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How much do gluons contribute to the proton’s

MassMomentum 
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Gluon Structure from LQCD
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TMDs
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GPDs

What is the 3D gluon distribution of a proton

3
Gluonic ‘EMC’ effect

How is the gluon structure of a proton modified  
in a nucleus

‘Exotic’ glue



Gluon Momentum fraction
Two direct calculations at the physical 
point since last year

Nucleon momentum decomposition

CT14NNLO
S. Dulat et al, PRD 93, 033006 (2016)

C. Alexandrou et al., arXiv:1706.02973
Y.-B.Yang et al., 𝜒QCD, in preparation 
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TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
momentum (L) and total (J) contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

show schematically the various contributions to the spin
and momentum fraction.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calcula-
tion of the quark and gluon contributions to the pro-
ton spin, directly at the physical point. Individual
components are computed for the up, down, strange
and charm quarks, including both connected (valence)
and disconnected (sea) quark contributions. Our final
numbers are collected in Table II. The quark intrinsic
spin from connected and disconnected contributions is
1

2

�⌃
u+d+s

= 0.299(12)(3)|
conn.

� 0.098(12)(4)|
disc.

=
0.201(17)(5), while the total quark spin is J

u+d+s

=
0.255(12)(3)|

conn.

+ 0.153(60)(47)|
disc.

= 0.408(61)(48).
Our result for the intrinsic quark spin contribution agrees
with the upper bound set by a recent phenomenologi-
cal analysis of experimental data from COMPASS [45],
which found 0.13 <

1

2

�⌃ < 0.18. The results for L

q

and J

q

in Table II are also consistent with an analysis of
generalized parton distributions [45]. Using the spin sum
one would deduce that J

g

= 1

2

�J

q

=0.092(61)(48), which
is consistent with taking J

g

= 1

2

hxi
g

= 0.133(11)(14)
via the direct evaluation of the gluon momentum frac-
tion, which suggests that B

g

20

(0) is indeed small. Fur-
thermore, we find that the momentum sum is satisfied

P
q

hxi
q

+hxi
g

= 0.497(12)(5)|
conn.

+0.307(121)(95)|
disc.

+
0.267(12)(10)|

gluon

= 1.07(12)(10) as is the spin sum
of quarks and gluons giving J

N

=
P

q

J

q

+ J

g

=
0.408(61)(48) + 0.133(11)(14) = 0.541(62)(49) resolving
a long-standing puzzle.
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Two decompositions of the proton spin:
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Jaffe-Manohar (1990)
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e↵ect than the mixing.

FIG. 1: The sea quark contribution (denoted by disc.) to
the isoscalar axial charge (upper) and momentum fraction
(lower) as a function of the sink-source time separation ts for
the plateau method (circles) and as a function of the lower
time value of ts used in the fits for the summation (green
triangles) and two-state fit (blue square) methods. The open
circle indicates the final value and the band its statistical
error, while the open square is the value taken to determine
the systematic error due to excited state contamination.

In Fig. 1 we show the ratio of Eq. (3) from which we ex-
tract the disconnected contribution to the isoscalar axial
charge gu+d

A

and quark momentum fraction hxi
u+d

. Tak-
ing the value at t

s

=14a = 1.3 fm is consistent with the
result from the two-state fit and summation method, for
both quantities. We take the plateau value at t

s

= 14a
as our final result and assign as systematic error due to
excited states the di↵erence between this value and the
mean value determined from the two-state fit. The same
analysis is performed for the strange and charm discon-
nected contributions. The analysis for the valence quark
contributions at lower statistics was presented in Ref. [39]
and it is followed also here.

Results: In Fig. 2 we present our results on the up,
down and strange quark contributions to the nucleon ax-
ial charge that yield the quark intrinsic spin contributions
to the nucleon spin. Since we are using a single ensemble
we cannot directly assess finite volume and lattice spac-
ings e↵ects. However, previous studies carried out using
N

f

=2 and N

f

=2+1+1 twisted mass fermion (TMF) en-
sembles at heavier than physical pion masses showed no
detectable volume e↵ects and no dependence on the lat-
tice spacings for similar values as the ensemble studied
in this work [21, 40]. This can also be seen from Fig. 2
for the �⌃

q

, where TMF results for several volumes and
lattice spacings are shown. In the same figure we also
compare twisted mass results with other recent lattice
QCD computations at heavier than physical pion masses.
There is an overall agreement among lattice QCD results.
We note, in particular, that all lattice QCD results yield
a non-zero and negative strange quark spin contribution

1

2

�⌃
s

. Our results are the first directly at the physi-
cal point for the strange quark and the first to include
disconnected contributions at the physical point for the
up and down quarks. We also note that the charm axial
charge and momentum fraction, at the physical point, is
consistent with zero.

FIG. 2: The up (upper), down (center) and strange (lower)
quark intrinsic spin contributions to the nucleon spin ver-
sus the pion mass. Open symbols show results includ-
ing only connected contributions while filled symbols denote
the total contribution. Filled red diamonds are the results
of this work. Open yellow, brown and green circles are
Nf=2 TMF results for a=0.056, 0.071, 0.088 fm, respectively
and light and dark blue squares are Nf=2+1+1 TMF for
a=0.060, 0.083 fm [30, 31, 40]. We compare with lattice
QCD results from Refs. [41] (open light (a=0.09 fm) and dark
(a=0.06 fm) blue triangles), [42] (filled magenta left trian-
gle for a=0.073 fm), [43] (light blue cross for a= 0.124 fm)
and [44] (yellow filled right triangle for a=0.074 fm). Experi-
ment is denoted by the black asterisks.

To determine the total quark spin J

q

, we need, be-
yond A

q

20

(0), the generalized form factor B

q

20

(0), which
is extracted from the nucleon matrix element of the
vector one-derivative operator for Q

2 6= 0 as de-
scribed in Ref. [21]. For the isovector case, we find
B

u�d

20

(0)=0.313(19), and for the isoscalar connected con-

tribution B

u+d,conn.

20

(0)=0.012(20). We observe that the
latter is consistent with zero, as is the disconnected
contribution B

u+d,disc.

20

(Q2 = 0.074 GeV2). Similarly,
the strange and charm B

s,c

20

(Q2) are zero, which implies
J

s,c

= 1

2

hxi
s,c

. In what follows we will also take the gluon
B

g

20

(0) to be zero and thus J
g

= 1

2

hxi
g

.
Our final values for the quark spin and angular mo-

mentum contributions are given in Table II. In Fig. 3 we

gluon spin



Gluon Helicity
Can’t be calculated directly 
Match to calculable ME in infinite 
momentum frame limit using large 
momentum effective theory

J-M spin decomposition
Y.-B. Yang et al., PRL 118, 102001 (2017)

de Florian et. al, Phys.Rev.Lett. 113, 012001 (2014)

gluon helicity

LaMET: X. Ji et al., PRL 111 112002 (2013)

Extrapolated to 
physical pion mass 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Targets with J≥1 have leading twist gluon parton distribution 
Δ(x,Q2): double helicity flip [Jaffe & Manohar 1989]

Unambiguously gluonic: no analogous quark PDF at twist-2

Non-vanishing in forward limit for targets with spin≥1

Experimentally measurable in unpolarised electron DIS  
on polarised target

Nitrogen target: JLab LoI 2015

Polarised nuclei at EIC

Moments calculable in LQCD

Gluonic Transversity

Outline
1 Double Helicity Flip Structure

Function
Measurement Approaches

2 Je↵erson Lab Measurement
JLab Polarized Target

3 Gluonometry at the EIC
Polarized Ion Beams



Double helicity flip structure function Δ(x,Q2)

Gluonic Transversity

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Double helicity flip amplitude:
Photon helicity
Target helicity

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 5 / 15

Changes both photon and target helicity by 2 units



Double Helicity Flip Gluon Structure Function: �(x,Q2)

Parton model interpretation

For a target in the infinite momentum frame polarized in the x̂ direction
perpendicular to its momentum,

�(x,Q2) /
Z 1

x

dy

y3

�
g
x̂

(y,Q2) � g
ŷ

(y,Q2)
�

g
x̂,ŷ

(y,Q2): probability of finding a gluon with momentum fraction y
linearly polarized in the x̂, ŷ direction

“How much more momentum of transversely polarized particle carried by
gluons aligned rather than perpendicular to it in the transverse plane”
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Double helicity flip structure function Δ(x,Q2)

Hadrons: Gluonic Transversity (parton model interpretation) 
 
 
 
              : probability of finding a gluon with momentum fraction y linearly 
polarised in        direction

Nuclei: Exotic Glue
gluons not associated  
with individual nucleons  
in nucleus

Gluonic Transversity

‘Exotic’ Glue in the Nucleus
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hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

3

where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0|Oµ⌫µ1...µn |pEi
= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ )(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify

⇥
g

x̂

(y,Q2)� g

ŷ

(x,Q2)
⇤



Double Helicity Flip Gluon Structure Function: �(x,Q2)

Parton model interpretation

For a target in the infinite momentum frame polarized in the x̂ direction
perpendicular to its momentum,

�(x,Q2) /
Z 1

x

dy

y3

�
g
x̂

(y,Q2) � g
ŷ

(y,Q2)
�

g
x̂,ŷ

(y,Q2): probability of finding a gluon with momentum fraction y
linearly polarized in the x̂, ŷ direction

“How much more momentum of transversely polarized particle carried by
gluons aligned rather than perpendicular to it in the transverse plane”
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Double helicity flip structure function Δ(x,Q2)

Hadrons: Gluonic Transversity (parton model interpretation) 
 
 
 
              : probability of finding a gluon with momentum fraction y linearly 
polarised in        direction

Nuclei: Exotic Glue
gluons not associated  
with individual nucleons  
in nucleus

Gluonic Transversity

‘Exotic’ Glue in the Nucleus
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‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon
observables that are not from
nucleon degrees of freedom.

