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Proton Imaging

➤ Obtain a “3-D picture” of the proton 

➤ electromagnetic form factors 

➤ small Q2 - proton size (radius) 

➤ large Q2 - charge/magnetisation distributions 

➤ (generalised) parton distribution functions 

➤ decomposition of spin 

➤ decomposition of momentum
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Lattice QCD can play important role



Speed of a Lattice Calculation
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Costs of Dynamical Fermions
Studies of algorithms for (improved)
Wilson fermions suggest

cost ∝
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1000 configurations with L=2fm 
[Ukawa (Berlin, 2001)]

June 2007: BlueGene/L (DOE),  280 TFlops
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June 2017: Sunway TaihuLight, 93 PFlops



Real-Time Evolution of Lattice Results
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The Lattice Landscape - Hadron Structure

➤ Leading sources of error: 

➤ Unphysically large quark masses 

➤ Finite Volume 

➤ Several Collaborations now consider  a large range of lattice parameters
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Ensembles used for hadron structure 3pt functions
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[Plot from S. Collins, 
Lattice 2016]
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NUCLEON AXIAL CHARGE

Relatively simple to compute on the lattice 

Good benchmark for hadron structure (understanding systematic errors)

n ! pe�⌫̄e

⌫̄

n

p

e-
W-



gA from the Lattice
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➤ Some scatter in the results 

➤ Underestimating gA [Plot from S. Syritsyn, Lattice 2013]

Review of Hadron Structure Lattice 2013,  Mainz,  July 29-August 3, 2013        

Gold-plated observables

Sergey N. Syritsyn

Drama of  the Axial Charge

Many lattice calculations underestimated         by 10-15%gA

gaveA = 1.2701(25)Experiment (W.A.) [PDG’12]
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➤ Some scatter in the results 

➤ Underestimating gA 
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➤ Some scatter in the results 

➤ Underestimating gA 

Isovector charges gA = �u ≠ �d
—-decay, gA/gV = 1.2723(23) PDG 2015.

Benchmark quantity sensitive to systematics.
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Isovector charges gA

Several mfi < 165 MeV results.
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Impose Lmfi > 4, a < 0.1 fm

ETMC: [Alexandrou,Mon,15:15] Nf = 2 twisted mass fermions, Lmfi = 3. Increased
statistics on 1507.04936, 579 configs ◊ 16 measurements, gA = 1.22(3)(2) - systematics
from fitting.
PACS: [Kuramashi,Thu,16:30] Nf = 2 + 1 NP clover, stout smeared links,
mfi = 145 MeV, a = 0.085 fm, 146 configs ◊ 64 measurements, tf ≠ ti =1.3 fm, Lmfi = 6
PNDME: [Gupta,Thu,17:50]

8 / 49

[Plot from S. Collins, Lattice 2016]

gA from the Lattice
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[Plot from S. Collins, Lattice 2016]

➤ Some scatter in the results 

➤ Impose “filter”:  

➤ Converging on physical result 

➤ gA appears to be very sensitive 
to Lattice systematics 

➤ e.g. Contamination from 
excited states  

➤ Lots of effort in reducing 
systematic errors                 

➤ flow on for other 
quantities

m⇡L > 4, a < 0.1 fm

gA from the Lattice



Lattice 3pt Functions
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Most common method for determining matrix elements relevant for 
hadron structure calculations - 3pt function


For large times 

    Extract matrix element 

                           Determine form factors, charges, moments, …

O

⌧
t0

G(t, ⌧, ~p, ~p 0) =
X

s,s0

e�E~p 0 (t�⌧)e�E~p⌧��↵

⌦
⌦
���↵(0)

��N(p0, s0)
↵⌦
N(p0, s0)

��O(~q)
��N(p, s)

↵⌦
Np, s)

����(0)
��⌦

↵

1 ⌧ t� ⌧1 ⌧ ⌧ (remove excited states: 
control 2 time windows)

(fix hadron, flavour, p’)



Feynman-Hellmann Theorem

➤ Provides an alternative method for determining hadronic matrix 
elements                      from energy shifts 

1. Modify Lagrangian by 

2. Measure hadron energy while changing λ 

3. Calculate matrix element from energy shifts 

13

L ! L+�O

G(�; ~p; t) =

Z
dx e

�~p·~xh�0(x)�(0)i large t/ e

�EH(�,~p)t

hH|O|Hi

@EH(�, ~p)

@�

����
�=0

=
1

2EH(~p)
hH(~p)|O(0)|H(~p)i

Calculation of matrix elements       hadron spectroscopy

simple excited state removal

Also talk by R.Young (Tuesday)



➤ Can modify fermion action in 2 places: 

๏ quark propagators 

14

Feynman-Hellmann Theorem

๏ fermion determinant

Connected Disconnected

Δs [PRD92 (2015)]

OPE [PRL118 (2017)]

GE,GM [1702.01513]

gA, ΔΣ [PRD90 (2014)]

Talk by R.Young (Tuesday)

(Requires new gauge configurations)



Quark Axial Charges in the Nucleon (Connected)

L ! L+ �O @EH/@�|�=0 /
⌦
H(p)

��O(0)
��H(p)

↵

Want
⌦
Ns(p)

�� q̄(0)�µ�5q(0)
��Ns(p)

↵
= 2isµ�q q 2 (u, d)

Do L ! L+ �q̄(�i�3�5)q =) @EN(�)

@�

����
�±

�=0

= ±�qconn.

m⇡ ⇡ 470 MeV 350 configurations 323 ⇥ 64
Alexander Chambers Hadron Structure & Feynman-Hellmann Southampton July 25, 2016 10 / 22

Demonstration: Axial Charges

➤ Want 

➤ Employ

15

hNs(~p)|q̄(0)�µ�5q(0)|Ns(~p)i = 2isµ�q q 2 (u, d)

L ! L+ �q̄(�i�
3

�
5

)q =) @EN (�)

@�

����
�±

�=0

= ±�q
conn.

