Gluon Structure of Hadrons and Nuclei

Phiala Shanahan

William and Mary Thomas Jefferson National Accelerator Facility

Gluon Structure

- Past 60+ years: detailed view of quark structure of nucleons
- Gluonic structure (beyond gluon density) relatively unexplored
- Electron-Ion Collider
- Priority in 2015 nuclear physics long range plan
- "Understanding the glue that binds us all"
- Insights from Lattice QCD?

Cover image from EIC whitepaper arXiv::1212.1701

Gluon Structure from LQCD

How is the gluon structure of a proton modified in a nucleus

Gluonic 'EMC' effect
 'Exotic' glue

Nucleon momentum decomposition

Gluon Momentum fraction

 Two direct calculations at the physical point since last year

C. Alexandrou et al., arXiv:1706.02973 Y.-B. Yang et al., χ QCD, in preparation

Nucleon spin decomposition

Two decompositions of the proton spin:

Interpolation between decompositions: M. Engelhardt, PRD 95 094505 (2017)

Ji spin decomposition

C.Alexandrou et al., arXiv:1706.02973

- Physical pion mass
- All terms calculated directly

MS-scheme at 2 GeV

J-M spin decomposition

Y.-B. Yang et al., PRL 118, 102001 (2017)

Gluon Helicity

- Can't be calculated directly
- Match to calculable ME in infinite momentum frame limit using large momentum effective theory LaMET: X. Ji et al., PRL 111 112002 (2013)

de Florian et. al, Phys.Rev.Lett. 113, 012001 (2014)

Gluon Structure from LQCD

How is the gluon structure of a proton modified in a nucleus

Gluonic 'EMC' effect
 'Exotic' glue

Targets with $J \ge I$ have leading twist gluon parton distribution $\Delta(x,Q^2)$: double helicity flip [Jaffe & Manohar 1989]

- Unambiguously gluonic: no analogous quark PDF at twist-2
- Non-vanishing in forward limit for targets with spin \geq [
- Experimentally measurable in unpolarised electron DIS on polarised target
 - Nitrogen target: JLab Lol 2015
 - Polarised nuclei at EIC
- Moments calculable in LQCD

Double helicity flip structure function $\Delta(x,Q^2)$

Changes both photon and target helicity by 2 units $\Delta(x, Q^2) = A$ = A = + + -

Double helicity flip structure function $\Delta(x,Q^2)$

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \text{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(x,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x} , \hat{y} direction

Nuclei: Exotic Glue

gluons not associated with individual nucleons in nucleus $\langle p|\mathcal{O}|p\rangle = 0$ $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Double helicity flip structure function $\Delta(x,Q^2)$

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \text{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(x,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x} , \hat{y} direction

Nuclei: Exotic Glue

gluons not associated with individual nucleons in nucleus $\langle p|\mathcal{O}|p\rangle = 0$ $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Moments of $\Delta(x,Q^2)$ are calculable in LQCD

Determined by matrix elements of local gluonic operators

$$\begin{split} \langle pE'|\underline{S} \left[G_{\mu\mu_1} \overleftarrow{D}_{\mu_3} \dots \overleftarrow{D}_{\mu_n} G_{\nu\mu_2} \right] | pE \rangle \\ &= (-2i)^{n-2} \underline{S} \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu}) (p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right. \\ &+ (\mu \leftrightarrow \nu) \right] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots, \end{split}$$

Reduced Matrix Element

Gluon transversity of the φ meson

- First moment in ϕ meson (simplest spin-1 system \rightarrow nuclei)
- Lattice details: clover fermions, Lüscher-Weisz gauge action

L/a	T/a	eta	am_l	am_s		
24	64	6.1	-0.2800	-0.2450		
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)		
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)		
m_{ϕ} (MeV)	$m_{\phi} (MeV) \qquad m_{\pi}L \\ 1040(3) \qquad 6.390$		$N_{ m cfg}$	$N_{ m src}$ 10^5		
1040(3)			1042			