Exotic glue operator:
operator in nucleon = 0
operator in nucleus 6= 0
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hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

3

where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0|Oµ⌫µ1...µn |pEi
= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ )(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
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O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)
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Moments of Δ(x,Q2) are calculable in LQCD

Determined by matrix elements of local gluonic operators  

Extraction of A2

We calculate on the lattice:
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factors of m and p

Gluonic Transversity

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Operator Product Expansion to relate to matrix elements of operator

Optical theorem, dispersion relation for hadronic forward scatt. amplitude,
analytic continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor W
µ⌫

, ! even n
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where Double Helicity Flip Gluon Structure Function: �(x,Q2)

Dispersion relation for helicity flip part of T
µ⌫

(previous slide) and analytic
continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor W
µ⌫

, ! even n
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Symmetrise in                   , trace subtract in all free indices

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Operator Product Expansion to relate to matrix elements of operator

Optical theorem, dispersion relation for hadronic forward scatt. amplitude,
analytic continuation give moments:

Unpolarized scattering: symmetric piece of hadronic tensor W
µ⌫

, ! even n
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where
Symmetrise in                   , trace subtract in all free indices



Gluon transversity of the ϕ meson
First moment in ϕ meson (simplest spin-1 system           nuclei)
Lattice details: clover fermions, Lüscher-Weisz gauge action  
 
 
 
 
 
 

Many systematics not addressed (yet)
Quark mass effects 
Volume effects

LQCD Calculation

Lattice Details
Luscher-Weisz gauge action with a clover-improved quark action

L/a T/a � aml ams

24 64 6.1 -0.2800 -0.2450

a (fm) L (fm) T (fm) m⇡ (MeV) mK (MeV)

0.1167(16) 2.801(29) 7.469(77) 450(5) 596(6)

m� (MeV) m⇡L m⇡T Ncfg Nsrc

1040(3) 6.390 17.04 1042 105

All � polarization states ({1, 2, 3} or {+,�, 0})
I on-diagonal
I o↵-diagonal

Momenta up to (1,1,1) in lattice units (1 unit ⇠ 0.4GeV)

Di↵erent discretisations of the operator (di↵erent irreps.)
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Discretisation 
Renormalisation  
Alexandrou et al. arXiv:1611.06901

W. Detmold, PES, PRD 94 (2016), 014507 + W. Detmold, D. Pefkou, PES PRD 95 (2017), 114515



Correlation decays exponentially  
with distance in time: 
 
 
 
At late times: 

Ground state mass revealed  
through “effective mass plot” 
 

Doing lattice QCD

! Z0 exp(�E0t)

M(t) = ln


C(t)
C(t + 1)

�
t!1�! E0

C(t) =

X

n

Zn exp(�Ent)

all eigenstates with q#’s of proton

0 2 4 6 8 10 12 14

0.9

1.0

1.1

1.2

1.3

1.4

1.5
smeared-smeared 
smeared-point

time



How do we calculate matrix elements?

Create three quarks (correct quantum numbers) at a source 
and annihilate the three quarks at sink far from source
Insert operator at intermediate timeslice 
 
 
 
 
 
 

Remove time-dependence by dividing out with two-point 
correlators:

LQCD matrix elements

C3(t, ⌧, ~p0, ~q)

C2(t� ⌧, p0)C2(⌧, p)
t!1�! hN(p0)|O(q)|N(p)i

t = 0

t = ⌧
t = t



Calculate lowest moment of Δ(x,Q2): 
 
 

 

Ratio of LQCD correlators               :

LQCD Calculation
Extraction of A2

We calculate on the lattice:
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factors of m and p

sink time

C3(t, ⌧)

C2(t)
/ A2, 0 ⌧ ⌧ ⌧ t

operator  
insertion time

0 𝜏 t

0 t
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Rank Operator Symmetry Dimension
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(E)
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n  
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�µ1µ2
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D

(E)
µ3 . . .

 !
D

(E)
µn  

(E) ⇢ ⌦
n
⌧
(4)
1 n+ 1

TABLE II. Dimensions and symmetry properties under H(4) of operators that may mix with O(E)
µ⌫µ1...µn . The symbol ⇢

indicates that the operator transforms as a subset of the symmetry group shown.

Rank ⌦
m
⌧
(4)
1 ⌧

(4)
4 ⌦

✓
⌦

m�1
⌧
(4)
1

◆

2 ⌧
(1)
1 , ⌧ (3)1 , ⌧ (6)1 , ⌧ (6)3 ⌧

(1)
4 , ⌧ (3)4 , ⌧ (6)1 , ⌧ (6)4

3 ⌧
(4)
2 , ⌧ (4)4 , ⌧ (8)1 , ⌧ (8)2 ⌧

(4)
3 , ⌧ (4)4 , ⌧ (8)2 , ⌧ (8)1

4 ⌧
(1)
2 , ⌧ (1)4 , ⌧ (2)1 , ⌧ (2)2 , ⌧ (3)2 , ⌧

(1)
3 , ⌧ (1)1 , ⌧ (2)2 , ⌧ (2)1 , ⌧ (3)3

⌧
(3)
3 , ⌧ (3)4 , ⌧ (6)2 , ⌧ (6)4 ⌧

(3)
2 , ⌧ (3)1 , ⌧ (6)2 , ⌧ (6)3

TABLE III. Irreducible representations which appear for the first time at each rank m for the towers of operators in Table II.

energy of the state, and

~e± = ⌥ mp
2
(0, 1,±i), (23)

~e0 = m(1, 0, 0). (24)

The Euclidean polarisations needed for Eqs. (21) and (20)
are

✏(E)
i (~p,�) = ✏i(~p,�). (25)

To construct the three-point correlators correspond-
ing to the insertion of the gluonic operator, the two
point functions above were correlated configuration-by-
configuration, and source-location–by–source-location,
with the gluonic operator. The three-point correlators
for a given operator O = Olatt.

m,n have the form

C3pt
jk (t, ⌧, ~p) =

X

~x

X

~y

ei~p·~xh⌘j(t, ~p) O(⌧, ~y) ⌘†k(0,~0)i

=Z�e
�Et

X

��0

✏(E)
j (~p,�)✏(E)⇤

k (~p,�0)h~p,�|O|~p,�0i

+ . . . (26)

if 0 ⌧ ⌧ ⌧ t ⌧ T (where T denotes the time extent of
the lattice). If we instead have 0 ⌧ t ⌧ ⌧ ⌧ T , t is
replaced by (T � t) in the rightmost form of the above
expression and there is an additional multiplicative factor
of (�1)n4 where n4 is the number of temporal indices
in the operator O. In constructing C3pt, various levels
of Wilson flow [22] or HYP smearing [23] were applied

to the links in the gluon operator. This was shown in
Refs. [11, 13] to significantly improve the signal-to-noise
ratio for a di↵erent gluon operator calculation.

Using Eq. (20) and Eq. (26) we construct the ratio

Rjk(t, ⌧, ~p) =
C3pt

jk (t, ⌧, ~p) + C3pt
jk (T � t, T � ⌧, ~p)

C2pt
jk (t, ~p)

(27)

for {t, ⌧} < T/2. Other choices for the ratio, with dif-
ferent combinations of the two-point function in the de-
nominator (e.g., spin-averaged) were also considered, and
give consistent results. This ratio may still depend on t
and ⌧ due to contributions from higher states neglected
in the derivation of Eq. (26). Note that the two point cor-
relator in the denominator has reached its ground state
after t = 8.

To determine the dependence of the ratio in Eq. (27) on
the reduced matrix element A2, we apply Eq. (10) to the
Minkowski-space versions of the Euclidean-space vectors
in Appendix A. The Minkowski operators are determined
by noting that

G(E)
ij = Gij if i, j 2 {1, 2, 3}, (28)

G(E)
4j = (�i)G0j , (29)

and so

Om,n ⇠ (�i)n4Oµ⌫µ1µ2 , (30)

where n4 is the number of temporal indices on the left-
hand side, and temporal indices labelled ‘4’ in Euclidean



Discrete lattice: rotational symmetry           hypercubic symmetry
Take linear combinations of operators that transform irreducibly under 
hypercubic group: safe from mixing 
  e.g., for                             use  

All polarisation combinations (j,k)
Boost momenta up to (1,1,1)
Examine all elements of each hypercubic irrep.