Energy shifts v λEnergy shifts v t

(Connected only)



Quark Axial Charges
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Quark Axial Charges in Hadrons (Connected)

Construct additional hadrons from existing propagators

[Chambers et al. (PRD 2014)]

Alexander Chambers Hadron Structure & Feynman-Hellmann Southampton July 25, 2016 11 / 22

QCDSF, 2017 update

[QCDSF, PRD92 (2015)]

ETMC ‘17

Quark spin suppression appears to 
be a universal feature of all hadrons



Recent gA Calculation

➤ Feynman-Hellman-inspired 

➤ High-statistics 

➤ Multiple lattice spacings 

➤ Physical quark masses

17

15

sulting extrapolation as a function of ✏
⇡

at fixed lattice
spacing. The filled magenta band is the 68% confidence
interval for the continuum, infinite volume extrapolated
value of g

A

(✏
⇡

). The Taylor expansion fit results in a
very mild pion mass dependence, whereas the �PT fit
shows some noticeable pion mass dependence. This cur-
vature is generated by the �PT extrapolation formula
as the coe�cient of the NLO logarithm is constrained
by the leading order term, generating a large logarithm.
The local counter-term contribution, proportional to c

2

,
competes with the logarithmic correction, leading to the
observed strong pion mass dependence.

In Ref. [92], the first conclusive evidence for such
chiral-logarithms in the baryon sector was observed and
presented for the iso-vector nucleon mass. In that case,
the presence of the chiral logarithm was more prominent
as the low-order Taylor expansion was incapable of pa-
rameterizing the LQCD results. This is not the case in
the present work, so such strong conclusions about the
evidence of the non-analytic quark mass dependence pre-
dicted from �PT can not be currently drawn from g

A

. In
order to reduce the pion mass extrapolation uncertainty
(by ruling out or finding consistent the �PT and Taylor
expansion analysis), one would need to have enough of
a lever arm to constrain higher order corrections, for ex-
ample by obtaining results at more pion masses as well
as more precise results at the physical pion mass.

The NLO �PT analysis results in the LECs

g
0

= 1.144(21) , c
2

= −9.48(72) . (58)

The parameter covariance matrix can be extracted from
the Python analysis scripts and/or resulting sqlite file
accompanying this work, as well as the resulting param-
eters and parameter covariance matrices from all fits,
Eqs. (49a)-(49j).

1. Volume dependence

There has been some discussion in the literature that
g
A

may be particularly susceptible to finite-volume cor-
rections such that the leading �PT prediction for the
volume dependence is grossly insu�cient to explain the
observed volume dependence [67, 93–95]. In Fig. 8, we
display the result of our dedicated volume study. In the
Taylor expansion fit, Eq. (49d), the coe�cient of the vol-
ume corrections is determined to be gL

0

= 1.42(53). In
the �PT extrapolation enhanced by discretization correc-
tions, Eq. (49i), the coe�cient of the volume correction
is the same as that which appears in the infinite volume
extrapolation, which is determined to be g

0

= 1.144(21).
We conclude that the leading volume corrections are in
extremely good agreement with the numerical LQCD re-
sults and that the coe�cient of the volume corrections as
determined by these various fits are also consistent.
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FIG. 7. Chiral extrapolation of gA resulting from the fit
ansätze Eqs. (49d) (top) and (49i) (bottom). The values of gA
in the plots have been adjusted for finite volume corrections.

2. Truncation error

The NNLO �PT corrections to g
A

scale as ✏3
⇡

. Us-
ing EFT power-counting arguments, the estimate of such
corrections is of order (✏phys

⇡

)3 ∼ 0.002 which is less than
10% of our statistical uncertainty. However, tension be-
tween the NLO Taylor expansion and �PT suggests that
the truncation leads to error comparable to our statis-
tical uncertainty. We fully account for this error in our
final AIC averaged result.

At the physical pion mass, the total extrapolation from
our coarsest lattice spacing to the continuum limit, us-
ing the a2 ansätze, is less than 5% of the central value
of g

A

. Assuming the dimensionless coe�cient of the a4

contribution is similar in magnitude to that of the a2,
these higher order contributions are näıvely 5% of 5%
(∼ 0.25%) at the coarsest spacing. This is comparable to
the ∼ 0.3% di↵erence between the a2 and ↵

S

a2 extrap-
olations in both the Taylor expansion and �PT fits at
LO and NLO. While we are unable to constrain the a4

coe�cients with only three lattice spacings, these obser-
vations, and the mild continuum extrapolation suggests
this study is not necessary. We include as an uncertainty
the di↵erence between the a2 and ↵

S

a2 in our final AIC
averaged result, which we find to be a reasonable esti-

[CalLat, 1704.01114]

215 310mπ [MeV] 140



Electromagnetic Form Factors
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�p�, s�|Jµ(�q)|p, s⇥ = ū(p�, s�)
�
�µF1(q2) + i⇥µ⇥ q⇥

2m
F2(q2)

⇥
u(p, s)

Qp = 1, Qn = 0

µp = 2.79µN , µn = �1.91µN

r2
i = �6

dFi(q2)
dq2

���
q2=0

Radii:

: “Look inside” hadronq2 > 0

F1(0) = Q

F1(0) + F2(0) = µ
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Fig. 9. The ratio µpGEp/GMp from the two JLab experiments
filled circle (blue) [7,8] and filled square (red) [9], compared to
Rosenbluth separation results in (green), open diamond [20],
open circle [21], filled diamond [22], and open square [13,14,
15,16,19]. The fit to the data is as in Gayou et al. [9].

GeV2, indicating that GEp falls faster with increasing Q2

than GMp, thus clearly highlighting a definite difference
between the spatial distributions of charge and magneti-
zation at short distances. This was the first definite ex-
perimental indication that the Q2 dependence of GEp and
GMp are different. These results were very surprising at
the time (1998-2002), as they appeared to contradict the
previously accepted belief that the ratio µpGEp/GMp re-
mains close to 1, a consensus based on the Rosenbluth
separation results up to 6 GeV2, as illustrated in Fig. 9.

