of (active) quark to the centre of momentum in a fast moving nucleon

Decompose into contributions from individual quarks with momentum fraction,

X

- ► What about nucleon/quark spin?
- ► How do they affect these quark distributions?
- ► Consider transverse nucleon \vec{S}_{\perp} and/or quark \vec{s}_{\perp} polarisations
- ▶ Probability density for finding quark at impact parameter \vec{b}_{\perp} is then

- These A, B, ..., functions define the moments w.r.t x of GPDs: "generalised form factors"
- ► This talk: only n=1 ($F_1, F_2, g_T, ...$)

- ► What about nucleon/quark spin?
- ► How do they affect these quark distributions?
- ► Consider transverse nucleon \vec{S}_{\perp} and/or quark \vec{s}_{\perp} polarisations
- ▶ Probability density for finding quark at impact parameter \vec{b}_{\perp} is then

$$\begin{split} \rho^{n}(b_{\perp}, s_{\perp}, S_{\perp}) &= \int_{-1}^{1} dx \, x^{n-1} \, \rho(x, \, b_{\perp}, \, s_{\perp}, \, S_{\perp}) \\ &= \frac{1}{2} \Big\{ A_{n0}(b_{\perp}^{2}) + s_{\perp}^{i} S_{\perp}^{i} \left(A_{T \, n0}(b_{\perp}^{2}) - \frac{1}{4m^{2}} \nabla_{b_{\perp}} \tilde{A}_{T \, n0}(b_{\perp}^{2}) \right) \\ &+ \frac{b_{\perp}^{i} \epsilon^{ji}}{m} \big(S_{\perp}^{i} B_{n0}^{\prime}(b_{\perp}^{2}) + s_{\perp}^{i} \overline{B}_{T \, n0}^{\prime}(b_{\perp}^{2}) \big) + s_{\perp}^{i} \big(2b_{\perp}^{i} b_{\perp}^{j} - b_{\perp}^{2} \delta^{ij} \big) S_{\perp}^{j} \frac{1}{m^{2}} \tilde{A}_{T \, n0}^{\prime\prime}(b_{\perp}^{2}) \Big\} \end{split}$$

$$F(b_{\perp}^2) = \int d^2 q_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot\vec{q}_{\perp}} \,F(q_{\perp}^2)$$

Diehl & Hägler, EPJ C44 (2005) 87-101 [hep-ph/0504175]

► What about nucleon/quark spin?

Polarised Nucleon

- ► How do they affect these quark distributions?
- ► Consider transverse nucleon \vec{S}_{\perp} and/or quark \vec{s}_{\perp} polarisations
- ▶ Probability density for finding quark at impact parameter \vec{b}_{\perp} is then

Diehl & Hägler, EPJ C44 (2005) 87-101 [hep-ph/0504175]

$$\begin{split} \rho^{n}(b_{\perp}, s_{\perp}, S_{\perp}) &= \int_{-1}^{1} dx \, x^{n-1} \, \rho(x, \, b_{\perp}, \, s_{\perp}, \, S_{\perp}) \\ &= \frac{1}{2} \Big\{ A_{n0}(b_{\perp}^{2}) + s_{\perp}^{i} S_{\perp}^{i} \left(A_{T \, n0}(b_{\perp}^{2}) - \frac{1}{4m^{2}} \nabla_{b_{\perp}} \tilde{A}_{T \, n0}(b_{\perp}^{2}) \right) \\ &+ \frac{b_{\perp}^{i} \epsilon^{ji}}{m} \Big(S_{\perp}^{i} B_{n0}^{\prime}(b_{\perp}^{2}) + s_{\perp}^{i} \overline{B}_{T \, n0}^{\prime}(b_{\perp}^{2}) \Big) + s_{\perp}^{i} \Big(2b_{\perp}^{i} b_{\perp}^{j} - b_{\perp}^{2} \delta^{ij} \Big) S_{\perp}^{j} \frac{1}{m^{2}} \tilde{A}_{T \, n0}^{\prime\prime}(b_{\perp}^{2}) \Big\} \end{split}$$

$$F(b_{\perp}^2) = \int d^2 q_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot\vec{q}_{\perp}} \,F(q_{\perp}^2)$$