LQCD Calculation
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of (�1)n4 where n4 is the number of temporal indices
in the operator O. In constructing C3pt, various levels
of Wilson flow [22] or HYP smearing [23] were applied

to the links in the gluon operator. This was shown in
Refs. [11, 13] to significantly improve the signal-to-noise
ratio for a di↵erent gluon operator calculation.
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for {t, ⌧} < T/2. Other choices for the ratio, with dif-
ferent combinations of the two-point function in the de-
nominator (e.g., spin-averaged) were also considered, and
give consistent results. This ratio may still depend on t
and ⌧ due to contributions from higher states neglected
in the derivation of Eq. (26). Note that the two point cor-
relator in the denominator has reached its ground state
after t = 8.

To determine the dependence of the ratio in Eq. (27) on
the reduced matrix element A2, we apply Eq. (10) to the
Minkowski-space versions of the Euclidean-space vectors
in Appendix A. The Minkowski operators are determined
by noting that

G(E)
ij = Gij if i, j 2 {1, 2, 3}, (28)
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and so
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�µ1�5

 !
D

(E)
µ2 . . .

 !
D

(E)
µn  

(E) ⌧
(4)
4 ⌦

✓
⌦

n�1
⌧
(4)
1

◆
n+ 2

n  
(E)
�µ1

 !
D

(E)
µ2 . . .

 !
D

(E)
µn  

(E) ⌦
n
⌧
(4)
1 n+ 2

n  
(E)
�µ1µ2

 !
D

(E)
µ3 . . .

 !
D

(E)
µn  

(E) ⇢ ⌦
n
⌧
(4)
1 n+ 1

TABLE II. Dimensions and symmetry properties under H(4) of operators that may mix with O(E)
µ⌫µ1...µn . The symbol ⇢

indicates that the operator transforms as a subset of the symmetry group shown.

Rank ⌦
m
⌧
(4)
1 ⌧

(4)
4 ⌦

✓
⌦

m�1
⌧
(4)
1

◆

2 ⌧
(1)
1 , ⌧ (3)1 , ⌧ (6)1 , ⌧ (6)3 ⌧

(1)
4 , ⌧ (3)4 , ⌧ (6)1 , ⌧ (6)4

3 ⌧
(4)
2 , ⌧ (4)4 , ⌧ (8)1 , ⌧ (8)2 ⌧

(4)
3 , ⌧ (4)4 , ⌧ (8)2 , ⌧ (8)1

4 ⌧
(1)
2 , ⌧ (1)4 , ⌧ (2)1 , ⌧ (2)2 , ⌧ (3)2 , ⌧

(1)
3 , ⌧ (1)1 , ⌧ (2)2 , ⌧ (2)1 , ⌧ (3)3

⌧
(3)
3 , ⌧ (3)4 , ⌧ (6)2 , ⌧ (6)4 ⌧

(3)
2 , ⌧ (3)1 , ⌧ (6)2 , ⌧ (6)3

TABLE III. Irreducible representations which appear for the first time at each rank m for the towers of operators in Table II.

energy of the state, and

~e± = ⌥ mp
2
(0, 1,±i), (23)

~e0 = m(1, 0, 0). (24)

The Euclidean polarisations needed for Eqs. (21) and (20)
are

✏(E)
i (~p,�) = ✏i(~p,�). (25)

To construct the three-point correlators correspond-
ing to the insertion of the gluonic operator, the two
point functions above were correlated configuration-by-
configuration, and source-location–by–source-location,
with the gluonic operator. The three-point correlators
for a given operator O = Olatt.

m,n have the form

C3pt
jk (t, ⌧, ~p) =

X

~x

X

~y

ei~p·~xh⌘j(t, ~p) O(⌧, ~y) ⌘†k(0,~0)i

=Z�e
�Et

X

��0

✏(E)
j (~p,�)✏(E)⇤

k (~p,�0)h~p,�|O|~p,�0i

+ . . . (26)

if 0 ⌧ ⌧ ⌧ t ⌧ T (where T denotes the time extent of
the lattice). If we instead have 0 ⌧ t ⌧ ⌧ ⌧ T , t is
replaced by (T � t) in the rightmost form of the above
expression and there is an additional multiplicative factor
of (�1)n4 where n4 is the number of temporal indices
in the operator O. In constructing C3pt, various levels
of Wilson flow [22] or HYP smearing [23] were applied

to the links in the gluon operator. This was shown in
Refs. [11, 13] to significantly improve the signal-to-noise
ratio for a di↵erent gluon operator calculation.

Using Eq. (20) and Eq. (26) we construct the ratio

Rjk(t, ⌧, ~p) =
C3pt

jk (t, ⌧, ~p) + C3pt
jk (T � t, T � ⌧, ~p)

C2pt
jk (t, ~p)

(27)

for {t, ⌧} < T/2. Other choices for the ratio, with dif-
ferent combinations of the two-point function in the de-
nominator (e.g., spin-averaged) were also considered, and
give consistent results. This ratio may still depend on t
and ⌧ due to contributions from higher states neglected
in the derivation of Eq. (26). Note that the two point cor-
relator in the denominator has reached its ground state
after t = 8.

To determine the dependence of the ratio in Eq. (27) on
the reduced matrix element A2, we apply Eq. (10) to the
Minkowski-space versions of the Euclidean-space vectors
in Appendix A. The Minkowski operators are determined
by noting that

G(E)
ij = Gij if i, j 2 {1, 2, 3}, (28)

G(E)
4j = (�i)G0j , (29)

and so

Om,n ⇠ (�i)n4Oµ⌫µ1µ2 , (30)

where n4 is the number of temporal indices on the left-
hand side, and temporal indices labelled ‘4’ in Euclidean

ratio depends on  
polarisations, 
momentum, 

operator 

4

L/a T/a � aml ams a (fm) L (fm) T (fm) m⇡ (MeV) mK (MeV) m� (MeV) m⇡L m⇡T Ncfg Nsrc

24 64 6.1 -0.2800 -0.2450 0.1167(16) 2.801(29) 7.469(77) 450(5) 596(6) 1040(3) 6.390 17.04 1042 105

TABLE I. Parameters of the ensemble of gauge-field configurations. The lattices have dimension L3 ⇥ T , lattice spacing a
and bare quark masses amq (in lattice units). A total of Nsrc light-quark sources were used to perform measurements on Ncfg

configurations.

the symmetry properties of each irreducible representa-
tion, the bases of interest here (i.e., those which have the
same symmetry as the operator under consideration) are
those in the irreducible subspace corresponding to a 2⇥2
Young frame.

The symmetry properties of operators which could pos-

sibly mix with O(E)
µ⌫µ1µ2 are given in Table II in terms of

the defining representation labelled as ⌧ (4)1 and the odd-

parity representation labelled as ⌧ (4)4 .
Table III shows the rank at which irreducible repre-

sentations first appear in each tower of tensor products
(decomposed into direct sums) in Table II. Of the repre-
sentations that first appear at rank m = 4 (corresponding

to the n = 2 operator), ⌧ (2)1 , ⌧ (2)2 , and ⌧ (6)2 also appear
in the GL(4)-irreducible subspace which has the correct
symmetries for Eq. (15). We therefore choose to con-
sider lattice operators transforming under these three ir-
reducible representations as they cannot mix with any
quark or gluon operators of the same or lower dimen-
sion. Explicit forms of the ten (2+2+6 from the three
representations) basis vectors we consider are given in
Appendix A.

To implement the lattice operator, Olatt.
µ⌫µ1µ2

, we use the
clover definition of the field strength tensor

Gµ⌫(x) =
1

4

1

2

�
Pµ⌫(x) � P †

µ⌫(x)
�
, (17)

where

Pµ⌫(x) =Uµ(x)U⌫(x + µ)U†
µ(x + ⌫)U †

⌫ (x)

+ U⌫(x)U†
µ(x � µ + ⌫)U †

⌫ (x � µ)Uµ(x � µ)

+ U†
µ(x � µ)U †

⌫ (x � µ � ⌫)Uµ(x � µ � ⌫)U⌫(x � ⌫)

+ U†
⌫ (x � ⌫)Uµ(x � ⌫)U⌫(x � ⌫ + µ)U†

µ(x).
(18)

Once operators have been constructed with the correct
symmetry properties under H(4), the lattice and con-
tinuum operators are related by a finite renormalisation
factor

O(E)
m,n = Zm

2 Olatt.
m,n , (19)

where the subscript (m,n) denotes the nth vector from
the mth representation, and Zm

2 = 1+O(↵s). The super-
script m on the renormalisation factor indicates that this
can depend on representation. In this first investigation
we do not compute Zm

2 , but note that for similar gluonic
operators, such as the gluonic part of the energy momen-
tum tensor, the corresponding renormalisation factor is

O(1) [13]. It would be surprising if Zm
2 , for any choice of

m, was significantly di↵erent.