As discussed above, the two methods available to de-
termine the proton form factors GEp and GMp, the Rosen-
bluth separation and polarization transfer, give definitively
different results; the difference cannot be bridged by either
simple re-normalization of the Rosenbluth data [57], or by
variation of the polarization data within the quoted sta-
tistical and systematic uncertainties. This discrepancy has
been known for sometime now, and has been the subject
of extensive discussion and investigation. A possible ex-
planation is the contribution from the hard two-photon
exchange process, which affects the polarization transfer
components at the level of only a few percent, but has
drastic effects on the Rosenbluth separation results. This
will be discussed in detail in section 3.3.

Following the unexpected results from the two first po-
larization transfer experiments in Hall A at JLab, GEp(1)
and GEp(2), a third experiment in Hall C, GEp(3), was
carried out to extend the Q2-range to ≈ 9 GeV2. Two new
detectors were built to carry out this experiment: a large

Fig. 10. All data for the ratio µpGEp/GMp obtained from the
three large Q2 recoil polarization experiments at JLab (filled
circle (blue) [8], filled star (magenta) [106], filled square (red)
[10] and filled triangle (black) [101]) compared to Rosenbluth
separation data (green), open diamond [20], open circle [21],
filled diamond [22]. The curve is the same as in Figure 8, a 7
parameter fit given in Eq. 44.

solid-angle electromagnetic calorimeter and a double focal
plane polarimeter (FPP). The recoil protons were detected
in the high momentum spectrometer (HMS) equipped with
two new FPPs in series. The scattered electrons were de-
tected in a new lead glass calorimeter (BigCal) built for
this purpose out of 1744 glass bars, 4x4 cm2 each, and a
length of 20X0, with a total frontal area of 2.6 m2 which
provided complete kinematical matching to the HMS solid
angle. This experiment was completed in the spring of
2008 and measured the form factor ratio at Q2 of 5.2, 6.7
and 8.5 GeV2.

Figure 10 shows the results from the three JLab ex-
periments [7,9,10,8,101], as the ratio µpGEp/GMp versus
Q2. The uncertainties shown for the recoil polarization
data are statistical only.

The striking feature of the results of the GEp(3) exper-
iment is the continued, strong and almost linear decrease
of the ratio with increasing Q2, albeit with some indica-
tion of a slowdown at the highest Q2. The GEp(3) overlap
point at 5.2 GeV2 is in good agreement with the two sur-
rounding points from the GEp(2) data [9,10]. The GEp(3)
experiment used a completely different apparatus in a Q2

range where direct comparison with the Hall A recoil po-
larization results from the GEp(2) experiment is possi-
ble. This comparison provides an important confirmation
of the reproducibility of the results obtained with the re-
coil polarization technique. Additionally, the results of the
high-statistics survey of the ϵ-dependence of GEp/GMp at

[Punjabi et al., EPJ(2015)]
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not surprising since the support of the smearing function
in the direction of the momentum is quite small. At the
same time this small support may explain why the boost
outperforms conventional Wuppertal smearing as broad
wave functions are disfavoured at high momenta, unless
the k vector is introduced, see Eq. (29).

In summary, substantially contracting the smearing
function in the direction of the momentum ameliorates
the phase mismatch discussed in this article. Therefore,
some improvement over the conventional isotropic smear-
ing case can be achieved. However, only momentum
smearing correctly accounts for this e↵ect and we see no
indication that injecting a momentum alters the optimal
shape of the modulus of the smearing function Eq. (45).

D. Comparison with dispersion relations

Our main aim here was to demonstrate the e↵ective-
ness of momentum smearing. For this purpose it was
su�cient to consider only one source position on 200 in-
dividual gauge configurations. The present state-of-the-
art, however, is to realize multiple sources on ten times as
many configurations. In the near future we will compute
a multitude of physically interesting observables with en-
hanced statistics. The masses shown in Eq. (38) were
already obtained with high statistics and in Figs. 3–9
we have compared e↵ective energies against the contin-
uum and lattice dispersion relations Eqs. (39)–(41), using
these values.

FIG. 10. Pion energies for di↵erent lattice momenta. in com-
parison to the continuum (solid curve) and lattice (points con-
nected by dotted lines) dispersion relations Eqs. (39) and (40).

In all cases the smeared-smeared e↵ective energies from
optimized momentum smearing were in agreement with
plateaus from t � t

min

= 8.5a ⇡ 0.61 fm onwards, where
t = 8.5a corresponds to the e↵ective energy obtained
from the correlation function at 8a and 9a, see Eq. (48).
In many cases t

min

could be chosen smaller. For the mo-
ment being, we conservatively approximate the energies
by EH(p) ⇡ EH,e↵(p, tmin

). The results as a function
of p are shown in Figs. 10 and 11 and compared to the

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.5  1  1.5  2  2.5  3  3.5

E N
/G

eV

|p|/GeV

(0,0,0)
(1,0,0)

(1,1,0)

(1,1,1)

(2,0,0)

(2,2,0)
(3,0,0)

(2,2,2)

(3,3,0)

(3,3,3)

Wupp. SS
Mom. SS

cont. disp.
lattice disp.

FIG. 11. Nucleon energies for di↵erent lattice momenta. in
comparison to the continuum (solid curve) and lattice (points
connected by dotted lines) dispersion relations Eqs. (39) and
(41).

dispersion relation expectations. We also display results
obtained with conventional smearing for small momenta
where this is possible. For the two-point functions stud-
ied here the precision of the conventional results can be
improved at little computational overhead by averaging
over (for the absolute momentum values shown) six, eight
or twelve equivalent directions. We have not done this,
to allow for a “fair” comparison of the e�ciency of the
smearing methods. It is clear from the figures, however,
that the maximally possible error reduction, assuming
di↵erent momentum direction results to be statistically
uncorrelated, would not a↵ect any of our conclusions.
We do not expect either parametrization shown in

Figs. 10 and 11 to perfectly describe the data as the
lattice dispersion relations are for point particles, assum-
ing a particular form of the e↵ective Lagrangian. How-
ever, di↵erences between the two functions are indicative
for the size of possible lattice e↵ects. While in the pion
case di↵erences between the parametrizations are on the
present level of statistics insignificant, the nucleon data
appear to be better described by the continuum disper-
sion relation. In the near future we will further investi-
gate this, increasing our statistics and also employing a
di↵erent smearing as described in Sec. III E.