- Many systematics not addressed (yet)
 - Quark mass effects
 - Volume effects

- Discretisation
- Renormalisation Alexandrou et al. arXiv:1611.06901

W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515

Doing lattice QCD

Correlation decays exponentially with distance in time:

$$C(t) = \sum_{n \leftarrow Z_n} Z_n \exp(-E_n t)$$
 all eigenstates with q#'s of proton

At late times:

 $\rightarrow Z_0 \exp(-E_0 t)$

Ground state mass revealed through "effective mass plot"

$$M(t) = \ln \left[\frac{C(t)}{C(t+1)}\right] \stackrel{t \to \infty}{\longrightarrow} E_0$$

LQCD matrix elements

How do we calculate matrix elements?

- Create three quarks (correct quantum numbers) at a source and annihilate the three quarks at sink far from source
- Insert operator at intermediate timeslice

Remove time-dependence by dividing out with two-point correlators: $\frac{C_3(t,\tau,\vec{p'},\vec{q})}{C_2(t-\tau,p')C_2(\tau,p)} \stackrel{t \to \infty}{\longrightarrow} \langle N(p') | \mathcal{O}(q) | N(p) \rangle$

Calculate lowest moment of $\Delta(x,Q^2)$:

Ratio of LQCD correlators $R_{jk}(t, \tau, \vec{p})$

Discrete lattice: rotational symmetry hypercubic symmetry
 Take linear combinations of operators that transform irreducibly under hypercubic group: safe from mixing
 e.g., for \$\mathcal{O}_{\mu\nu\mu_1\mu_2}^{(E)} = G_{\mu\mu_1}^{(E)}G_{\nu\mu_2}^{(E)}\$ use \$\mathcal{O}_{1,1}^{(E)} = \frac{1}{8\sqrt{3}} \left(-2\mathcal{O}_{1122}^{(E)} + \mathcal{O}_{1133}^{(E)} + \mathcal{O}_{2233}^{(E)} + \mathcal{O}_{2244}^{(E)} - 2\mathcal{O}_{3344}^{(E)}\right)\$

$$\begin{split} C_{jk}^{2\text{pt}}(t,\vec{p}) &= \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle \eta_j(t,\vec{x})\eta_k^{\dagger}(0,\vec{0}) \rangle \\ &= Z_{\phi} \left(e^{-Et} + e^{-E(T-t)} \right) \sum_{\lambda} \epsilon_j^{(E)}(\vec{p},\lambda) \epsilon_k^{(E)*}(\vec{p},\lambda) \\ &= Z_{\phi} e^{-Et} \sum_{\lambda\lambda'} \epsilon_j^{(E)}(\vec{p},\lambda) \epsilon_k^{(E)*}(\vec{p},\lambda') \langle \vec{p},\lambda|\mathcal{O}|\vec{p},\lambda'\rangle \end{split}$$

$$R_{jk}(t,\tau,\vec{p}) = \frac{C_{jk}^{3\text{pt}}(t,\tau,\vec{p}) + C_{jk}^{3\text{pt}}(T-t,T-\tau,\vec{p})}{C_{jk}^{2\text{pt}}(t,\vec{p})}$$

- All polarisation combinations (j,k)
- Boost momenta up to (I,I,I)
- Examine all elements of each hypercubic irrep.

ratio depends on polarisations, momentum, operator

operator insertion time τ

W. Detmold, PES, PRD 94 (2016), 014507

Soffer-type Bounds

Constraint relating transversity, spin-indep. and spin-dep. distributions

For quark distributions in spin 1/2 state:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Analogue for first moments of gluon distributions?