C. Extraction of Results

The expectation values of the matrix elements of the
operators described in the previous section in the � me-
son are extracted from ratios of two and three-point cor-
relation functions. In order to compute these correlation
functions, strange quark propagators were computed us-
ing a bare quark mass m = �0.2450 using 5 iterations
of gauge-invariant Gaussian smearing [22] in the spatial
directions at both source and sink. Measurements were
performed for 96 di↵erent source locations on each of
1042 configurations, resulting in 100032 measurements.
These propagators were contracted to form two-point and
three-point � meson correlators using interpolating oper-
ators of the form ⌘i(x) = s(x)�is(x) in terms of smeared
quark fields. For each type of correlator, measurements
on each configuration were averaged and bootstrap sta-
tistical resampling was used in order to assess the statis-
tical uncertainties in the measurements. Note that the
calculation does not include annihilation contributions
(self-contraction of propagators at the source and sink),
the e↵ects of which are OZI-suppressed.

The two point correlators

C2pt
jk (t, ~p) =

X

~x

ei~p·~xh⌘j(t, ~x)⌘†k(0,~0)i

=Z�

⇣
e�Et + e�E(T�t)

⌘X

�

✏(E)
j (~p,�)✏(E)⇤

k (~p,�)

+ . . . , (20)

were constructed for all diagonal and o↵-diagonal polar-
isation combinations (jk). The ellipsis denotes contribu-
tions from excited states. For the spin-1 � meson there
are three di↵erent particle states such that

h0|⌘i(~p)|~p,�i =
p

Z�✏
(E)
i (~p,�) , (21)

where � = {+,�, 0}, and the polarisation vectors in
Minkowski space have the explicit form

✏µ(~p,�) =

✓
~p · ~e�
m

,~e� +
~p · ~e�

m(m + E)
~p

◆
, (22)

with m and E =
p|~p|2 + m2 being the rest mass and
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Eq. (16). It is significant that we find a statistically clean
and theoretically consistent and robust signal in this un-
physical simulation. For example, statistical agreement
is seen between the values of this observable obtained us-
ing vectors in three di↵erent irreducible representations
to which the operator under consideration subduces at
nonzero lattice spacing, as well as between measurements
of di↵erent basis vectors within each irreducible repre-
sentation. These values are expected to di↵er by lattice
discretisation artefacts, suggesting that such e↵ects are
not severe. There is also agreement between the results
with di↵erent levels of HYP smearing and with Wilson-
flowed gauge fields, even though each set of results has a
di↵erent renormalisation. In addition, we have explored
the gluonic analogue of the So↵er bound for transver-
sity for the first time, showing that the first moment of
this bound in a � meson (at the unphysical light quark
masses used in this work and subject to caveats regarding
renormalisation and the continuum limit) is saturated to
approximately the same extent as the first moment of
the isovector quark So↵er bound for the nucleon as de-
termined in a previous lattice simulation [10, 11].

This study is encouraging for the application of the
methods described here to the calculation of o↵-forward
gluonic transversity matrix elements in the nucleon.
These quantities determine moments of gluon generalised
parton distributions that are accessible in DVCS. It is
also encouraging for calculations of moments of �(x,Q2)
in light nuclei, where this structure function provides
a measure of exotic glue—the contributions from glu-
ons not associated with individual nucleons in a nu-
cleus. While nuclei are considerably more challenging
to study in lattice QCD than simple hadrons like the �
meson, there has been considerable recent progress on
lattice studies of the spectroscopy [30–32] and proper-
ties [33, 34] of light nuclei. Although a procedure to
measure �(x,Q2) in nuclei was first outlined in 1989 [7],
it is only recently in a letter of intent to Je↵erson Lab [5]
that an experimental measurement of �(x,Q2) has been
proposed, with the goal of measurements at low x on ni-
trogen targets. Further measurements could be expected
at a future Electron-Ion Collider [3, 4].
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Appendix A: Explicit Lattice Basis Vectors

Here we list the explicit forms of the Euclidean basis
vectors which were used for the calculations described in
Section III.

The Euclidean analogue of the operator defined in
Eq. (15) is built from

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

. (A1)

We consider the ⌧ (2)1 , ⌧ (6)2 and ⌧ (2)2 irreducible represen-

tations. For ⌧ (2)1 , the basis vectors are [21]:

O(E)
1,1 =

1

8
p

3

⇣
�2O(E)

1122 + O(E)
1133 + O(E)

1144

+ O(E)
2233 + O(E)

2244 � 2O(E)
3344

⌘
, (A2)

O(E)
1,2 =

1

8

⇣
O(E)

1144 + O(E)
2233 � O(E)

1133 � O(E)
2244

⌘
. (A3)

The ⌧ (6)2 vectors are:

O(E)
2,1 =

1

4

⇣
O(E)

1123 � O(E)
2344

⌘
, (A4)

O(E)
2,2 =

1

4

⇣
O(E)

1124 + O(E)
2334

⌘
, (A5)

O(E)
2,3 =

1

4

⇣
O(E)

1223 + O(E)
1344

⌘
, (A6)

O(E)
2,4 =

1

4

⇣
O(E)

1224 � O(E)
1334

⌘
, (A7)

O(E)
2,5 =

1

4

⇣
O(E)

1134 � O(E)
2234

⌘
, (A8)

O(E)
2,6 =

1

4

⇣
O(E)

1233 � O(E)
1244

⌘
. (A9)

Finally, we consider the ⌧ (2)2 basis vectors:

O(E)
3,1 =

1

4

⇣
O(E)

1324 + O(E)
1234

⌘
, (A10)

O(E)
3,2 =4

p
3
⇣
O(E)

1324 � O(E)
1234 � 2O(E)

1243

⌘
. (A11)

To construct the Euclidean analogue of Eq. (34), we
use

O(E)
µ1µ2

= G(E)
µ1↵G

(E)
µ2↵. (A12)

Two irreducible representations are considered here. For

the ⌧ (3)1 representation the basis vectors are:

O(E)
1,1 =

1

2

⇣
O(E)

11 + O(E)
22 � O(E)

33 � O(E)
44

⌘
, (A13)

O(E)
1,2 =

1p
2

⇣
O(E)

33 � O(E)
44

⌘
, (A14)

O(E)
1,3 =

1p
2

⇣
O(E)

11 � O(E)
22

⌘
. (A15)

For ⌧ (6)3 the vectors are:

O(E)
2,µ⌫ =

1p
2

⇣
O(E)

µ⌫ + O(E)
⌫µ

⌘
, 1  µ < ⌫  4. (A16)
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Eq. (16). It is significant that we find a statistically clean
and theoretically consistent and robust signal in this un-
physical simulation. For example, statistical agreement
is seen between the values of this observable obtained us-
ing vectors in three di↵erent irreducible representations
to which the operator under consideration subduces at
nonzero lattice spacing, as well as between measurements
of di↵erent basis vectors within each irreducible repre-
sentation. These values are expected to di↵er by lattice
discretisation artefacts, suggesting that such e↵ects are
not severe. There is also agreement between the results
with di↵erent levels of HYP smearing and with Wilson-
flowed gauge fields, even though each set of results has a
di↵erent renormalisation. In addition, we have explored
the gluonic analogue of the So↵er bound for transver-
sity for the first time, showing that the first moment of
this bound in a � meson (at the unphysical light quark
masses used in this work and subject to caveats regarding
renormalisation and the continuum limit) is saturated to
approximately the same extent as the first moment of
the isovector quark So↵er bound for the nucleon as de-
termined in a previous lattice simulation [10, 11].

This study is encouraging for the application of the
methods described here to the calculation of o↵-forward
gluonic transversity matrix elements in the nucleon.
These quantities determine moments of gluon generalised
parton distributions that are accessible in DVCS. It is
also encouraging for calculations of moments of �(x,Q2)
in light nuclei, where this structure function provides
a measure of exotic glue—the contributions from glu-
ons not associated with individual nucleons in a nu-
cleus. While nuclei are considerably more challenging
to study in lattice QCD than simple hadrons like the �
meson, there has been considerable recent progress on
lattice studies of the spectroscopy [30–32] and proper-
ties [33, 34] of light nuclei. Although a procedure to
measure �(x,Q2) in nuclei was first outlined in 1989 [7],
it is only recently in a letter of intent to Je↵erson Lab [5]
that an experimental measurement of �(x,Q2) has been
proposed, with the goal of measurements at low x on ni-
trogen targets. Further measurements could be expected
at a future Electron-Ion Collider [3, 4].
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Here we list the explicit forms of the Euclidean basis
vectors which were used for the calculations described in
Section III.