VI. CONCLUSION

In many lattice gauge theory applications hadrons car-
rying high momenta are required. Due to the exponen-
tial increase of relative errors of n-point functions with
Euclidean time distances and diminishing ground state
sampling, high momenta previously were very di�cult
or impossible to achieve. In Sec. II we have introduced a
new class of quark smearing methods for the construction
of hadronic interpolators that address and substantially
mitigate these problems. One particular realization of
these methods, that is trivial to implement and comes
with very little computational overhead, is momentum
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Feynman-Hellmann Theorem (Non-Forward Case)

L(x) ! L(x) + �

⇣
e

i~q·~x + e

�i~q·~x
⌘
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G(�; ~p 0; t)
large t/ e�EH(�,~p 0)t
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@�

����
�=0

=
1

2EH(~p 0)
hH(~p 0)|O(0)|H(~p)i

Requires Breit frame
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h⇡(~p 0)|q̄(0)�µq(0)|⇡(~p)i = (p0µ + pµ)F
q
⇡(Q

2)

Electromagnetic Form Factors — Pion

L ! L+ �2 cos (q · x)O @EH/@�|�=0 /
⌦
H(p0)

��O(0)
��H(p)

↵

m⇡ ⇡ 470 MeV Nconf = 750 323 ⇥ 64 q = (2, 0, 0)

Require Breit frame kinematics

q = (2, 0, 0) =) p0 = (±1, 0, 0)

Otherwise no signal at O (�)

Choose q2 points allowing p0 = �p

q2 = (4n)
2⇡

L
n 2 Z+

Minimises source/sink momentum for particular q2 ! minimises noise
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condition’ method [41] and are chosen to be in the (1,1,1)
direction to minimise discretisation e↵ects. We use ⌘s

mesons made with the local �

5

(Goldstone) operator; in
staggered quark parlance this corresponds to spin-taste
�

5

⌦ �

5

[34]. For our 3-point correlation functions we use
a 1-link temporal vector current with spin-taste �

0

⌦ 1.
We fit 2- and 3-point correlators simultaneously using

Bayesian methods [42] to constrain fit parameters and
determining the covariance between results at di↵erent
Q

2 values. The fit forms are [31, 37]

C

2pt(~p) =
X

i
b

2

i (p)f(Ei(p), t0) + o.p.t.

C

3pt(~p, �~p) =
X

i,j

⇥
bi(p)f(Ei(p), t)Jij(Q

2)bj(p) ⇥

f(Ej(p), T � t)
⇤
+ o.p.t.

f(E, t) = e

�Et + e

�E(Lt�t) (3)

The HISQ action gives opposite parity terms (o.p.t.) for
⌘s mesons at non-zero momentum; they are similar to the
terms given explicitly above but with factors of (�1)t0/a.
The fit parameters are chosen to be the log of the ground-
state energy, E

0

, and the log of energy di↵erences be-
tween the (ordered) excitations, i. For our kinematic
set-up F⌘s(Q

2) = J

00

(Q2)/J

00

(0), with J

00

the ground-
state to ground-state amplitude. The division by J

00

(0)
provides the normalisation of the lattice current. Results
for the renormalisation factors inferred from J

00

(0) are
given in Appendix A.

We use priors of 800 ± 400 MeV for the energy splitting
between successive excitations and prior widths on am-
plitudes bi and Jij of at least 2 times the ground-state
value. We take results from fits that include 6 expo-
nentials where ground-state values and their uncertain-
ties have stabilised and we have checked that the prior
widths have only a minor impact on these uncertainties.
Although we are only interested in ground-state proper-
ties here, our correlators are precise enough to resolve the
first excited state. We have checked that its mass (around
950 MeV above the ground-state) is in reasonable agree-
ment with that for an excited 0� ss state seen in [43].
Note that we do not expect multi-meson (for example two
kaon) energy levels to appear in our spectrum since the
overlap of such states with our single meson operators is
very small, being suppressed by the volume [44].

Results for the (ground-state) form factor are given in
Table II and Q

2

F (Q2) is plotted in Figure 2. Results on
di↵erent ensembles lie close to each other, showing that
e↵ects from discretisation and di↵erent u/d masses are
very small. Tests of discretisation e↵ects from studies of
the meson energy and decay amplitudes as a function of
spatial momentum are reported in Appendix B. We also
show in Appendix B (see Figure 3) how statistical errors
in the form factor grow as a function of Q

2 and (Qa)2.
It is in fact the statistical errors that provide a practical
limit to how high in Q

2 we can reach here for di↵erent
values of the lattice spacing. Note that the finer lattices
have larger reach in Q

2 than the coarse.
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FIG. 2: Lattice QCD results for the vector form factor of
the ⌘s meson, multiplied by Q2 to focus on the large Q2 be-
haviour, plotted as a function of Q2. From coarse to fine:
set 1 results are given by green pluses, set 2 by blue crosses,
set 3 by blue bursts and set 4 by red triangles. Error bars
include statistical/fit errors and uncertainties from the lattice
spacing correlated between points. The black dashed line and
grey band (for ±1�) give the physical-point curve discussed in
the text. The green dashed line marked ‘pole’ gives the pole
form (P�1

� ), for comparison. The orange dotted line marked
‘PQCD 1’ gives the asymptotic perturbative QCD prediction
and that marked ‘PQCD 2’ includes non-asymptotic correc-
tions to the distribution amplitude discussed in the text.