 Need to calculate moments of spin independent gluon distribution (first moment of spin-dependent gluon distribution vanishes by operator symmetries)

Spin-indep. gluon structure

W. Detmold, PES, PRD 94 (2016), 014507

Spin-independent gluon operator:

$$\overline{\mathcal{O}}_{\mu_1\dots\mu_n} = S\left[G_{\mu_1\alpha}\overleftrightarrow{D}_{\mu_3}\dots\overleftrightarrow{D}_{\mu_n}G_{\mu_2}^{\alpha}\right]$$

Matrix elements at n=2 define lowest moment of structure functions

$$\langle pE' | \overline{\mathcal{O}}_{\mu_1 \mu_2} | pE \rangle = S \left[M^2 E_{\mu_1}'^* E_{\mu_2} \right] B_{2,1}(\mu^2) + S \left[(E \cdot E'^*) p_{\mu_1} p_{\mu_2} \right] B_{2,2}(\mu^2)$$

Two reduced matrix elements

- Analysis as in transversity case
- Mixing with quark ops. neglected, pQCD calcs. shown that it is small: Alexandrou 1611.06901

Soffer-type Bounds

Soffer-type bound for leading moments of gluon distributions (spin-1 state):

$$\begin{aligned} |A_2| \leq \frac{1}{24} (5B_{2,1} - 6B_{2,2}) \\ |Spin-dependent \rightarrow 0 \end{aligned}$$

$$|0.24| \le \frac{1}{24} \left[5(-0.5) - 6(-1.4) \right] = 0.24$$

Soffer-like bound approximately saturated

Gluon Radii

How does the gluon radius of a proton compare to the quark/charge radius?

Or is the picture more complicated?

Matrix elements of the spin-independent gluon structure function

Off-forward matrix elements are complicated:

Matrix elements of the spin-independent gluon structure function

Off-forward matrix elements are complicated:

$$\left\langle p'E' \left| S \left[G_{\mu\alpha} i \overleftarrow{D}_{\mu_{1}} \dots i \overleftarrow{D}_{\mu_{n}} G_{\nu}^{\alpha} \right] \right| pE \right\rangle$$

$$= \sum_{\substack{m \text{ even} \\ m=0}}^{n} \left\{ \begin{array}{c} B_{1,m}^{(n+2)}(\Delta^{2}) M^{2}S \left[E_{\mu}E_{\nu}^{\prime*}\Delta_{\mu_{1}} \dots \Delta_{\mu_{m}}P_{\mu_{m+1}} \dots P_{\mu_{n}} \right] \right. \\ \left. + B_{2,m}^{(n+2)}(\Delta^{2}) S \left[(E \cdot E_{\nu}^{\prime*} \times P \cdot P \cdot A_{\nu} - P \cdot P_{\nu} - P_{\nu} -$$

