

Yi-Bo Yang *Michigan state university*

and

Lattice Parton Physics Project (LP3)

Sep. 1st 2017 yangyibo@pa.msu.edu

The parton distribution function (PDF)

The original quark PDF defined in the light front frame is,

$$
q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^- P^+} \langle P|\overline{\psi}(\xi^-)\gamma^+ \times \exp\left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right) \psi(0)|P\rangle
$$

- PDF is a universal distribution in nucleon;
- Many ongoing/planned experiments (BNL, JLab, J-PARC, COMPASS, GSI, EIC, LHeC, …);
- Important inputs to discern new physics at LHC, and currently dominate errors in Higgs production.
- The real time dependence in the PDF definition makes the direct lattice simulation to be impossible.

The alternative solutions on the lattice:

The moments of the PDF which are the matrix elements of local operators:

- How to do the lattice calculation is clear;
- The renormalization of the quark part is also clear, while the gluon ones and the mixing are unclear;
- Limited to a few moments and most of the recent calculations concentrate on the zero/ first moments.

Reconstruct the PDF from the lattice "cross section":

- The lattice calculation is relatively non-trivial;
- The renormalization is non-trivial for part of the approaches;
- Can access the full Bjorken x dependence of PDF, while the result may depend on the way to do the reconstruction.

The calculations of the moments

The calculations of the moments

The moments of the PDF which are the matrix elements of local light-cone operators: $O^n = \overline{\psi} \gamma^* D^{+2} ... D^{+n} \psi$ *or,*

$$
O^{\mu_1...\mu_n} = \overline{\psi}\gamma^{(\mu_1}iD^{\mu_2}...iD^{\mu_n)}\psi - \text{trace}
$$

- How to do the lattice calculation is clear;
- The renormalization of the quark part is also clear, while the gluon ones and the mixing are unclear;
- Limited to a few moments and most of the recent calculations concentrate on the first/second moments.

Connected and disconnect insertions

• Quark propagates in the gluon background

Two state fit to remove the excited states contaminations

Integration of PDF

Connected insertion(CI) parts

Integration of PDF quark disconnected insertion (DI) parts

- The DI parts of the vector charge should be zero due to the cancellation between the quarks and anti-quarks;
- But those of the axial vector charge can be large.

Integration of PDF

gluon parts

- The integration of the unpolarized gluon PDF is undefined.
- But the polarized one can be a finite value.

$$
\Delta G \;=\; \int_0^1 dx \Delta g(x) = \int_0^1 dx \frac{i}{2x P^+} \int \frac{d\xi^-}{2\pi} e^{-ix P^+ \xi^-} \langle PS| F_a^{+\alpha}(\xi^-) \mathcal{L}^{ab}(\xi^-,0) \tilde{F}_{\alpha,b}^{+}(0) |PS\rangle
$$

- *• The gluon spin under the Coulomb gauge can be calculated on the lattice.*
- *• It can be matched to* Δ*G based on the large momentum effective theory (LaMET).*
- *• With renormalization at the 1-loop level, we predicts* Δ*G=0.25(6) when the matching effects can be ignored.*

10 LaMET: X. Ji, et. al, PRL 111(2013) 112002, [1304.6708](http://arxiv.org/abs/arXiv:1304.6708) Exp. fit: Florian et. al, PRL 113 (2014), 012001, 1404.4293 Lattice: YBY, et al, χ QCD, PRL 118 (2017), 102001, 1609.05937

Integration of GPD

The form factors

$$
F_q(x,\xi,t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ix\bar{P}+z^-} \langle P'|\bar{\psi}(-z/2)\gamma^+ \psi(z/2)|P\rangle \Big|_{z^+=z^1=z^2=0}
$$

=
$$
\frac{1}{2\bar{P}^+} \left(H_q(x,\xi,t) \bar{u}(P')\gamma^+ u(P) + E_q(x,\xi,t) \bar{u}(P') \frac{i\sigma^{+\alpha}\Delta_\alpha}{2m} u(P) \right)
$$