Polarised quark

- ► What about nucleon/quark spin?
- ► How do they affect these quark distributions?
- ► Consider transverse nucleon \vec{S}_{\perp} and/or quark \vec{s}_{\perp} polarisations
- ▶ Probability density for finding quark at impact parameter \vec{b}_{\perp} is then

$$\begin{split} \rho^{n}(b_{\perp}, \, s_{\perp}, \, S_{\perp}) &= \int_{-1}^{1} dx \, x^{n-1} \, \rho(x, \, b_{\perp}, \, s_{\perp}, \, S_{\perp}) \\ &= \frac{1}{2} \Big\{ A_{n0}(b_{\perp}^{2}) + s_{\perp}^{i} S_{\perp}^{i} \left(A_{T \, n0}(b_{\perp}^{2}) - \frac{1}{4m^{2}} \nabla_{b_{\perp}} \tilde{A}_{T \, n0}(b_{\perp}^{2}) \right) \\ &+ \frac{b_{\perp}^{i} \epsilon^{ji}}{m} \big(S_{\perp}^{i} B_{n0}^{\prime}(b_{\perp}^{2}) + s_{\perp}^{i} \overline{B}_{T \, n0}^{\prime}(b_{\perp}^{2}) \big) + s_{\perp}^{i} \big(2b_{\perp}^{i} b_{\perp}^{j} - b_{\perp}^{2} \delta^{ij} \big) S_{\perp}^{j} \frac{1}{m^{2}} \tilde{A}_{T \, n0}^{\prime\prime}(b_{\perp}^{2}) \big\} \end{split}$$

$$F(b_{\perp}^2) = \int d^2 q_{\perp} \,\mathrm{e}^{-i\vec{b}_{\perp}\cdot\vec{q}_{\perp}} \,F(q_{\perp}^2)$$

Diehl & Hägler, EPJ C44 (2005) 87-101 [hep-ph/0504175]

Vector Form Factors

SU(3) symmetric

 $\frac{F(0)}{(1+Q^2/M^2)^2}$ $F_1(Q^2)$

Tensor Form Factors

► Tensor form factors are obtained from the matrix elements

$$\langle p', s' | \bar{\psi}(0) i \sigma^{\mu\nu} \psi(0) | p, s \rangle = \bar{u}(p', s') \left\{ i \sigma^{\mu\nu} A_{T10}(q^2) + \frac{\overline{P}^{[\mu} q^{\nu]}}{m^2} \tilde{A}_{T10}(q^2) + \frac{\gamma^{[\mu} q^{\nu]}}{2m} B_{T10}(q^2) \right\} u(p, s)$$

 $\bar{P}^{\mu} = \frac{1}{2}(p'+p)^{\mu}$

Form Factors at $Q^2 \neq 0$

- > SU(3) breaking expansion valid at a fixed Q^2
- ► All ensembles have L=32
- Small difference in Q² comes from difference in baryon masses across ensembles
- > Bin results in Q^2 and shift form factors to centre of bin using dipole form

Physical Mass Form Factors

Preliminary

Hyperon spin

Proton

u-Quark

u-Quark

Quark spin

Proton

Sigma

Spin Densities - Proton

u-quark

d-quark

Spin Densities - Proton

u-quark

d-quark

Proton

Sigma

Summary

- ► Results for standard observables $(g_A, g_T, \langle x \rangle, FFs \text{ at low } Q^2)$ now approaching the physical point
- Lots of effort in understanding systematic errors
- Lots of progress in more exotic quantities
 - Disconnected quark and glue
 - ► Quasi-PDFs
 - Compton amplitude
 - ► FFs at large Q^2
 - Angular momentum