To determine the form factor in the physical contin-
uum limit we must extrapolate in the lattice spacing
and sea u/d quark mass. We do this using a model-
independent parameterisation of the form factor now
standard in both theory and experiment for semileptonic
weak decays (see [46] for a recent review), mapping the
domain of analyticity in t = q

2 onto the unit circle in z.
Since z < 1 we can then perform a power series expansion
in z. We take [47]

z(t, t
cut

) =

p
t

cut

� t �
p

t

cutp
t

cut

� t +
p

t

cut

(4)

where t

cut

in our case is equal to 4M

2

K . We choose the
point that maps to z = 0 to be q

2 = 0, for simplic-
ity; this gives z

max

of 0.46 at Q

2 = 6 GeV2, well below
1. Rather than F (Q2) we work with P�(Q2)F (Q2), us-
ing P�(Q2) = (1 + Q

2

/M

2

�). The product P�F has re-

duced z-dependence because P

�1

� is a good match to the

form factor at small Q

2 (the � being the ss vector me-
son) and it has the correct Q

�2 dependence at large Q

2

(but the wrong value: see Figure 2). To combine a z-
expansion with lattice QCD results we simply allow the
coe�cients in the expansion to have independent a- and
m

sea

-dependence. Adapting the method from [48], we

[Chambers, et al. 1702.01513] [Koponen et al., PRD96 (2017)]
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FIG. 1. E↵ective electric and magnetic form factors of the
u quark in the nucleon for di↵erent values of Q2. Results
shown are for a single value of � 6= 0 (since we are in the
linear region, results at di↵erent � are statistically identical).

B. Electromagnetic Form Factor of the Pion

Following a similar analysis as that for the nucleon,
we show the determination of the pion form factor and
comparison to experiment [12] in Fig. 4. The realised
statistical signal gives confidence that future lattice sim-
ulations will be able to provide important insight into
this transition between the perturbative and nonpertur-
bative.

V. CONCLUSION

In this work we have extended the Feynman–Hellmann
technique to access non-forward matrix elements. We
demonstrate that this provides for a dramatic improve-
ment in the ability to extract nucleon and pion form fac-
tors at much higher momentum transfers than previously
possible. Before making rigorous comparisons with phe-

FIG. 2. GE and GM for the proton from the Feynman–
Hellmann method and a variational method described in [25]
employed on the same ensemble.

nomenology, standard lattice systematics must be fur-
ther quantified, including quark mass dependence, dis-
cretisation artifacts and continuum extrapolation. There
is also further potential for increased precision by us-
ing improved operators that have better access to high-
momentum states, as proposed in [44].
The high-momentum form factors extracted in this

work demonstrate a significantly expanded scope for lat-
tice QCD to address this phenomenologically interesting
domain of hadron structure.
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FIG. 3. Ratio GE/GM for the proton from application of
the Feynman–Hellmann method, from a variational analysis
of three-point functions [25], and from experiment [5–7]. Note
this is not scaled by the magnetic moment of the proton µp, as
this would require phenomenological fits to the low Q2 data,
which is not the focus of this work.

FIG. 4. Scaled pion form factor Q2F⇡ from the Feynman–
Hellmann technique and from experiment [12]. The solid lines
are the vector meson dominance at the relevant pion masses,
and the dotted lines are the asymptotic values predicted by
perturbative QCD (see [13] for a discussion of this value and
its limitations).
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FIG. 1. E↵ective electric and magnetic form factors of the
u quark in the nucleon for di↵erent values of Q2. Results
shown are for a single value of � 6= 0 (since we are in the
linear region, results at di↵erent � are statistically identical).

B. Electromagnetic Form Factor of the Pion

Following a similar analysis as that for the nucleon,
we show the determination of the pion form factor and
comparison to experiment [12] in Fig. 4. The realised
statistical signal gives confidence that future lattice sim-
ulations will be able to provide important insight into
this transition between the perturbative and nonpertur-
bative.

V. CONCLUSION

In this work we have extended the Feynman–Hellmann
technique to access non-forward matrix elements. We
demonstrate that this provides for a dramatic improve-
ment in the ability to extract nucleon and pion form fac-
tors at much higher momentum transfers than previously
possible. Before making rigorous comparisons with phe-

FIG. 2. GE and GM for the proton from the Feynman–
Hellmann method and a variational method described in [25]
employed on the same ensemble.

nomenology, standard lattice systematics must be fur-
ther quantified, including quark mass dependence, dis-
cretisation artifacts and continuum extrapolation. There
is also further potential for increased precision by us-
ing improved operators that have better access to high-
momentum states, as proposed in [44].
The high-momentum form factors extracted in this

work demonstrate a significantly expanded scope for lat-
tice QCD to address this phenomenologically interesting
domain of hadron structure.
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current activity and interest. Some recent and less-
recent reviews of the subject can be found in Refs. [117–
122]. The GPDs can be represented in impact-parameter
space via two-dimensional Fourier transforms of the
t-dependence of GPDs at zero skewness [123], allow-
ing a three-dimensional “tomography” of the nucleon
in two transverse spatial dimensions and one longitu-
dinal momentum dimension. By forming the charge-
squared-weighted sum over quark flavors and integrat-
ing the impact-parameter-space GPDs over longitudinal
momentum fractions x, Miller [124, 125] derived model-
independent expressions for the impact-parameter-space
charge and magnetization densities of the nucleon in
terms of two-dimensional Fourier-Bessel transforms of F1

and F2:

⇢ch(b) =

Z 1

0

Q

2⇡
J0(Qb)F1(Q

2)dQ (41)

⇢̃M (b) =
b

2⇡
sin2 �

Z 1

0

Q2

2⇡
J1(Qb)F2(Q

2)dQ, (42)

in which b is the magnitude of the transverse displace-
ment from the center of the nucleon, and � is the angle
between the direction of b and the direction of the trans-
verse magnetic field or, equivalently, the transverse nu-
cleon polarization. Venkat et al. [126] performed a first
extraction with realistic uncertainty estimation of ⇢ch(b)
and ⇢̃M (b) for the proton.