When we integrate F over x, we get the Dirac and Pauli form factors,

$$
\int_{-1}^{1} dx H_q(x,\xi,t) = F_1^q(t) \qquad \int_{-1}^{1} dx E_q(x,\xi,t) = F_2^q(t)
$$

The lattice simulation of their combinations

$$
G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4m_N^2} F_2(Q^2) \qquad G_M(Q^2) = F_1(Q^2) + F_2(Q^2)
$$

are more straightforward to calculate, as they cam be obtained by the offforward vector current in the unpolarized and polarized proton.

Integration of GPD

Example: *The DI form factors*

Moments of GPD

The first moment

$$
F_q(x,\xi,t) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ix\bar{P}+z^-} \langle P'|\bar{\psi}(-z/2)\gamma^+ \psi(z/2)|P\rangle \Big|_{z^+=z^1=z^2=0}
$$

=
$$
\frac{1}{2\bar{P}^+} \left(H_q(x,\xi,t) \bar{u}(P')\gamma^+ u(P) + E_q(x,\xi,t) \bar{u}(P') \frac{i\sigma^{+\alpha}\Delta_\alpha}{2m} u(P) \right)
$$

For the first moment, we have the Ji sum rule:

$$
\int_{-1}^{1} dx x [H_q(x,\xi,t) + E_q(x,\xi,t)] = A_q(t) + B_q(t)
$$

for the quark GPD and also the gluon one, where the form factor can be obtained from the M.E. of the Energy-Momentum tensor, $\langle P'|T_{q,g}^{\mu\nu}|P\rangle = \bar{U}(P')\Big[A_{q,g}(t)\gamma^{(\mu}\bar{P}^{\nu)} + B_{q,g}(t)\bar{P}^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}/2M + C_{q,g}(t)\Delta^{(\mu}\Delta^{\nu)}/M\Big]U(P)$

Note that A(0) corresponds to the momentum fraction, and A(0)+B(0) corresponds to the angular momentum fraction.

The lattice calculations

The first moments of GPD

Results

• 1-loop perturbative renormalization on the glue parts.

 $\langle x \rangle$

 $\langle x \rangle_d$

 $\langle X \rangle_S$

 $\langle x \rangle_g$

• Systematic uncertainties from finite lattice spacing, pion mass, and etc. are not fully included.

Non-perturbative renormalization

of the gluon parts?

YBY, R. S. Sufian, et al, χ QCD, PRL 118 (2017), 102001, 1609.05937

- The gluon M.E. with different steps HYP smearing can be quite different.
- The values converge after several steps, and the 1-loop renormalization effect there is reasonable in the case shown here.
- The non-perturbative renormalization will be necessary to confirm the final results are independent to the No. of HYP smearing steps.

Non-perturbative renormalization

of the gluon parts?

The renormalization factor of the gluon self energy

The renormalization factor of the gluon EMT operator

YBY. et.al, in preparation

of the moment calculations

• The lattice communities have many achievements recently on the first a few moments of PDF and also GPD, for both quark and gluon.

Some recents works didn't mentioned in this talk:

The integrations of the polarized quark GPD: 1705.03399 The moments of the gluon GPD in vector meson: 1703.08220

• The 3rd or lower moments can be obtained on the lattice without the mixing with the even lower moments, by choosing the pure off-diagonal parts; but the 4th or higher ones would be impossible.

$$
O^{\mu_1...\mu_n} = \overline{\psi}\gamma^{(\mu_1}iD^{\mu_2}...iD^{\mu_n)}\psi - \text{trace}
$$

• The non-perturbative renormalization of the gluon part is still in progress.