The Euclidean analogue of the operator defined in
Eq. (15) is built from
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We consider the ⌧ (2)1 , ⌧ (6)2 and ⌧ (2)2 irreducible represen-

tations. For ⌧ (2)1 , the basis vectors are [21]:
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use

O(E)
µ1µ2

= G(E)
µ1↵G

(E)
µ2↵. (A12)
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Eq. (16). It is significant that we find a statistically clean
and theoretically consistent and robust signal in this un-
physical simulation. For example, statistical agreement
is seen between the values of this observable obtained us-
ing vectors in three di↵erent irreducible representations
to which the operator under consideration subduces at
nonzero lattice spacing, as well as between measurements
of di↵erent basis vectors within each irreducible repre-
sentation. These values are expected to di↵er by lattice
discretisation artefacts, suggesting that such e↵ects are
not severe. There is also agreement between the results
with di↵erent levels of HYP smearing and with Wilson-
flowed gauge fields, even though each set of results has a
di↵erent renormalisation. In addition, we have explored
the gluonic analogue of the So↵er bound for transver-
sity for the first time, showing that the first moment of
this bound in a � meson (at the unphysical light quark
masses used in this work and subject to caveats regarding
renormalisation and the continuum limit) is saturated to
approximately the same extent as the first moment of
the isovector quark So↵er bound for the nucleon as de-
termined in a previous lattice simulation [10, 11].

This study is encouraging for the application of the
methods described here to the calculation of o↵-forward
gluonic transversity matrix elements in the nucleon.
These quantities determine moments of gluon generalised
parton distributions that are accessible in DVCS. It is
also encouraging for calculations of moments of �(x,Q2)
in light nuclei, where this structure function provides
a measure of exotic glue—the contributions from glu-
ons not associated with individual nucleons in a nu-
cleus. While nuclei are considerably more challenging
to study in lattice QCD than simple hadrons like the �
meson, there has been considerable recent progress on
lattice studies of the spectroscopy [30–32] and proper-
ties [33, 34] of light nuclei. Although a procedure to
measure �(x,Q2) in nuclei was first outlined in 1989 [7],
it is only recently in a letter of intent to Je↵erson Lab [5]
that an experimental measurement of �(x,Q2) has been
proposed, with the goal of measurements at low x on ni-
trogen targets. Further measurements could be expected
at a future Electron-Ion Collider [3, 4].
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Here we list the explicit forms of the Euclidean basis
vectors which were used for the calculations described in
Section III.

The Euclidean analogue of the operator defined in
Eq. (15) is built from
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= G(E)
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We consider the ⌧ (2)1 , ⌧ (6)2 and ⌧ (2)2 irreducible represen-

tations. For ⌧ (2)1 , the basis vectors are [21]:
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�2O(E)

1122 + O(E)
1133 + O(E)

1144

+ O(E)
2233 + O(E)

2244 � 2O(E)
3344

⌘
, (A2)

O(E)
1,2 =

1

8

⇣
O(E)

1144 + O(E)
2233 � O(E)

1133 � O(E)
2244

⌘
. (A3)

The ⌧ (6)2 vectors are:

O(E)
2,1 =

1

4

⇣
O(E)

1123 � O(E)
2344

⌘
, (A4)

O(E)
2,2 =

1

4

⇣
O(E)

1124 + O(E)
2334

⌘
, (A5)

O(E)
2,3 =

1

4

⇣
O(E)

1223 + O(E)
1344

⌘
, (A6)

O(E)
2,4 =

1

4

⇣
O(E)

1224 � O(E)
1334

⌘
, (A7)

O(E)
2,5 =

1

4

⇣
O(E)

1134 � O(E)
2234

⌘
, (A8)

O(E)
2,6 =

1

4

⇣
O(E)

1233 � O(E)
1244

⌘
. (A9)

Finally, we consider the ⌧ (2)2 basis vectors:

O(E)
3,1 =

1

4

⇣
O(E)

1324 + O(E)
1234

⌘
, (A10)

O(E)
3,2 =4

p
3
⇣
O(E)

1324 � O(E)
1234 � 2O(E)

1243

⌘
. (A11)

To construct the Euclidean analogue of Eq. (34), we
use

O(E)
µ1µ2

= G(E)
µ1↵G

(E)
µ2↵. (A12)

Two irreducible representations are considered here. For

the ⌧ (3)1 representation the basis vectors are:

O(E)
1,1 =

1

2

⇣
O(E)

11 + O(E)
22 � O(E)

33 � O(E)
44

⌘
, (A13)

O(E)
1,2 =

1p
2

⇣
O(E)

33 � O(E)
44

⌘
, (A14)

O(E)
1,3 =

1p
2

⇣
O(E)

11 � O(E)
22

⌘
. (A15)

For ⌧ (6)3 the vectors are:

O(E)
2,µ⌫ =

1p
2

⇣
O(E)

µ⌫ + O(E)
⌫µ

⌘
, 1  µ < ⌫  4. (A16)
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Soffer-type Bounds

Constraint relating transversity, spin-indep. and spin-dep. distributions 

   For quark distributions in spin 1/2 state: 
 
 
 
 
 
 
 
Analogue for first moments of gluon distributions?

Need to calculate moments of spin independent gluon distribution 
(first moment of spin-dependent gluon distribution vanishes by 
operator symmetries)



Spin-independent gluon operator: 
 

Matrix elements at n=2 define lowest  
moment of structure functions

Analysis as in transversity case
Mixing with quark ops. neglected, pQCD calcs. 
shown that it is small: Alexandrou 1611.06901 

Two reduced matrix elements

Spin-indep. gluon structure
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W. Detmold and P. E. Shanahan
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

On further investigation, it was discovered that the
decomposition of the PDFs of the spin-independent gluon
operator in Eq. (37) of the main paper is incorrect. This
lead to a number of errors, which are corrected here.

Replacing Eq. (32) of the main paper, the gluonic ana-
logue of the So↵er bound, for spin-1 particles, is [1–4]

|�G(x)|  1

2

✓
f1(x) +

1

2
f1LL(x) + g1(x)

◆
, (1)

where �G(x) is the gluonic transversity distribution de-
fined in Eq. (14) of the main paper, f1(x) and f1LL(x)
are the spin-independent gluon distributions, and g1(x)
is the spin-dependent gluon distribution. The notation
here for f1, f1LL and g1 is the same as in Refs. [3, 4],
while �G(x) is named h1TT in those works.

Replacing Eq. (36) of the main paper, the analogue of
the So↵er bound for the leading Mellin moments of gluon

distributions is [4]

|A2|  1

24
(5B2,1 � 6B2,2), (2)

where A2 is the reduced matrix element defined in
Eq. (10) of the main paper and B2,1 and B2,2 are linear
combinations of the moments of the structure functions
f1 and f1LL in Eq. (1), defined through

hpE0|Oµ1µ2 |pEi
=S

⇥
M

2
E

0⇤
µ1
Eµ2

⇤
B2,1(µ

2)

+ S [(E · E0⇤)pµ1pµ2 ]B2,2(µ
2). (3)

This equation replaces Eq. (37) from the main paper.
Several figures must also be replaced. Figures 1 and 2

below replace Figs. 6 and 8 from the main paper. The
conclusions of the analysis, including that the gluon sof-
fer bound in the spin-1 � meson is saturated to approxi-
mately 80%–100%, do not change.

[1] X. Artru, M. Elchikh, J.-M. Richard, J. So↵er, and O. V.
Teryaev, Phys. Rept. 470, 1 (2009), 0802.0164.

[2] R. Ja↵e, private communication.
[3] D. Boer, S. Cotogno, T. van Daal, P. J. Mulders, A. Sig-

nori, and Y.-J. Zhou, JHEP 10, 013 (2016), 1607.01654.
[4] S. Cotogno, Few Body Syst. 58, 92 (2017).
[5] M. Lüscher, JHEP 08, 071 (2010), [Erratum:

JHEP03,092(2014)], 1006.4518.
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FIG. 4. Example of the evolution of the ⌧ -plateaus for A2

with sink time t for the vector O(E)
2,1 at |~p|2 = 3. The hori-

zontal bands show the final fit value obtained from the two
dimensional (t, ⌧) fit, as described in the text.

reduced matrix elements of local operators:

Oµ⌫µ1...µn =S
h
Gµµ1

 !
D µ3 . . .

 !
D µnG⌫µ2

i
, (33)

Oµ1...µn =S
h
Gµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (34)

eOµ1...µn =S
h
eGµ1↵

 !
D µ3 . . .

 !
D µnG

↵
µ2

i
, (35)

for the transversity, spin-independent and spin-
dependent distributions respectively, where the dual
field strength tensor is eGµ⌫ = ✏µ⌫⇢�G⇢�. The first
moments of the gluonic distributions are related to the
matrix elements of the n = 2 operators in the towers
above. Since the � matrix element of eOµ1µ2 vanishes by
parity, the analogue of the So↵er bound for the leading
Mellin moments of gluon distributions is [26]

|A2|
B2
 1

2
, (36)

where A2 is the reduced matrix element defined in

FIG. 5. Reduced matrix element A2 extracted from ratios of
two and three-point functions for di↵erent boost momenta, as
described in Section III C. Wilson flow [22] was applied to the
links in the gluon operator as described in the text. Results in
sections I, II and III of the figure are determined from vectors
in the ⌧

(2)
1 , ⌧

(6)
1 and ⌧

(2)
2 representations. Di↵erent colours

(o↵set on the horizontal access for clarity) denote di↵erent
vectors in each basis. The horizontal band is a fit shown to
guide the eye.