5. Lattice QCD

Lattice gauge theory is presently the only known
method for calculating static and dynamic properties of
strongly interacting systems from first-principles, non-
perturbative QCD in the regime of strong coupling and
confinement. Practical computations in lattice gauge
theory involve numerical solutions of QCD on a finite-
volume lattice of discrete space-time points. In the re-
cent past, these calculations have often been performed
for unphysically large quark masses due to computational
limitations, whereas modern calculations often work at or
near the physical pion mass. Calculations are typically
performed for several lattice volumes, spacings and quark
masses and then extrapolated to the infinite-volume, con-
tinuum limit and to the physical pion mass. Early calcu-
lations of nucleon electromagnetic form factors in lattice
QCD emphasized the isovector (p�n) form factors, which
are simpler to calculate since contributions from discon-
nected diagrams are suppressed [127]. Until quite re-
cently, most calculations of nucleon form factors in lattice
QCD [127–131] have been restricted to relatively low mo-
mentum transfers Q2 . 3 GeV2, because the rapid fallo↵
with Q2 of the form factors leads to very small signal-
to-noise ratios in the extraction of hadronic three-point
correlators, and related systematic uncertainties due to
excited-state contamination, among other issues. Lin et

al. [132] employed a novel technique using anisotropic lat-

FIG. 25. (color online) Lattice QCD results for µ
p

Gp

E

/Gp

M

obtained using a novel method based on the Feynman-
Hellman theorem [133] (pink filled circles), compared to polar-
ization transfer data from Refs. [28, 29] (blue empty circles),
[30, 42] (red empty squares), the final GEp-III data (black
empty triangles), and the weighted-average of the final GEp-
2� data (pink empty star). The solid curve is the fit to the
data using Eqn. 44 from Ref. [4], and has not been re-fitted
using the final results reported in this work.

tices with both quenched and dynamical ensembles with
m⇡ � 450 MeV to reach Q2 ⇡ 6 GeV2.
The prospects for lattice QCD form factor calcula-

tions to reach high Q2 have recently been improved
by a novel application of the Feynman-Hellman theo-
rem [133], through which hadronic matrix elements can
be related to energy shifts. In the context of nucleon
form factor calculations on the lattice, the Feynman-
Hellman method allows access to the matrix elements
relevant to form factor calculations via two-point corre-
lators as opposed to more complicated three-point func-
tions, and exploits strong correlations in the gauge en-
sembles to enhance the signal-to-noise ratios for high-
momentum states. Figure 25 shows an initial result
from the QCDSF/UKQCD/CSSM collaborations [133]
for µpG

p
E/G

p
M reaching Q2 ⇡ 6.5 GeV2 with uncertain-

ties approaching the precision of the experimental data.

6. Dyson-Schwinger Equations

In recent years, significant progress has also been re-
alized in the explanation and prediction of static and
dynamic properties of “simple” hadronic systems such
as the pion, the nucleon and the �(1232) in contin-
uum non-perturbative QCD, within the framework of

GEp-III/GEp-2γ, JLab, Hall C 
(1707.08587)

Our results 😀
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efforts currently underway. These include single- [185] and
two-photon [186] measurements in hydrogen, as well as ex-
periments which aim to use laser spectroscopy of neutral
and ionic helium [187,188,189].

Noticeably, a crucial missing piece of the proton radius
puzzle is a measurement of the proton radius using muon
scattering; indeed, there is a proposal at PSI, the MUSE
Experiment, to make just such a measurement [190]. The
MUSE experiment will measure elastic µp scattering to a
minimum Q2 of 0.002 GeV2 - about half the lower limit
of the Mainz electron scattering experiment - using both
positively and negative charged incident muons, so that
any possible two-photon effects can be taken into account
directly from the data, rather than relying on theoreti-
cal calculations. In addition, the experiment will simulta-
neously collect ep scattering data, so that the extracted
proton radius from muon and electron scattering can be
compared directly within a single experimental appara-
tus. Preliminary estimates are that the proton radius that
can be extracted from muon scattering will be similar in
precision to that extracted from the Mainz experiment.

3.5 Flavor Separation of Nucleon Form Factors

Charge symmetry implies that the proton and neutron
wave functions are identical under the interchange of the
up and down quark contributions. Measurements of asym-
metries in parity non-conserving electron scattering on the
proton have found that the strange quark form factors are
small (see the review article by Ref. [44]). Ignoring the con-
tributions of higher mass quarks, the proton and neutron
form factors can be written in terms of the contributions
from the up and down dressed quark form factors as:

G(E,M)p =
2

3
G(E,M)u −

1

3
G(E,M)d

G(E,M)n =
2

3
G(E,M)d −

1

3
G(E,M)u. (41)

The up and down form factors, G(E,M)u and G(E,M)d

are defined by convention to represent the up and down
dressed quark form factors in the proton. The anomalous
magnetic moments of the up and down quarks can be ex-
pressed as κu = 2κp+κn and κd = κp+2κn, respectively.
The Dirac and Pauli form factors for the up and down
quarks can be written as:

F(1,2)u = 2F(1,2)p + F(1,2)n

F(1,2)d = F(1,2)p + 2F(1,2)n. (42)

The recent precision data on GMn in the region of Q2

between 1.5 to 4.8 GeV2 [78] and data on GEn/GMn to
Q2 = 3.4 GeV2 by Ref. [33] have enabled precise phe-
nomenological fits to the proton and neutron form factors
and detailed comparison to theory predictions. This allows
one to extract information about the underlying contri-
butions of the up and down quarks to the nucleon form
factors.

A calculation of the up and down quark form fac-
tors from the available proton and neutron data was done

Fig. 18. (Top panel) Up quark’s κ−1
u Q4F2u filled circle(black)

and down quark’s κ−1
d Q4F2d filled triangle down (red) from

Ref. [191]. Up quark κ−1
u Q4F2u empty circle (black) and down

quark’s κ−1
d Q4F2d empty triangle down (red) from Ref. [192].