Matrix elements of the gluon transversity structure function

Similarly complicated: $\left\langle p'E' \left| S \left| G_{\mu\mu_1} \overset{\leftrightarrow}{D}_{\mu_3} \dots \overset{\leftrightarrow}{D}_{\mu_n} G_{\nu\mu_2} \right| \right| pE \right\rangle$ $=\sum_{\substack{m \text{ odd}\\m=3}}^{n} \left\{ A_{1,m-3}^{(n)}(t,\mu^2) S\left[(P_{\mu}E_{\mu_1} - E_{\mu}P_{\mu_1})(P_{\nu}E_{\mu_2}^{\prime*} - E_{\nu}^{\prime*}P_{\mu_2})\Delta_{\mu_3} \dots \Delta_{\mu_{m-1}}P_{\mu_m} \dots P_{\mu_n} \right] \right\}$ $+\frac{A_{2,m-3}^{(n)}(t,\mu^2)}{A_{3,m-3}^{(n)}(t,\mu^2)}S\left[(\Delta_{\mu}E_{\mu_1}-E_{\mu}\Delta_{\mu_1})(\Delta_{\nu}E_{\mu_2}^{\prime*}-E_{\nu}^{\prime*}\Delta_{\mu_2})\Delta_{\mu_3}\dots\Delta_{\mu_{m-1}}P_{\mu_m}\dots P_{\mu_n}\right]$ + $\frac{A_{3,m-3}^{(n)}(t,\mu^2)}{S\left[((\Delta_{\mu}E_{\mu_1}-E_{\mu}\Delta_{\mu_1})(P_{\nu}E_{\mu_2}^{\prime*}-E_{\nu}^{\prime*}P_{\mu_2})-(\Delta_{\mu}E_{\mu_1}^{\prime*}-E_{\mu}^{\prime*}\Delta_{\mu_1})(P_{\nu}E_{\mu_2}-E_{\nu}P_{\mu_2})\right]}$ $\times \Delta_{\mu_3} \dots \Delta_{\mu_{m-1}} P_{\mu_m} \dots P_{\mu_n}$ $+ \frac{A_{4,m-3}^{(n)}(t,\mu^2)}{M^2} S\left[(E_{\mu}E_{\mu_1}^{\prime*} - E_{\mu_1}E_{\mu}^{\prime*})(P_{\nu}\Delta_{\mu_2} - P_{\mu_2}\Delta_{\nu})\Delta_{\mu_3}\dots\Delta_{\mu_{m-1}}P_{\mu_m}\dots P_{\mu_n} \right] \\ + \frac{A_{5,m-3}^{(n)}(t,\mu^2)}{M^2} S\left[((E \cdot P)(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(\Delta_{\nu}E_{\mu_2}^{\prime*} - E_{\nu}^{\prime*}\Delta_{\mu_2}) \right]$ + $(E'^* \cdot P)(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(\Delta_{\nu}E_{\mu_2} - E_{\nu}\Delta_{\mu_2}))\Delta_{\mu_3}\dots\Delta_{\mu_{m-1}}P_{\mu_m}\dots P_{\mu_n}]$ + $\frac{A_{6,m-3}^{(n)}(t,\mu^2)}{M^2}S\left[((E \cdot P)(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(P_{\nu}E_{\mu_2}^{\prime*} - E_{\nu}^{\prime*}P_{\mu_2})\right]$ $- (E^{\prime *} \cdot P) (P_{\mu} \Delta_{\mu_{1}} - \Delta_{\mu} P_{\mu_{1}}) (P_{\nu} E_{\mu_{2}} - E_{\nu} P_{\mu_{2}})) \Delta_{\mu_{3}} \dots \Delta_{\mu_{m-1}} P_{\mu_{m}} \dots P_{\mu_{n}}] \\ + \underbrace{\frac{A_{7,m-3}^{(n)}(t,\mu^{2})}{M^{2}}}_{M^{2}} (E^{\prime *} \cdot E) S \left[(P_{\mu} \Delta_{\mu_{1}} - \Delta_{\mu} P_{\mu_{1}}) (P_{\nu} \Delta_{\mu_{2}} - \Delta_{\nu} P_{\mu_{2}}) \Delta_{\mu_{3}} \dots \Delta_{\mu_{m-1}} P_{\mu_{m}} \dots P_{\mu_{n}} \right]$ $+ \underbrace{A_{8,m-3}^{(n)}(t,\mu^2)}_{M4} (E \cdot P)(E'^* \cdot P) S\left[(P_{\mu}\Delta_{\mu_1} - \Delta_{\mu}P_{\mu_1})(P_{\nu}\Delta_{\mu_2} - \Delta_{\nu}P_{\mu_2})\Delta_{\mu_3} \dots \Delta_{\mu_{m-1}}P_{\mu_m} \dots P_{\mu_n} \right] \Big\}$

- Complicated over and under-determined systems of equations (different choices of polarisation and boost at same momentum transfer)
- Some GFFs suppressed by orders of magnitude
- Some GFFs related by symmetries at some momenta