Eq. (10) and we define B2 through

hpE0|Oµ1µ2 |pEi
= S

h
(�E · E0⇤)pµ1pµ2 + (p · E)E0

⇤µ1
pµ2

+(p · E0⇤)Eµ1pµ2 � (p · p)E0
⇤µ1

Eµ2

⇤
B2(µ

2).
(37)

The building block of the Euclidean analogue of
Eq. (34) for n = 2 is

Oµ1µ2 = G(E)
µ1↵G

(E)
µ2↵. (38)

It is clear from Table II that this operator is subject to
mixing with same-dimension quark operators at O(↵s).
In this proof-of-principle study we neglect operator mix-
ing and renormalisation and simply determine the bare
lattice matrix element B2, as described in previous sec-
tions for A2, from the matrix elements of Euclidean-space
basis vectors in appropriate irreducible representations of
H(4). Explicit forms for the particular vectors we con-
sider are given in Appendix A.

V. RESULTS

The reduced matrix element A2 obtained from this
analysis, with Wilson flow [22] applied to the links in
the gluon operator to a total flow time of 1 in lattice
units using a step size of 0.01, is shown in Fig. 5 for
various boosts and for all operator basis vectors that
have non-vanishing contributions at that boost. Out-
standing agreement is seen between the values obtained
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Soffer-type Bounds

Soffer-like bound approximately saturated

|0.24|  1

24
[5(�0.5)� 6(�1.4)] = 0.24

Erratum: Gluonic Transversity from Lattice QCD [Phys. Rev. D 94, 014507 (2016)]

W. Detmold and P. E. Shanahan
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

On further investigation, it was discovered that the
decomposition of the PDFs of the spin-independent gluon
operator in Eq. (37) of the main paper is incorrect. This
lead to a number of errors, which are corrected here.

Replacing Eq. (32) of the main paper, the gluonic ana-
logue of the So↵er bound, for spin-1 particles, is [1–4]

|�G(x)|  1

2

✓
f1(x) +

1

2
f1LL(x) + g1(x)

◆
, (1)

where �G(x) is the gluonic transversity distribution de-
fined in Eq. (14) of the main paper, f1(x) and f1LL(x)
are the spin-independent gluon distributions, and g1(x)
is the spin-dependent gluon distribution. The notation
here for f1, f1LL and g1 is the same as in Refs. [3, 4],
while �G(x) is named h1TT in those works.

Replacing Eq. (36) of the main paper, the analogue of
the So↵er bound for the leading Mellin moments of gluon

distributions is [4]

|A2|  1

24
(5B2,1 � 6B2,2), (2)

where A2 is the reduced matrix element defined in
Eq. (10) of the main paper and B2,1 and B2,2 are linear
combinations of the moments of the structure functions
f1 and f1LL in Eq. (1), defined through

hpE0|Oµ1µ2 |pEi
=S

⇥
M

2
E
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µ1
Eµ2

⇤
B2,1(µ

2)

+ S [(E · E0⇤)pµ1pµ2 ]B2,2(µ
2). (3)

This equation replaces Eq. (37) from the main paper.
Several figures must also be replaced. Figures 1 and 2

below replace Figs. 6 and 8 from the main paper. The
conclusions of the analysis, including that the gluon sof-
fer bound in the spin-1 � meson is saturated to approxi-
mately 80%–100%, do not change.
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[2] R. Ja↵e, private communication.
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Soffer-type bound for leading moments of gluon distributions 
(spin-1 state):



Or is the picture more complicated?

Gluon Radii

Bag Model

gluon radius > charge radius

Constituent 
Quark Model

LQCD with  
heavy quarks

gluon radius ~ charge radius
gluon radius < charge radius

How does the gluon radius of a proton compare to the 
quark/charge radius?



Matrix elements of the spin-independent gluon structure function

Off-forward matrix elements are complicated: 
 
 

Gluon Generalised FFs

2

lated to matrix elements of the operators

Oµ⌫µ1...µn = S
h

Gµ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

, (1)

Õµ⌫µ1...µn = S
h

G̃µ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

, (2)

Oµ⌫µ1...µn = S
h

Gµµ1i
 !
D µ3 . . . i

 !
D µnG⌫µ2

i

, (3)

respectively, where the gluon field strength tensor is Gµ⌫ ,
the dual field-strength tensor is G̃µ⌫ = 1

2

✏µ⌫↵�G
↵� , and

 !
D = 1

2

⇣�!
D � �D

⌘

. ‘S’ denotes symmetrisation and trace-

subtraction in all free indices for Eqs. (1) and (2), and
symmetrisation in the µi and and trace-subtraction in
all indices for Eq. (3). The matrix elements of these
operators in spin-1 states, at lowest n, are the focus of
this work.

The o↵-forward matrix elements of the twist-2 oper-
ators defined above are described by GFFs. For spin-1
particles, there are 7(bn/2c+ 1) spin-independent gluon

GFFs for the nth operator in the tower. For the transver-
sity operator, there are 8(b(n � 2)/2c + 1) gluon GFFs.
The spin-dependent gluon GFFs, which vanish at lowest-
n through operator symmetries, are not considered nu-
merically in this work but are enumerated in Appendix B.
With the polarisation vectors of massive spin-1 particles
defined in Minkowski space as

Eµ(~p,�) =

✓

~p · ~e�
m

,~e� +
~p · ~e�

m(m+ E)~p
◆

, (4)

where � = {+,�, 0}, m and E =
p|~p|2 +m2 are the rest

mass and energy of the state, and

~e± = ⌥ 1p
2
(0, 1,±i), (5)

~e
0

= (1, 0, 0), (6)

the spin-independent gluon GFFs are defined1 [6] through

D

p0E0
�

�

�

S
h

Gµ↵i
 !
D µ1 . . . i

 !
D µnG

↵
⌫

i

�

�

�

pE
E

=
n
X

m even

m=0

(

B
(n+2)

1,m (�2)M2S
⇥

EµE
0⇤
⌫ �µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

2,m (�2)S
⇥

(E · E0⇤)PµP⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

3,m (�2)S
⇥

(E · E0⇤)�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

4,m (�2)S
⇥�

(E0⇤ · P )EµP⌫ + (E · P )E0⇤
µ P⌫

�

�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+B
(n+2)

5,m (�2)S
⇥�

(E0⇤ · P )Eµ�⌫ � (E · P )E0⇤
µ �⌫

�

�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)

6,m (�2)

M2

S
⇥

(E · P )(E0⇤ · P )PµP⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

+
B

(n+2)

7,m (�2)

M2

S
⇥

(E · P )(E0⇤ · P )�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

)

. (7)

Here, P = (p + p0)/2 is the average momentum and the momentum transfer is defined as � = p0 � p. ‘S’ denotes

symmetrisation and trace-subtraction in all free indices. Of these GFFs, only B
(n)
1,0 (�

2) and B
(n)
2,0 (�

2) contribute to
forward-limit matrix elements. The renormalisation scheme and scale-dependence of the GFFs is suppressed here.

1
This choice of basis is slightly di↵erent from that in Ref. [6],

where the decomposition also includes a trace term.
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⇤

+B
(n+2)

3,m (�2)S
⇥

(E · E0⇤)�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤
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(n+2)

4,m (�2)S
⇥�

(E0⇤ · P )EµP⌫ + (E · P )E0⇤
µ P⌫

�

�µ1 . . .�µmPµm+1 . . . Pµn

⇤
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(n+2)
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�
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⇤
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B
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6,m (�2)
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S
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⇤
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B
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S
⇥

(E · P )(E0⇤ · P )�µ�⌫�µ1 . . .�µmPµm+1 . . . Pµn

⇤

)

. (7)

Here, P = (p + p0)/2 is the average momentum and the momentum transfer is defined as � = p0 � p. ‘S’ denotes

symmetrisation and trace-subtraction in all free indices. Of these GFFs, only B
(n)
1,0 (�

2) and B
(n)
2,0 (�

2) contribute to
forward-limit matrix elements. The renormalisation scheme and scale-dependence of the GFFs is suppressed here.

1
This choice of basis is slightly di↵erent from that in Ref. [6],

where the decomposition also includes a trace term.

