Study of Baryon Form factor and Collins effect at BESIII

Wenbiao Yan

On behalf of BESIII Collaboration

INT Program INT-17-3 Hadron imaging at Jefferson Lab and at a future EIC

Bird's View of BEPCII & BESIII

BEPC-II and BES

BESIII

detector

Storage ring

Beijing electron positron collider BEPCII

Linac

Beam energy 1.0-2.3 GeV Energy spread: 5.16×10⁻⁴

Design luminosity 1×10^{33} /cm²/s @ $\psi(3770)$

BESIII detector

Hermetic spectrometer for neutral and charged particle with excellent resolution, PID, and large coverage

Baryon form factors at BESIII

Proton form factor

• Hadron vertex are described by Dirac FF (F₁) & Pauli FF (F₂)

$$\Gamma_{\mu}(p',p) = \gamma_{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_p}F_2(q^2)$$

• Sachs FFs: electric G_E and magnetic G_M

$$\begin{aligned} G_E(q^2) &= F_1(q^2) + \tau \kappa_p F_2(q^2) \\ G_M(q^2) &= F_1(q^2) + \kappa_p F_2(q^2) \end{aligned} \quad \tau = \frac{q^2}{4m_p^2}, \quad \kappa_p = \frac{g_p - 2}{2} = \mu_p - 1 \end{aligned}$$

• $G_E \& G_M$: spatial distribution of charge and magnetization, charge density distribution $\rho(\vec{r}) = \int \frac{d^3q}{2\pi^3} e^{-i\vec{q}\cdot\vec{r}} \frac{M}{E(\vec{q})} G_E(\vec{q}^2)$

5

Proton form factor

$e^+e^- \rightarrow p\overline{p}$

Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} C[|G_M(s)|^2 (1 + \cos^2 \theta) + \frac{1}{\tau} |G_E(s)|^2 \sin^2 \theta$$

• Coulomb correction C: subtle and important near threshold

$$C = \frac{y}{1 - exp(-y)}$$

Born cross section

$$\sigma = \frac{4\alpha^2 \pi \beta}{3s} C[|G_M(s)|^2 + \frac{1}{2\tau} |G_E(s)|^2]$$

• Effective FF, assume $|G_E| = |G_M|$

$$|G_{eff}| = \sqrt{\frac{3q^2 S_{Born}}{4\rho a^2 b C(1+1/2t)}}$$

 $\beta = \sqrt{1 - 4M^2/s}$

 $\tau = s/4M^{2}$

 $y = \pi \alpha M / \beta \sqrt{s}$

$e^+e^- \rightarrow p\overline{p}$

• Steep rise toward threshold

• Rapid decrease

• Ratio R=|G_E/G_M|: disagreement between PS170 & Babar/CMD-3

- ✓ Poor precision
- ✓ Limited energy points

Proton G_E & G_M @ energy scan

• Proton G_E & G_M with 12 scan points between 2.22 and 3.71GeV

 N_{obs} : observed e⁺e⁻ -> pp̄ event number N_{bkg} : background event number L: luminosity; ϵ : detection efficiency; (1+ δ): radiative correction

Consistent with previous results
Compared with Babar results, uncertainty improved by ~30%

Proton R= $|G_E/G_M|$ @ energy scan

Proton G_E & G_M @ ISR method

• use $e^+e^- \rightarrow \gamma_{ISR} p\overline{p}$ with tagged photon

E _{cm} (GeV)	3.773	4.009	4.230	4.260	4.360	4.420	4.600
Taking time	2010-2011	2011	2013	2013	2013	2014	2014
Lumi. (<i>pb</i> -1)	2917.00	481.96	1047.34	825.67	539.84	1028.89	566.93

Effective Form Factor

Baryon pair production

- Cross section around threshold
 ✓ Charged baryon
 - ✓ Neutral baryon
- **G**_E & **G**_M form factor

- First measurement of Λ_c FFs
- Very close to threshold ~1.6MeV
- **Coulomb correction C ?**

GeV	G _E /G _M		
4.5745	$1.14 \pm 0.14 \pm 0.07$		
4.5995	$1.23 \pm 0.05 \pm 0.03$		

0.5

 $\cos\theta_{\Lambda_c}$

- Non-zero behavior around threshold
- Consistent with previous results, improved by 10%

Prospects: new energy scan 2015

• Energy scan between 2 and 3.08GeV (552pb⁻¹)

Collins effect at BESIII

Spin-dependent Fragmentation

PLB396 (1993) 161

q

e

$$D_{hq^{\uparrow}}(z, P_{h\perp}) = D_1^q(z, P_{h\perp}^2) + H_1^{\perp q}(z, P_{h\perp}^2) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_q}{zM_h}$$

- **D**₁: unpolarized fragmentation function (FF)
- H₁: Collins FF

✓ Describes fragmentation of a transversely polarized quark into a spinless hadron h

✓ Depend on $z=2E_h/\sqrt{s}$, and P_{h_1}

✓ Leads to an azimuthal modu[†]ation of hadrons around quark momentum

Collins FF: Global analysis

PRD 87 (2013) 074019

Q² evolution of TMD FFs
 ✓ BEPCII: Q² similar of SIDIS
 ✓ e⁺e⁻ annihilation process at different,
 energy with respect to B factories

PRD 88 (2013) 034016

Collins FF at BESIII

• Jet structure at BESIII is not clear, can not reconstruct thrust axis correctly.