(0.604	0.0424	0	0	0	0	0.0588	0			
0.592	-2.45×10^{-3}	0.0785	-0.0785	6.58×10^{-3}	-0.0992	-0.103	-4.15×10^{-3}			
0.485	0.0429	0	0	0	0 –	0.0379	0			(0.179(36))
0.481	0.0431	-3.02×10^{-5}	3.02×10^{-5}	-2.53×10^{-6}	-4.03×10^{-7}	0.0374	-1.69×10^{-8}			$\left(\begin{array}{c} 0.110(30)\\ 0.150(38)\end{array}\right)$
0.475	-3.29×10^{-3}	0.0791	-0.0791	6.59×10^{-3}	-0.0791	-0.0824	-3.29×10^{-3}			0.152(30)
0.353	-7.97×10^{-4}	0.0385	-0.0385	3.28×10^{-3}	-0.0598	-0.0631	-2.54×10^{-3}			0.154(37)
0.347	-0.0382	0	0	0	0	0.0962	0			0.129(32)
0.258	0.0806	0	0	0	0	-0.0374	0			0.056(31)
0.258	0.0808	0	0 - 4	0	0	-0.0379	0			0.067(41)
0.253	0.101	-8.60×10^{-1}	8.60 × 10	-7.20×10^{-3}	6.32×10^{-4}	-0.0588	2.65×10^{-3}			0.050(33) 0.069(21)
0.239	-1.66×10^{-3}	0.0401	-0.0401	3.29×10^{-3}	-0.0393	-0.0402	-1.61×10^{-3}			0.093(36)
0.238	-1.65×10^{-5}	0.0396 - 4	-0.0396	3.29×10^{-5}	-0.0396	-0.0412	-1.65×10^{-3}			0.028(32)
0.228	-0.0581	8.30×10^{-4}	-8.30×10^{-4}	6.94×10^{-5}	-1.04×10^{-0}	0.0962	-4.33×10^{-6}			0.041(27)
0.228	-0.0379	0	0	0	0	0.0758	0	$((1)^{(2)})$		0.012(33)
0.0590	-0.0109	0.139	-0.139	0.0112	-4.97×10^{-3}	-3.94×10^{-4}	-8.24×10^{-6}	$\begin{pmatrix} A_{1,0}^{(1)} \end{pmatrix}$		0.029(30)
0.0578	-2.56×10^{-2}	9.42×10^{-6}	-9.42×10^{-9}	3.89 × 10 ⁴	-4.65×10^{-6}	2.51 × 10 ⁴	5.25×10^{-5}	$A_{2,0}^{(2)}(1)$		-0.024(11)
0.0338	1.59×10^{-3}	-0.128	0.128	-0.0107	3.18×10^{-4}	0.0154	1.33×10^{-5}	$(2)^{(2)}$		-0.0056(9)
0.0183	6.36×10^{-3}	-1.29×10^{-4}	1.29×10^{-4}	3.84×10^{-4}	4.84×10^{-3}	5.99×10^{-3}	5.18×10^{-6}	$A_{3,0}^{(1)}$		-0.002(11
0.0155	-4.78×10^{-5}	-0.128	0.128	-0.0111	-4.52×10^{-3}	9.41×10^{-3}	8.14×10^{-0}	$A_{4,0}^{(2)}(1)$		0.009(16)
1.19×10^{-3}	-0.0106	0.129	-0.129	0.0108	-3.22×10^{-4}	-6.45×10^{-4}	-1.35×10^{-5}	(2)	=	0.0162(91