Many gluonic radii:
Defined by slope of each 

form factor at Q2=t=0
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Dµ3 . . .
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⇥
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0⇤
µ2

� E0⇤
⌫ Pµ2)�µ3 . . .�µm�1Pµm . . . Pµn

⇤

+A(n)
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⇤
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0⇤
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�
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⇤
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0⇤
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⇤

+
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S
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⇤

+
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(t, µ2)
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S
⇥�

(E · P )(Pµ�µ1 ��µPµ1)(P⌫E
0⇤
µ2
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⌫ Pµ2)
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⇤

+
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M2

(E0⇤ · E)S
⇥

(Pµ�µ1 ��µPµ1)(P⌫�µ2 ��⌫Pµ2)�µ3 . . .�µm�1Pµm . . . Pµn

⇤

+
A(n)

8,m�3

(t, µ2)

M4

(E · P )(E0⇤ · P )S
⇥

(Pµ�µ1 ��µPµ1)(P⌫�µ2 ��⌫Pµ2)�µ3 . . .�µm�1Pµm . . . Pµn

⇤

o

hp0E0|S
h

G̃µµ1G⌫µ2

i

|pEi = Ãn
1,mS[✏↵���E

↵E0⇤�P ���PµP⌫ ]

S denotes symmetrisation and trace-subtraction in the indices µ
1

and µ
2

.
P = (p+ p0)/2, � = p0 � p.

note that, by the symmeries of the operator, Ã
labelme

= 0. Note also that there is no term that survives in the
forward limit.

Ack TMD collab

Matrix elements of the gluon transversity structure function

Similarly complicated: 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where the numbers and uncertainties on the right hand side of the equation come from the plateau fits to averaged
ratios obtained as described in the main text. The ordering of the rows is as in Table II.

Appendix D: Direct solution of form factor
decomposition for electromagnetic current

Since only three form factors contribute to matrix el-
ements of the electromagnetic current, a direct solution
of the constraint equations relating ratios of three-point
and two-point functions to the form factors is straight-
forward [18, 19]. This extraction is performed as a check
on the more general method discussed in Section III.

For each momentum transfer, �2, three ratios of two-
point and three-point functions are required to extract
the form factors at that momentum. At zero momentum
transfer, only the G

1

form factor can be determined. In
terms of the ratios

Ri
jk(~�) = Rjk(~p = ~�, ~p 0 = ~0, t, ⌧, J i) (D1)

for the currents J i =  ̄�i , where Rjk(~p, ~p 0, t, ⌧,O) is

defined in Eq. (14) and dependence on the current and
sink times is suppressed, the generic form of the solution
for the FFs can be expressed as

GX(�2) = MX

X

f=a,b,c

NX,fRX,f . (D2)

Here X = C,M,Q labels the Sachs form factors, which
are related to the basis used in Eq. (21) by

GQ(�
2) = G

1

(�2)�G
2

(�2) + (1 + ⌘)G
3

(Q2),

GM (�2) = G
2

(�2), (D3)

GC(�
2) = G

1

(�2) +
2

3
⌘GQ(�

2) .

One choice of the combinations NX,f for each momen-
tum used, given that only zero sink momentum sequen-
tial propagators were computed, is given in Table III.
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Complicated over and under-determined systems of equations (different 
choices of polarisation and boost at same momentum transfer)
Some GFFs suppressed by orders of magnitude
Some GFFs related by symmetries at some momenta

Gluon Generalised FFs

Simplest example:  
Transversity GFFs  
One basis (2 vectors)  
Mtm 1 (lattice units)
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where the numbers and uncertainties on the right hand side of the equation come from the plateau fits to averaged
ratios obtained as described in the main text. The ordering of the rows is as in Table II.

Appendix D: Direct solution of form factor
decomposition for electromagnetic current

Since only three form factors contribute to matrix el-
ements of the electromagnetic current, a direct solution
of the constraint equations relating ratios of three-point
and two-point functions to the form factors is straight-
forward [18, 19]. This extraction is performed as a check
on the more general method discussed in Section III.

For each momentum transfer, �2, three ratios of two-
point and three-point functions are required to extract
the form factors at that momentum. At zero momentum
transfer, only the G

1

form factor can be determined. In
terms of the ratios

Ri
jk(~�) = Rjk(~p = ~�, ~p 0 = ~0, t, ⌧, J i) (D1)

for the currents J i =  ̄�i , where Rjk(~p, ~p 0, t, ⌧,O) is

defined in Eq. (14) and dependence on the current and
sink times is suppressed, the generic form of the solution
for the FFs can be expressed as

GX(�2) = MX

X

f=a,b,c

NX,fRX,f . (D2)

Here X = C,M,Q labels the Sachs form factors, which
are related to the basis used in Eq. (21) by

GQ(�
2) = G

1

(�2)�G
2

(�2) + (1 + ⌘)G
3

(Q2),

GM (�2) = G
2

(�2), (D3)

GC(�
2) = G

1

(�2) +
2

3
⌘GQ(�

2) .

One choice of the combinations NX,f for each momen-
tum used, given that only zero sink momentum sequen-
tial propagators were computed, is given in Table III.
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Complicated over and under-determined systems of equations (different 
choices of polarisation and boost at same momentum transfer)
Some GFFs suppressed by orders of magnitude
Some GFFs related by symmetries at some momenta

Gluon Generalised FFs

Target a subset of  “dominant GFFs”

Simplest example:  
Transversity GFFs  
One basis (2 vectors)  
Mtm 1 (lattice units)



Example:  
Spin-indep GFFs, lowest non-zero 
momentum transfer

Projection into planes of dominant GFFs
Others set to 0±10
Only tightly-constrained bands shown in 
each projection.

Gluon Generalised FFs
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One GFF can be resolved for all momenta 
 
 
 
 
 
 
 
 

Gluon Transversity GFFs
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Three GFFs can be resolved for all momenta 
 
 
 
 
 
 
 
 
 
 
 
 

Spin-Indep. Gluon GFFs
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Three GFFs can be resolved for all momenta

GFF decomposition has precisely the same structure as in the spin-
independent gluon case 
 
 
 
 
 
 
 
 
 
 

Spin-Indep. Quark GFFs

One H(4) irrep.
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Quark and Gluon GFFs
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Ratio of gluon to quark unpolarised GFFs 
 
 
 
 
 
 
 
 
 
 
 
Gluon vs quark radius is a non-trivial question  
Much more complicated than intuitive pictures



How much do gluons contribute to the proton’s

MassMomentum 
Spin

Gluon Structure from LQCD

1

TMDs
‘Gluon radius’

2 PDFs
GPDs

What is the 3D gluon distribution of a proton

3
Gluonic ‘EMC’ effect

How is the gluon structure of a proton modified  
in a nucleus

‘Exotic’ glue



First investigations:  
ϕ meson  
simplest spin-1 system (has fwd 
limit gluon transversity) 
 

 

Phenomenologically relevant:  
nucleon, nuclei

‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon
observables that are not from
nucleon degrees of freedom.

Exotic glue operator:
operator in nucleon = 0
operator in nucleus 6= 0

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15

Glue structure of nuclei



Precise understanding of nuclear 
targets essential for DUNE expt: 
extraction of neutrino mass 
hierarchy, mixing parameters

Here −Q2 represents the squared four-momentum of the virtual photon that mediates the in-
teraction with coupling strength α and x = Q2/2Mν can be interpreted as the fraction of the
longitudinal nucleon momentum carried by the struck quark, in a frame where the nucleon moves
with infinite momentum in the direction opposite to that of the virtual photon. The variable y
denotes, in the target rest frame , the virtual-photon energy ν with respect to the lepton-beam
energy E.

At leading order in QCD the structure function F2 is defined as the sum of the momentum
distributions q(x,Q2) and q̄(x,Q2) of quarks and anti-quarks of flavor q = u, d, s, ... weighted by
x and z2q, where zq is the quark charge (in units of the elementary charge |e|):

F2(x,Q
2) =

∑

q=u,d,s..

xz2q
[

q(x,Q2) + q̄(x,Q2)
]

. (2)

The quantity

R =
σL

σT
=

F2

2xF1

[

1 +
4M2x2

Q2

]

− 1 =
FL

2xF1
(3)

is the ratio of the longitudinal to transverse virtual-photon cross sections. In the quark-parton
model, R = 0 for the interaction of the virtual photon with a point-like spin-1/2 particle. Quark
transverse momenta, quark masses and gluon radiation cause R to deviate from zero. If R is
independent of the nuclear mass number A (see the discussion in section 4.4), then the ratio of
cross sections for two different nuclei is equal to the ratio of their structure functions F2.

Subsequently, we will always discuss the ratio of structure functions (cross sections) per
nucleon for a nucleus with mass number A (i.e., A nucleons) and the deuteron D. The latter is, to
a good approximation, equal to the proton-neutron averaged structure function FD

2 ≈ (Fp
2+Fn

2)/2.
The x dependence of the structure functions Fp

2 and Fn
2 is different (for free nucleons they are

approximately related by Fn
2/F

p
2 ≈ 1−0.8x). Results for the nuclear structure function FA

2 (cross
section σA) for nuclei with Z protons and N neutrons will always be corrected for neutron excess
by

FA
2 = (

Fp
2 + Fn

2

2
)A ·

[

1−
N− Z

N+ Z
·
1− Fn

2/F
p
2

1 + Fn
2/F

p
2

]

, (4)

where it is assumed that proton and neutron structure functions are modified equally by the
nuclear environment. Thus, FA

2 is the structure function per nucleon for a hypothetical isoscalar
nucleus with an equal number (A2 ) of protons and neutrons.