(Bottom panel) Up quark’s Q4F1u filled square (black) and
down quark’s Q4F1d filled triangle (red) are from Ref. [191]. Up
quark’s Q4F1u empty square (black) and down quark’s Q4F1d

empty triangle (red) are from Ref. [192]. .

by Ref. [191]. The quark form factors were calculated
to Q2 = 3.4 GeV2 by combining the measurements of
GEn/GMn by Ref. [113,31,33,111,32,120] with the Kelly
fit [55] to GMn, GMp and GEp. Fig. 18 is a plot of Q4F1

and Q4F2/κQ2 versus Q2 for the up and down quarks.
The data is plotted at the Q2 of the GEn/GMn measure-
ments and the error on the quark form factors is deter-
mined by the error on the GEn/GMn measurements. For
Q2 > 1.0 GeV2, the Q2 dependence of both the F1 and F2

changes for the up and down quarks. For the up quark,
Q4F1 and Q4F2/κ continue to rise, while, for the down
quark Q4F1 and Q4F2/κ are plateauing or slightly drop-
ping.

Another separation of the up and down form factors
was done by Ref. [192]. They used GEp and GMp from a
extraction using cross section and polarization data which
included two-photon exchange contributions [157]. In ad-
dition, they added the data of Ref. [98] for GEp/GMp at
low Q2. For the neutron form factors, they used the fit of
Ref. [33] to GEn/GMn and an updated parametrization
of GMn using the data of Ref. [72,75,76,77,78,133]. The
up and down form factors are calculated at the Q2 of the
proton data and are plotted in Fig. 18. In the region of Q2

between 0.5 to 1.5 GeV2, F2u from Ref. [192] is slightly
larger than that in Ref. [191] and, correlated with that,
F2d from Ref. [192] is slightly smaller. In general, compar-
isons between the two different flavor separations of the
form factors give a sense that the size of the uncertainty
due to two-photon exchange contributions and tensions in
the data sets is relatively small and does not obscure the
general trends in the Q2 dependence of the up and down
quarks form factors.
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• Use the following interpolating operator to create a proton


• And insert the local operator (quark bi-linear)


• Perform all possible Wick contractions
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(0)

⇤
d̄b�

(0)C�5ū
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• Pictorially:


• u-quark


• d-quark


• s-quark 

protonLattice 3pt Functions



➤ (Unit charged) u and d contributions to GE
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Flavour Form Factors (Connected)

Clear non-zero signal observed

Preliminary

m⇡ ⇡ 470 MeV
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Flavour Form Factors (Connected)

d quark plateau observed

V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, and C.E. Carlson: The Structure of the Nucleon 21

efforts currently underway. These include single- [185] and
two-photon [186] measurements in hydrogen, as well as ex-
periments which aim to use laser spectroscopy of neutral
and ionic helium [187,188,189].

Noticeably, a crucial missing piece of the proton radius
puzzle is a measurement of the proton radius using muon
scattering; indeed, there is a proposal at PSI, the MUSE
Experiment, to make just such a measurement [190]. The
MUSE experiment will measure elastic µp scattering to a
minimum Q2 of 0.002 GeV2 - about half the lower limit
of the Mainz electron scattering experiment - using both
positively and negative charged incident muons, so that
any possible two-photon effects can be taken into account
directly from the data, rather than relying on theoreti-
cal calculations. In addition, the experiment will simulta-
neously collect ep scattering data, so that the extracted
proton radius from muon and electron scattering can be
compared directly within a single experimental appara-
tus. Preliminary estimates are that the proton radius that
can be extracted from muon scattering will be similar in
precision to that extracted from the Mainz experiment.

3.5 Flavor Separation of Nucleon Form Factors

Charge symmetry implies that the proton and neutron
wave functions are identical under the interchange of the
up and down quark contributions. Measurements of asym-
metries in parity non-conserving electron scattering on the
proton have found that the strange quark form factors are
small (see the review article by Ref. [44]). Ignoring the con-
tributions of higher mass quarks, the proton and neutron
form factors can be written in terms of the contributions
from the up and down dressed quark form factors as:

G(E,M)p =
2

3
G(E,M)u −

1

3
G(E,M)d

G(E,M)n =
2

3
G(E,M)d −

1

3
G(E,M)u. (41)

The up and down form factors, G(E,M)u and G(E,M)d

are defined by convention to represent the up and down
dressed quark form factors in the proton. The anomalous
magnetic moments of the up and down quarks can be ex-
pressed as κu = 2κp+κn and κd = κp+2κn, respectively.
The Dirac and Pauli form factors for the up and down
quarks can be written as:

F(1,2)u = 2F(1,2)p + F(1,2)n

F(1,2)d = F(1,2)p + 2F(1,2)n. (42)

The recent precision data on GMn in the region of Q2

between 1.5 to 4.8 GeV2 [78] and data on GEn/GMn to
Q2 = 3.4 GeV2 by Ref. [33] have enabled precise phe-
nomenological fits to the proton and neutron form factors
and detailed comparison to theory predictions. This allows
one to extract information about the underlying contri-
butions of the up and down quarks to the nucleon form
factors.

A calculation of the up and down quark form fac-
tors from the available proton and neutron data was done

Fig. 18. (Top panel) Up quark’s κ−1
u Q4F2u filled circle(black)

and down quark’s κ−1
d Q4F2d filled triangle down (red) from

Ref. [191]. Up quark κ−1
u Q4F2u empty circle (black) and down

quark’s κ−1
d Q4F2d empty triangle down (red) from Ref. [192].