Reconstruct the PDF from the lattice "cross section"

Reconstruct the PDF from the lattice "cross section"

- Lattice cross section: the hadronic matrix elements of a finite Pz, which are calculable in lattice QCD and whose continuum limit can be perturbatively factorized in terms of PDFs. Y.Q. Ma and J.-W. Qiu, 1404.6860
- The quasi-PDF proposed by Ji. are good lattice "cross sections", with well-developed lattice techniques on the local operators likes the moments discussed in the previous section.
- The hadronic tensor are also good lattice "cross sections", while the calculation will be much more non-trivial;
- **Can access the full Bjorken x dependence of PDF**, while the result may depend on the way to do the reconstruction.

Definition of the quasi-PDF

The original quark PDF defined in the light front frame is,

$$
q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^- P^+} \langle P|\overline{\psi}(\xi^-)\gamma^+ \times \exp\left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right) \psi(0)|P\rangle
$$

The quasi-PDF is defined by

$$
q(x, \mu^2, P^z) = \int \frac{dz}{4\pi} e^{izk^z} \langle P | \overline{\psi}(z) \gamma^z
$$

$$
\times \exp\left(-ig \int_0^z dz' A^z(z')\right) \psi(0) |P\rangle
$$

$$
+ \mathcal{O}\left(\Lambda^2/(P^z)^2, M^2/(P^z)^2\right) ,
$$

X.D. Ji, Phys.Rev.Lett. 110 (2013) 262002

From the renormalized quasi-PDF

to the real PDF

X.D. Ji, Phys.Rev.Lett. 110 (2013) 262002, 1305.1539

From the bare quasi-PDF

to the real PDF

Y-Q. Ma, J-W. Qiu, 1404.6860 C. Alexandrou et. al., Phys. Rev. D92 014502 J.-W. Chen, X. Ji, J. Zhang, Nucl.Phys. B915 (2017) 1

$$
q(x,\mu) = \int_{-\infty}^{+\infty} \frac{dy}{|y|} \left[\delta(1 - \frac{x}{y}) \left\{ 1 + \frac{\alpha_s C_F}{2\pi} \int_{-\infty}^{+\infty} d\xi \ C^{OM} \left(\xi, \frac{\mu_R}{P^z}, \frac{\mu}{P^z} \right) \right\} - \frac{\alpha_s C_F}{2\pi} C^{OM} \left(\frac{x}{y}, \frac{\mu_R}{P^z}, \frac{\mu}{P^z} \right) \right]
$$

$$
\int_{-\infty}^{\infty} \frac{dz}{2\pi} e^{iyP^z z} \langle P | \bar{\psi}(z) \gamma^z W_z(z,0) \psi(0) | P \rangle_R
$$

+
$$
O\left(\frac{\Lambda_{QCD}^2}{P_z^2}\right) + O\left(\left(\frac{\alpha_s}{\pi}\right)^2\right)
$$

The linear divergence under the lattice regularization can break the convergence of the perturbative series!

 $\left\langle P\big|\bar{\psi}(z)\gamma^zW_z(z,0)\psi(0)\big|P\right\rangle_R=(1+\frac{\alpha_S}{4\pi}(\frac{C}{a}+\text{Log}(p^2a^2)+...)+\mathcal{O}((\frac{\alpha_S}{4\pi})^2)\right)\left\langle P\big|\bar{\psi}(z)\gamma^zW_z(z,0)\psi(0)\big|P\right\rangle_{bare}$

Linear divergence

- Right: The bare quasi-PDF M.E. from the lattice simulation;
- The bare quasi-PDF M.E. decays much faster than the FT of the real PDF **due to the linear divergence.**

Linear divergence

r

in the wilson loop

The statical potential is defined by,

t C(r,t)=e[∮]*igAds*

V(R)=Log[⟨*C(r,t)*⟩*/*⟨*C(r,t+1)*⟩*]|t*[→]∞*, r*→[∞] *=*α*/r+2A+Br,*

with

A~ Δ*m a0/a + A0*

The non-perturbative renormalization of the quasi-PDF operator

• The quasi-PDF operator $\langle P|\bar{\psi}(z)\gamma^zW_z(z,0)\psi(0)|P\rangle_{bare}$ with different z will NOT mix with each other.