3 The discovery

The historical result of the EMC effect [1] (updated results were published in [11]) is presented
in the left panel of Fig. 1. It shows the ratio of the structure function F2 per nucleon for iron
and deuterium, both uncorrected for Fermi motion, as a function of x. The shaded area indicates
the range for the errors on the slope of a linear fit to the data, the point-to-point systematic
uncertainties are somewhat larger. In addition there is an overall uncertainty of ±7%.

The ratio is seen to be different from unity. It falls from ∼ 1.15 at x = 0.05 to a value of
∼ 0.89 at x = 0.65 and doesn’t follow the expectations from Fermi-motion calculations. This

2

Ratio of structure function F2 per 
nucleon for iron and deuterium European Muon 

Collaboration (1983):

Modification of per-nucleon 
cross section of nucleons  
bound in nuclei

Gluon structure - nuclei

What is the gluonic analogue of the EMC effect?



Signals for spin-independent gluon operator in deuteron

Nuclear glue, m𝞹 ~450 MeV
NPLQCD Collaboration, arXiv:1709.00395
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Gluon momentum fraction

Matrix elements of the Spin-independent gluon operator in 
nucleon and light nuclei
Present statistics: can’t distinguish from no-EMC effect scenario
Small additional uncertainty from mixing with quark operators

NPLQCD Collaboration, arXiv:1709.00395

m𝞹 ~450 MeV m𝞹 ~800 MeV
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‘Exotic’ Glue in the Nucleus
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‘Exotic’ Glue in the Nucleus

‘Exotic’ Glue
Contributions to gluon
observables that are not from
nucleon degrees of freedom.

Exotic glue operator:
operator in nucleon = 0
operator in nucleus 6= 0

Phiala Shanahan (MIT) Exotic Glue in the Nucleus September 13, 2016 3 / 15

Double Helicity Flip Gluon Structure Function: �(x,Q2)

Parton model interpretation

For a target in the infinite momentum frame polarized in the x̂ direction
perpendicular to its momentum,

�(x,Q2) /
Z 1

x

dy

y3

�
g
x̂

(y,Q2) � g
ŷ

(y,Q2)
�

g
x̂,ŷ

(y,Q2): probability of finding a gluon with momentum fraction y
linearly polarized in the x̂, ŷ direction

“How much more momentum of transversely polarized particle carried by
gluons aligned rather than perpendicular to it in the transverse plane”

Phiala Shanahan (MIT) Exotic Glue in the Nucleus July 8, 2016 8 / 23

Double Helicity Flip Gluon Structure Function: �(x,Q2)
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Double helicity flip structure function Δ(x,Q2)

Hadrons: Gluonic Transversity (parton model interpretation) 
 
 
 
              : probability of finding a gluon with momentum fraction y linearly 
polarised in        direction

Nuclei: Exotic Glue
gluons not associated  
with individual nucleons  
in nucleus

Gluonic Transversity

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

hp|O|pi = 0, hN,Z|O|N,Zi 6= 0

3

where Q denotes the quark charge matrix and at leading
order there is no dependence on the factorization scale.

In a spin-one target with polarization E and E0, the
forward matrix element of the operator O is

hpE0|Oµ⌫µ1...µn |pEi
= (�2i)n�2 1

2
S [{ (pµE

0⇤
µ1

� pµ1E
0⇤
µ )(p⌫Eµ2 � pµ2E⌫)

+ (µ $ ⌫)} pµ3 . . . pµn ]An(µ2),
(10)

where ‘S’ is as above2.
The reduced matrix elements An, for even n, can be

related to moments of the structure function �(x,Q2).
Writing the subtracted dispersion relation for the double-
helicity-flip part of the matrix element of Tµ⌫ (Eq. (7))
and using the optical theorem to relate the imaginary
part of the matrix element of Tµ⌫ to Wµ⌫ (and hence to
�(x,Q2)) gives the identification

Mn(Q2) = Cn(Q2, Q2)
An(Q2)

2
, n = 2, 4, 6 . . . , (11)

where An is renormalized at the scale µ2 = Q2, and

Mn(Q2) =

Z 1

0
dxxn�1�(x,Q2) (12)

are the Mellin moments of �(x,Q2).
The structure function �(x,Q2) also has a parton

model interpretation. For a target in the infinite momen-
tum frame polarized in the x̂ direction perpendicular to
its momentum (defined to be in the ẑ direction),

�(x,Q2) = �↵s(Q2)

2⇡
TrQ2 x2

Z 1

x

dy

y3
�G(y,Q2), (13)

where �G is again renormalized at the scale µ2 = Q2,
and

�G(x, µ2) = gx̂(x, µ
2) � gŷ(x, µ

2). (14)

Here gx̂,ŷ(x, µ2) denotes the probability of finding a gluon
with longitudinal momentum fraction x linearly polar-
ized in either of the transverse directions, x̂ or ŷ, in the
transversely polarized target.

III. LATTICE CALCULATIONS

In order to calculate the reduced matrix elements An

appearing in Eqs. (10) and (11) using lattice QCD, we
must calculate the expectation values of local operators

2 This definition of An di↵ers from that in Ref. [7] by a factor of
two, chosen for convenience for the discussion of the So↵er bound
in this work.

of the form of Eq. (8). Here we describe these lat-
tice calculations, discuss the construction of appropri-
ate Euclidean-space local operators for the n = 2 case,
and summarize the methods used to extract the corre-
sponding reduced matrix element A2. Since this is an
exploratory calculation, it is performed at a single set of
lattice parameters and a number of systematic issues are
left to future work.

A. Lattice Simulation

Calculations were performed on an ensemble of
isotropic gauge-field configurations with Nf = 2 + 1
flavours of dynamical quarks. Specifics of this ensemble
are given in Table I [16]. The lattices have dimensions
L3⇥T = 243⇥64 with lattice spacing a = 0.1167(16) fm.
The Lüscher-Weisz gauge action [17] was employed with a
clover-improved quark action [18] with one level of stout
link smearing (⇢ = 0.125) [19]. The clover coe�cient
was set equal to its tree-level tadpole-improved value.
The light quark masses are such that the pion mass is
450(5) MeV and the strange quark mass is such that the
resulting mass of the � is 1040(3) MeV.

B. Lattice Operator Construction

In this work we consider the lowest dimension (n = 2)
operator of the tower in Eq. (8):

Oµ⌫µ1µ2 = S [Gµµ1G⌫µ2 ] . (15)

The symmetrized and trace-subtracted operator trans-
forms irreducibly as (2, 2) under the Lorentz group and
does not mix with quark-bilinear operators of the same
dimension under renormalization (this operator mixes
into higher twist four-quark operators, but the reverse
mixing is highly suppressed). On a hypercubic lattice,
the Lorentz group is reduced to the hypercubic group
H(4), increasing the possibilities for operator mixing.

Lattice operators with the appropriate continuum be-
havior that are safe from mixing with lower or same-
dimensional operators can be constructed by considering
their symmetry properties under H(4). The basic build-
ing block of such operators is

O(E)
µ⌫µ1µ2

= G(E)
µµ1

G(E)
⌫µ2

, (16)

where symmetrisation of indices is not implied.
The transformation properties of quark operators with

the symmetries of Eq. (16) under H(4) were described,
for the n = 2 case, in Ref. [20]. We use the same nota-
tion as in that work, with the 20 inequivalent irreducible

representations of H(4) denoted by ⌧ (d)k where d denotes
the dimension of the representation and k distinguishes
between inequivalent representations of the same dimen-
sion. Using the embedding of H(4) into GL(4) to classify

⇥
g

x̂

(y,Q2)� g

ŷ

(x,Q2)
⇤

Jaffe and Manohar, “Nuclear Gluonometry” Phys. Lett. B223 (1989) 218



Non-nucleonic Glue in Deuteron
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PRELIMINARY

First moment of gluon transversity 
distribution in the deuteron,  
m𝞹 ~800 MeV

First evidence for non-nucleonic 
gluon contributions to nuclear 
structure 
Magnitude relative to momentum 
fraction as expected from large-Nc

NPLQCD Collaboration, arXiv:1709.00395
Ratio of 3pt and 2pt functions



Electron-Ion collider will dramatically alter our knowledge of the 
gluonic structure of hadrons and nuclei

Work towards a complete 3D picture of parton structure 
(moments, x-dependence of PDFs, GPDs, TMDs)

Δ(x,Q2) has an interesting role
Purely gluonic
Non-nucleonic: directly probe nuclear effects

Compare quark and gluon distributions in hadrons and nuclei 

Lattice QCD calculations in hadrons and light nuclei will complement 
and extend understanding of fundamental structure of nature

Gluon structure circa 2025