✓ e⁺e⁻ → ππ + X: θ_{ππ}>120°, back-to-back pion
 Difficult to suppress backgrounds with on-resonance datasets, prefer off-resonance data in continuum region
 ✓ 62 pb⁻¹ @ 3.65GeV, below open charm threshold

PRL 116 (2016) 042001

$e^+e^- \rightarrow \pi \pi + X$

$e^+e^- \rightarrow \pi \pi + X$

- Normalized ratio $R = \frac{N(2\phi_0)}{\langle N_0 \rangle}$
 - $\checkmark N(2\varphi_0)$: di-pion yield in each $2\varphi_0$ subdivision
 - \checkmark < N₀ >: averaged bin content
 - ✓ **R**^U: unlike sign $(\pi^{\pm}\pi^{\mp})$
 - ✓ **R^L: like sign** $(\pi^{\pm}\pi^{\pm})$
 - ✓ **R^C:** all pion pair

• Double ratio: reduce acceptance and radiation effect

 $\frac{R^U}{R^{L(C)}} = 1 + \cos(2\phi_0) \cdot \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \frac{\mathcal{F}(H_1^{\perp}(z_1)\bar{H}_1^{\perp}(z_2)/M_1M_2)}{D_1(z_1)\bar{D}_1(z_2)} = 1 + \cos(2\phi_0) \cdot A^{UL(UC)}$

Fit
function $\frac{R^{U}}{R^{L(C)}} = A\cos(2\phi_0) + B$ $A^{UL/UC}$ mainly contains Collins effect
B should be consistent with unity

$e^+e^- \rightarrow \pi \pi + X$

• MC data (without Collins FF): A^{UL/UC} are consistent with zero

Compare with theory

Asymmetry dependence transverse momentum

Compare with other experiments

Results at e+e- collision

✓ Babar & Belle @ Q² ~110GeV²
✓ BESII @ Q² ~13GeV²

Prediction in Collins paper

✓ Larger asymmetry at lower Q²
✓ Asymmetry increase as z grows

Summary

- Rich program on baryon form factor at BESIII
 - ✓ Proton FFs are studied by energy scan and ISR methods
 - \checkmark First measurement of $\Lambda_{\rm c}$ FFs, very close to threshold
 - \checkmark Non-zero behavior around threshold for $\Lambda\overline{\Lambda}$
- Collins asymmetry @ 3.65GeV
 - ✓ Clear non-zero asymmetry
 - ✓ Larger that that of Babar and Belle
 - ✓ Comparable to theoretical predictions
 - $\checkmark e^+e^- \rightarrow K \ \pi + X; \ e^+e^- \rightarrow \pi \ \pi^0 / \eta + X; \ e^+e^- \rightarrow K \ K_s + X: \ plan$

Collins FF at BESIII

TABLE I. Results of $A_{\rm UL}$ and $A_{\rm UC}$ in each (z_1, z_2) and p_t bin. The uncertainties are statistical and systematic, respectively. The averages $\langle z_i \rangle$, $\langle p_t \rangle$ and $\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$ are also given.

$z_1 \leftrightarrow z_2$	$\langle z_1 \rangle$	$\langle z_2 \rangle$	$\langle p_t \rangle ({\rm GeV})$	$\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$	$A_{ m UL}(\%)$	$A_{ m UC}(\%)$
[0.2, 0.3][0.2, 0.3]	0.245	0.245	0.262	0.589	$1.28 \pm 0.93 \pm 1.38$	$0.50 \pm 0.32 \pm 0.60$
[0.2, 0.3][0.3, 0.5]	0.311	0.311	0.329	0.576	$2.40 \pm 0.74 \pm 1.08$	$0.67 \pm 0.27 \pm 0.72$
[0.2, 0.3][0.5, 0.9]	0.428	0.426	0.444	0.572	$2.81 \pm 1.44 \pm 1.10$	$1.36 \pm 0.54 \pm 0.64$
[0.3, 0.5][0.3, 0.5]	0.379	0.379	0.388	0.563	$3.69 \pm 1.07 \pm 1.65$	$1.17 \pm 0.39 \pm 0.62$
[0.3, 0.5][0.5, 0.9]	0.498	0.499	0.479	0.564	$5.18 \pm 1.32 \pm 1.08$	$2.17 \pm 0.47 \pm 0.65$
[0.5, 0.9][0.5, 0.9]	0.625	0.628	0.499	0.570	$18.24 \pm 3.19 \pm 1.36$	$6.37 \pm 0.99 \pm 0.82$
$p_t ({ m GeV})$	$\langle p_t \rangle ({\rm GeV})$	$\langle z_1 \rangle$	$\langle z_2 \rangle$	$\frac{\langle \sin^2 \theta_2 \rangle}{\langle 1 + \cos^2 \theta_2 \rangle}$	$A_{ m UL}(\%)$	$A_{ m UC}(\%)$
[0.00, 0.20]	0.133	0.291	0.348	0.574	$1.22 \pm 1.02 \pm 0.48$	$0.44 \pm 0.36 \pm 0.20$
[0.20, 0.30]	0.253	0.285	0.344	0.579	$2.79 \pm 0.89 \pm 0.93$	$1.00 \pm 0.32 \pm 0.34$
[0.30, 0.45]	0.405	0.327	0.346	0.570	$2.41 \pm 0.79 \pm 0.43$	$0.90 \pm 0.26 \pm 0.43$
[0.45, 0.80]	0.610	0.453	0.349	0.571	$5.16 \pm 0.95 \pm 0.87$	$2.11 \pm 0.41 \pm 0.27$
[0.80, 1.40]	0.923	0.646	0.334	0.584	$9.13 \pm 2.74 \pm 1.52$	$3.50 \pm 0.98 \pm 1.37$