T. Ishikawa, et.al, 1707.03107

• The linear divergence of the wilson link can be removed by multiply a factor ~*e*^Δ*mz with* Δ*m* from the wilson line/loop.

X.Ji. et.al, 1706.08962 J. Green, et.al, 1707.07152

• Or, both the linear and logarithmic UV divergence can be removed with non-perturbative renormalization (NPR) under RI/MOM scheme.

ETMC, NPB923(2017) 394, 1706.00265 LP3, 1706.01295

• Or, the UV divergence can be removed by taking ratio of the hadron M.E. with the same operator and different momenta.

A. Radyushkin, 1705.01488 K. Orginos, et.al, 1706.05373

The non-perturbative renormalization of the quasi-PDF operator

The bare matrix elements

The renormalization factors including the factor e^Δ*mz*

LP3, 1706.01295

The renormalized quasi-PDF

- The unphysical exponential decay in the bare M.E. has been cured with the NPR;
- The uncertainties at large z have been enhanced by the huge factors $e^{\Delta m z}$.

28

Reconstruct PDF

[H.-W. Lin,](https://arxiv.org/find/hep-lat/1/au:+Lin_H/0/1/0/all/0/1) [J.-W. Chen,](https://arxiv.org/find/hep-lat/1/au:+Chen_J/0/1/0/all/0/1) [T. Ishikawa,](https://arxiv.org/find/hep-lat/1/au:+Ishikawa_T/0/1/0/all/0/1) [J.-H. Zhang,](https://arxiv.org/find/hep-lat/1/au:+Zhang_J/0/1/0/all/0/1) 1708.05301

- *• The data can be obtained on the lattice are limited by some zmax*
- *• If we do FT back with limited zmax, strong oscillations will be observed.*

Reconstruct PDF with filters

[H.-W. Lin,](https://arxiv.org/find/hep-lat/1/au:+Lin_H/0/1/0/all/0/1) [J.-W. Chen,](https://arxiv.org/find/hep-lat/1/au:+Chen_J/0/1/0/all/0/1) [T. Ishikawa,](https://arxiv.org/find/hep-lat/1/au:+Ishikawa_T/0/1/0/all/0/1) [J.-H. Zhang,](https://arxiv.org/find/hep-lat/1/au:+Zhang_J/0/1/0/all/0/1) 1708.05301

Both of the them can improve the quality of the reconstruction.

Hadronic tensor

and the PDF

$$
W_{\mu\nu} = \frac{1}{4\pi} \int d^4 z \, e^{iq \cdot z} \left\langle P, S \left| \left[J_{\mu}^{\dagger}(z), J_{\nu}(0) \right] \right| P, S \right\rangle
$$

\n
$$
= \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) F_1(x, Q^2) + \frac{\hat{P}_{\mu}\hat{P}_{\nu}}{P \cdot q} F_2(x, Q^2)
$$

\n
$$
- i\varepsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha} P^{\beta}}{2P \cdot q} F_3(x, Q^2)
$$

\n
$$
+ i\varepsilon_{\mu\nu\alpha\beta} \frac{q^{\alpha}}{P \cdot q} \left[S^{\beta} g_1(x, Q^2) + \left(S^{\beta} - \frac{S \cdot q}{P \cdot q} P^{\beta} \right) g_2(x, Q^2) \right.
$$

\n
$$
+ \frac{1}{P \cdot q} \left[\frac{1}{2} \left(\hat{P}_{\mu}\hat{S}_{\nu} + \hat{S}_{\mu}\hat{P}_{\nu} \right) - \frac{S \cdot q}{P \cdot q} \hat{P}_{\mu}\hat{P}_{\nu} \right] g_3(x, Q^2)
$$

\n
$$
+ \frac{S \cdot q}{P \cdot q} \left[\frac{\hat{P}_{\mu}\hat{P}_{\nu}}{P \cdot q} g_4(x, Q^2) + \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) g_5(x, Q^2) \right]
$$