(Bottom panel) Up quark’s Q4F1u filled square (black) and
down quark’s Q4F1d filled triangle (red) are from Ref. [191]. Up
quark’s Q4F1u empty square (black) and down quark’s Q4F1d

empty triangle (red) are from Ref. [192]. .

by Ref. [191]. The quark form factors were calculated
to Q2 = 3.4 GeV2 by combining the measurements of
GEn/GMn by Ref. [113,31,33,111,32,120] with the Kelly
fit [55] to GMn, GMp and GEp. Fig. 18 is a plot of Q4F1

and Q4F2/κQ2 versus Q2 for the up and down quarks.
The data is plotted at the Q2 of the GEn/GMn measure-
ments and the error on the quark form factors is deter-
mined by the error on the GEn/GMn measurements. For
Q2 > 1.0 GeV2, the Q2 dependence of both the F1 and F2

changes for the up and down quarks. For the up quark,
Q4F1 and Q4F2/κ continue to rise, while, for the down
quark Q4F1 and Q4F2/κ are plateauing or slightly drop-
ping.

Another separation of the up and down form factors
was done by Ref. [192]. They used GEp and GMp from a
extraction using cross section and polarization data which
included two-photon exchange contributions [157]. In ad-
dition, they added the data of Ref. [98] for GEp/GMp at
low Q2. For the neutron form factors, they used the fit of
Ref. [33] to GEn/GMn and an updated parametrization
of GMn using the data of Ref. [72,75,76,77,78,133]. The
up and down form factors are calculated at the Q2 of the
proton data and are plotted in Fig. 18. In the region of Q2

between 0.5 to 1.5 GeV2, F2u from Ref. [192] is slightly
larger than that in Ref. [191] and, correlated with that,
F2d from Ref. [192] is slightly smaller. In general, compar-
isons between the two different flavor separations of the
form factors give a sense that the size of the uncertainty
due to two-photon exchange contributions and tensions in
the data sets is relatively small and does not obscure the
general trends in the Q2 dependence of the up and down
quarks form factors.

[Punjabi et al., EPJ(2015)]

Preliminary

m⇡ ⇡ 470 MeV



Impact Parameter Gpds

➤ Quark (charge) distribution in the transverse plane 

➤ Probabilistic interpretation of GPDs, e.g.                      at

35

Quark densities in the transverse plane

R⊥

b⊥

Pz

b⊥

Pz
R⊥

xPzDistance of (active) quark to the centre of 
momentum in a fast moving nucleon

Decompose into contributions from 
individual quarks with momentum fraction,  

x

� = 0

No momentum 
transfer in 

longitunidal 
direction

H(x, ⇠, q2)

q(b2
⇤) =

�
d2q⇤ e�i⌅b�·q�F1(q2)

q(x, b2?) =

Z
d2q? e�i~b?·~q? H(x, 0, q2?)

[Burkardt, (2000)]



Spin Dependence?

➤ What about nucleon/quark spin? 

➤ How do they affect these quark distributions? 

➤ Consider transverse nucleon      and/or quark       polarisations 

➤ Probability density for finding quark at impact parameter      is then 

➤ These A, B, …, functions define the moments w.r.t x of GPDs: 
“generalised form factors” 

➤ This talk: only n=1 (F1, F2, gT, …)
36
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F (b2?) =
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d2q? e�i~b?·~q? F (q2?)
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Unpolarised

Diehl & Hägler, EPJ C44 (2005) 87-101 [hep-ph/0504175]

F (b2?) =

Z
d2q? e�i~b?·~q? F (q2?)

➤ What about nucleon/quark spin? 

➤ How do they affect these quark distributions? 

➤ Consider transverse nucleon      and/or quark       polarisations 

➤ Probability density for finding quark at impact parameter      is then

~S? ~s?

~b?

Spin Dependence?
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➤ What about nucleon/quark spin? 

➤ How do they affect these quark distributions? 

➤ Consider transverse nucleon      and/or quark       polarisations 

➤ Probability density for finding quark at impact parameter      is then

~S? ~s?

~b?

Spin Dependence?
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Polarised Nucleon F (b2?) =

Z
d2q? e�i~b?·~q? F (q2?)



39

➤ What about nucleon/quark spin? 

➤ How do they affect these quark distributions? 

➤ Consider transverse nucleon      and/or quark       polarisations 

➤ Probability density for finding quark at impact parameter      is then

~S? ~s?

~b?

Spin Dependence?
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Diehl & Hägler, EPJ C44 (2005) 87-101 [hep-ph/0504175]



Vector Form Factors

40

F1(Q
2) =

F (0)

(1 +Q2/M2)2SU(3) symmetric

Fu
1 (Q

2)

F d
1 (Q

2)

F d
2 (Q

2)

Fu
2 (Q

2)



Tensor Form Factors

➤ Tensor form factors are obtained from the matrix elements

41

hp0, s0| ̄(0)i�µ⌫ (0)|p, si = ū(p0, s0)
�
i�µ⌫AT10(q

2)+
P

[µ
q⌫]

m2
ÃT10(q

2)+
�[µq⌫]

2m
BT10(q

2)
 
u(p, s)

P̄µ =
1

2
(p0 + p)µ

Au
T10(q

2) Ad
T10(q

2)



u-Quark Fan

➤ Tensor charge (doubly-represented quark contribution) 

➤ Ratio “fans out” from SU(3)-symmetric point
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Form Factors at Q2≠0

➤ SU(3) breaking expansion valid at a fixed Q2 

➤ All ensembles have L=32 

➤ Small difference in Q2 comes from difference in baryon masses across 
ensembles 

➤ Bin results in Q2 and shift form factors to centre of bin using dipole form
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Physical Mass Form Factors
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Preliminary
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Hyperon spinu-Quark



u-Quark

46

Quark spin
u-quark

Proton Sigma

Quark spin



Spin Densities - Proton
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u-quark d-quark



Spin Densities - Proton
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u-quark d-quark



“d”-Quark
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Proton Sigma

“d”-quark



Summary

➤ Results for standard observables (gA, gT, ⟨x⟩, FFs at low Q2) now 
approaching the physical point 

➤ Lots of effort in understanding systematic errors 

➤ Lots of progress in more exotic quantities 

➤ Disconnected quark and glue  

➤ Quasi-PDFs 

➤ Compton amplitude 

➤ FFs at large Q2 

➤ Angular momentum 

➤ …
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