0.549	2.44×10^{-3}	0	0	0	0	0.0895	0	$A_{5,0}^{(1)}$		0.086(26)
0.546	-1.88×10^{-3}	0.0676	-0.0676	5.69×10^{-3}	-0.0918	-0.0960	-3.86×10^{-3}	$A_{e}^{(2)}(1)$		0.131(31) 0.155(33)
0.498	0.0710	0	0	0	0	0.0123	0	(2)		0.100(33) 0.086(33)
0.480	-2.37×10^{-5}	0.0685	-0.0685	5.70×10^{-3}	-0.0799	-0.0828	-3.33×10^{-5}	$A_{7,0}^{(1)}$		0.098(16)
0.429	0.0714	$5 14 \times 10 - 4$	$5 14 \times 10^{-4}$	120×10^{-5}	1.22×10^{-7}	0 0192	0 = 10 - 9	$\left \left\langle A_{8,0}^{(2)}(1) \right\rangle \right $		0.094(17)
0.424	0.0834	-5.14 X 10 -	5.14 X 10 -	-4.30 X 10 °	1.33 X 10 ·	-0.0123	5.55 X 10 °	x 8,0 x //		0.088(27)
0.412	2.85×10^{-3}	0	0	U 	0	0.0657	0 - 3			0.114(25)
0.412	-2.85×10^{-3}	0.0685	-0.0685	5.70×10^{-5}	-0.0685	-0.0714	-2.85×10^{-8}			0.075(27) 0.034(25)
0.409	-8.65×10^{-3}	4.61 × 10	-4.61×10^{-4}	3.86×10^{-3}	-8.30×10^{-3}	0.0771	-3.47×10^{-6}			-0.006(22)
0.0674	-6.43×10^{-6}	0.0856	-0.0856	6.70×10^{-6}	-5.55 X 10 °	-8.26×10^{-6}	-1.73×10^{-4}			-0.001(31)
0.0656	4.96 × 10 ⁺	-9.21×10^{-4}	9.21×10^{-4}	-6.37×10^{-6}	-0.0119	-0.0132	-5.32×10^{-4}			0.022(11)
0.0314	-0.0085	0 155	0 155	0 0127	2.05×10^{-3}	0.0771	1.06×10^{-5}			0.014(16)
0.0347	-0.0124	0.155	-0.155	0.0127	-3.05×10^{-3}	-6.00×10	-1.20×10^{-5}			0.0010(16
0.0327	5.99×10^{-3}	-0.0692	0.0692	-0.03×10^{-3}	-2.50×10^{-3}	0.11 X 10	1.08×10^{-5}			0.0008(85
0.0301	4.59×10^{-3}	-0.0738	0.0738	-5.95 X 10	2.98×10^{-3}	0.0123	1.07×10^{-5}			0.001(29)
0.0285 0.0171	$-1.84 \times 10^{-0.0685}$	-0.147	0.147	-0.0126	-2.43×10^{-0}	0.0143 -0.0657	1.24 × 10 °			0.005(18)
0.0171	0.0000	0.75×10^{-4}	0.75×10^{-4}	8.17×10^{-5}	0.62×10^{-7}	-0.0007	4.02×10^{-8}			. ,
1.50×10^{-3}	6.43×10^{-3}	- 5.75 × 10	-0.0736	-6.17×10^{-3}	5.03×10^{-3}	-1.07×10^{-3}	-1.71×10^{-6})		
VI'03 V IO	0.40 \ 10	0.0130	-0.0730	0.01 X 10	0.40 X 10	-1.91 A 10	-1.(1 X 10 /			