\n
$$
\hat{P}_{\mu} = P_{\mu} - \frac{P \cdot q}{q^2} q_{\mu}, \quad \hat{S}_{\mu} = S_{\mu} - \frac{S \cdot q}{q^2} q_{\mu}.
$$

PDG review, Sec 19, Chin. Phys. C, 40(2016) 100001

- *• The form factors can be reduced to the PDFs in the large Q2 limit with reasonable assumptions.*
- *• Thus one can reconstruct PDF with the "measurements" on the hadronic tensor.*

Reconstruct the PDF from lattice operator product expansion

QCDSF, Phys.Rev.Lett. 118 (2017), 242001, 1703.01153

Given forward hadronic tensor

$$
T_{\mu\nu}(p,q) = \rho_{\lambda\lambda'} \int d^4x \, e^{iq \cdot x} \langle p, \lambda' | T J_{\mu}(x) J_{\nu}(0) | p, \lambda \rangle
$$

choose $\mu = \nu = 3$ and $P_3 = q_3 = q_4 = 0$

one has,

 $T_{33}(p,q) = 4\omega \int_0^1 dx \frac{\omega x}{1-(\omega x)^2} F_1(x,q^2).$ *with* ω*=2p.q/q2* $T_{33}(p,q)$ *Then one can reconstruct the PDF*

from the results of the hadronic tensor.

Reconstruct the PDF from lattice operator product expansion

 ω

Access the connected sea with a special currents setup

K.-F. Liu, 1606.07075, K.-F. Liu, J. Liang, YBY. Lattice 2017 poster

By using different time order of the two vector currents, the contribution of *the anti-quark connected sea can be obtained independently.*

Access the connected sea

with a special currents setup

K.-F. Liu, 1606.07075, K.-F. Liu, J. Liang, YBY. Lattice 2017 poster

$$
\tilde{W}_{\mu\nu}(q^2,\tau)=\int d\omega\, e^{-\,\nu\,\tau}\;W_{\mu\nu}(q^2,\nu)
$$

The hadronic tensor of the connected sea part can be implemented by several methods, such as the Backus-Gilbert method, the improved maximum entropy method, the χ^2 fit with model functions and so on.

> Backus-Gilbert Method: [Maxwell T. Hansen,](https://arxiv.org/find/hep-lat/1/au:+Hansen_M/0/1/0/all/0/1) [Harvey B. Meyer,](https://arxiv.org/find/hep-lat/1/au:+Meyer_H/0/1/0/all/0/1) [Daniel Robaina](https://arxiv.org/find/hep-lat/1/au:+Robaina_D/0/1/0/all/0/1),1704.08993 Improved Maximun entropy method: [Yannis Burnier,](http://inspirehep.net/author/profile/Burnier%2C%20Yannis?recid=1244139&ln=en) [Alexander Rothkopf](http://inspirehep.net/author/profile/Rothkopf%2C%20Alexander?recid=1244139&ln=en) PRL. 111 (2013) 182003, 1307.6106

The reconstruction of the entire PDF

- Reconstructing PDF from the hadronic tensor are also in progress with \bigcirc several approaches.
- The systematic uncertainties for both the directions are under \bigcirc investigation, and the statistical uncertainties will be under control with increasing computer resources.

Summary

• The moments calculation can provide relatively precise informations on limited moments of PDF and GPD;

X [H.-W. Lin,](https://arxiv.org/find/hep-lat/1/au:+Lin_H/0/1/0/all/0/1) [J.-W. Chen](https://arxiv.org/find/hep-lat/1/au:+Chen_J/0/1/0/all/0/1), [T. Ishikawa,](https://arxiv.org/find/hep-lat/1/au:+Ishikawa_T/0/1/0/all/0/1) [J.-H. Zhang,](https://arxiv.org/find/hep-lat/1/au:+Zhang_J/0/1/0/all/0/1) 1708.05301

We should combine two approaches to obtain a precise picture of \bigcirc the parton distributions.