Simplest example: Transversity GFFs One basis (2 vectors) Mtm I (lattice units)

- Complicated over and under-determined systems of equations (different choices of polarisation and boost at same momentum transfer)
- Some GFFs suppressed by orders of magnitude
- Some GFFs related by symmetries at some momenta

0.6040.04240 0 0 0 0.05880 -2.45×10^{-3} -4.15×10^{-3} 6.58×10^{-3} 0.5920.0785-0.0785-0.0992-0.1030.4850.04290 0 0 0 0.03790 0.179(36) 3.02×10^{-5} -2.53×10^{-6} -1.69×10^{-8} 0.4810.0431 -3.02×10^{-3} 4.03×10^{-7} 0.03740.150(38) -3.29×10^{-3} 6.59×10^{-3} -3.29×10^{-3} 0.4750.0791 -0.0791-0.0791-0.08240.152(30) 3.28×10^{-3} 0.353 -7.97×10^{-4} 0.0385-0.0385-0.0598-0.0631 -2.54×10^{-3} 0.154(37)0.347-0.03820 0 0 0 0.09620 0.129(32)0.08060 0 0 0.2580 -0.03740 0.056(31)0.2580.08080 0 0 0 -0.03790 0.067(41) 2.65×10^{-8} 0.056(35) -8.60×10^{-4} 8.60×10^{-4} -7.20×10^{-5} 6.32×10^{-7} 0.2530.101-0.05880.069(21) -1.66×10^{-3} 3.29×10^{-3} -1.61×10^{-3} -0.0401-0.03930.2390.0401 -0.04020.093(36) 3.29×10^{-3} -1.65×10^{-3} -1.65×10^{-3} -0.0396-0.0396-0.04120.2380.03960.028(32) 8.30×10^{-4} -8.30×10^{-4} 6.94×10^{-5} -1.04×10^{-6} -4.33×10^{-8} 0.228-0.05810.09620.041(27)-0.03790 0 0.2280 0 0.07580.012(33)(2)0.0590-0.01090.139 2×10^{-3} 0.0578 -2.56×10^{-1} Target a subset of "dominant GFFs" 0.03381.590.0183 6.36 0.0155 -4.78×10^{-1} 0.128 $.19 \times 10^{-3}$ -0.01060.129 $A_{5,0}^{(2)}(1) \\ A_{6,0}^{(2)}(1)$ 2.44×10^{-3} 0.086(26)0.5490 0 0 0 0.08950 5.69×10^{-3} -3.86×10^{-3} 0.131(31) -1.88×10^{-3} 0.5460.0676 -0.0676-0.0918-0.09600.155(33)0.4980.07100 0 0 0 0.01230 $A_{7,0}^{(2)}(1)$ 0.086(33) -3.33×10^{-3} -2.37×10^{-3} 5.70×10^{-3} 0.0685-0.0685-0.0799-0.08280.4800.098(16)0.07140 0.4290 0 0 0 0 $A_{8,0}^{(2)}(1)$ 0.094(17) 5.55×10^{-9} -5.14×10^{-4} 5.14×10^{-4} -4.30×10^{-5} 1.33×10^{-7} 0.4240.0834-0.01230.088(27) 2.85×10^{-3} 0 0 0 0.06570 0.4120 0.114(25) -2.85×10^{-3} 5.70×10^{-3} -2.85×10^{-3} 0.4120.0685-0.0685-0.0685-0.07140.075(27) 3.86×10^{-5} 0.034(25) -8.65×10^{-3} 4.61×10^{-4} -4.61×10^{-4} -8.30×10^{-7} -3.47×10^{-8} 0.4090.0771-0.006(22) 6.70×10^{-3} -6.43×10^{-3} 0.0856-0.0856 -5.55×10^{-3} -8.26×10^{-5} -1.73×10^{-6} 0.0674-0.001(31) 4.96×10^{-4} -9.21×10^{-4} 9.21×10^{-4} -6.37×10^{-6} -5.32×10^{-4} -0.0119-0.01320.06560.022(11)-0.06850 0.07710 0.05140 0 0 0.014(16)-0.01240.0127 -3.05×10^{-3} -6.00×10^{-4} -1.26×10^{-5} 0.03470.155-0.1550.0010(16) 5.99×10^{-3} -6.03×10^{-3} -2.50×10^{-3} 5.17×10^{-4} 1.08×10^{-5} 0.0327-0.06920.06920.0008(85) 4.59×10^{-3} 1.07×10^{-5} 0.018(23) -5.95×10^{-3} 2.98×10^{-3} 0.0301-0.07380.07380.01230.001(29) -1.84×10^{-3} 1.24×10^{-5} -0.0126 -2.43×10^{-3} 0.0285-0.1470.1470.01430.005(18)0 0 0.01710.06850 0 0 -0.0657 9.63×10^{-7} 4.03×10^{-8} -8.17×10^{-5} -0.08950.01460.0920 -9.75×10^{-4} 9.75×10^{-4} 1.59×10^{-3} -1.97×10^{-3} -1.71×10^{-6} 6.43×10^{-3} 6.61×10^{-3} 5.40×10^{-3} 0.0736 -0.0736

Simplest example: Transversity GFFs One basis (2 vectors) Mtm I (lattice units)

Example:

Spin-indep GFFs, lowest non-zero momentum transfer

- Projection into planes of dominant GFFs
- Others set to 0±10
- Only tightly-constrained bands shown in each projection.

Gluon Transversity GFFs

W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515

One GFF can be resolved for all momenta

Spin-Indep. Gluon GFFs

W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515

Three GFFs can be resolved for all momenta

Spin-Indep. Quark GFFs

W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515

Three GFFs can be resolved for all momenta

GFF decomposition has precisely the same structure as in the spinindependent gluon case

Quark and Gluon GFFs

Ratio of gluon to quark unpolarised GFFs

Gluon vs quark radius is a non-trivial question Much more complicated than intuitive pictures

Gluon Structure from LQCD

How is the gluon structure of a proton modified in a nucleus

Gluonic 'EMC' effect
 'Exotic' glue

Glue structure of nuclei

First investigations:

φ meson simplest spin-1 system (has fwd limit gluon transversity)

Phenomenologically relevant: nucleon, nuclei

Gluon structure - nuclei

European Muon Collaboration (1983):

Modification of per-nucleon cross section of nucleons bound in nuclei

Precise understanding of nuclear targets essential for DUNE expt: extraction of neutrino mass hierarchy, mixing parameters Ratio of structure function F_2 per nucleon for iron and deuterium

$$F_2(x,Q^2) = \sum_{q=u,d,s..} x z_q^2 \left[q(x,Q^2) + \bar{q}(x,Q^2) \right]$$

What is the gluonic analogue of the EMC effect?

Nuclear glue, $m_{\pi} \sim 450 \text{ MeV}$

NPLQCD Collaboration, arXiv: 1709.00395

Signals for spin-independent gluon operator in deuteron

Gluon momentum fraction

NPLQCD Collaboration, arXiv:1709.00395

- Matrix elements of the Spin-independent gluon operator in nucleon and light nuclei
- Present statistics: can't distinguish from no-EMC effect scenario
- Small additional uncertainty from mixing with quark operators

Double helicity flip structure function $\Delta(x,Q^2)$ Jaffe and Manohar, "Nuclear Gluonometry" Phys. Lett. B223 (1989) 218

Hadrons: Gluonic Transversity (parton model interpretation)

$$\Delta(x,Q^2) = -\frac{\alpha_s(Q^2)}{2\pi} \text{Tr} Q^2 x^2 \int_x^1 \frac{dy}{y^3} \left[g_{\hat{x}}(y,Q^2) - g_{\hat{y}}(x,Q^2) \right]$$

 $g_{\hat{x},\hat{y}}(y,Q^2)$: probability of finding a gluon with momentum fraction y linearly polarised in \hat{x} , \hat{y} direction

Nuclei: Exotic Glue

gluons not associated with individual nucleons in nucleus

$$\langle p|\mathcal{O}|p\rangle = 0$$

 $\langle N, Z|\mathcal{O}|N, Z\rangle \neq 0$

Non-nucleonic Glue in Deuteron

NPLQCD Collaboration, arXiv: 1709.00395

First moment of gluon transversity distribution in the deuteron, $m_{\pi} \sim 800 \text{ MeV}$

- First evidence for non-nucleonic gluon contributions to nuclear structure
- Magnitude relative to momentum fraction as expected from large-Nc

Ratio of 3pt and 2pt functions

Gluon structure circa 2025

- Electron-lon collider will dramatically alter our knowledge of the gluonic structure of hadrons and nuclei
 - Work towards a complete 3D picture of parton structure (moments, x-dependence of PDFs, GPDs, TMDs)
 - $\Delta(x,Q^2)$ has an interesting role

Purely gluonic

Non-nucleonic: directly probe nuclear effects

- Compare quark and gluon distributions in hadrons and nuclei
- Lattice QCD calculations in hadrons and light nuclei will complement and extend understanding of fundamental structure of nature